Research Article
BibTex RIS Cite

INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA

Year 2025, Volume: 24 Issue: 47, 135 - 175, 30.06.2025
https://doi.org/10.55071/ticaretfbd.1578209

Abstract

This study proposes a hybrid approach that integrates econometric and deep learning models—specifically, Vector Autoregression (VAR), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)—to enhance electricity price forecasting. By combining historical data with external factors like weather and market indicators, this hybrid approach aims to improve prediction accuracy in volatile energy markets. The model captures complex temporal dependencies through a hybrid VAR, LSTM, and GRU structure and is tested on historical electricity price data supplemented with weather and market variables. Performance is evaluated using mean absolute error (MAE), root mean square error (RMSE), symmetric mean absolute percentage error (SMAPE), and root mean squared logarithmic error (RMSLE). Results show that deep learning models, particularly GRU, outperform VAR regarding MAE, RMSE, and RMSLE, suggesting superior predictive accuracy for absolute and relative forecasting tasks. However, SMAPE results highlight that the VAR model performs better in capturing proportional errors, suggesting its relative robustness in volatile price environments. Including weather and market data significantly improves the model’s robustness and accuracy. This study’s hybrid approach combines the interpretability of econometric models with the predictive power of deep learning, offering insights into the impact of external factors on energy prices. The model supports better decision-making and risk management for energy market participants in dynamic market environments.

References

  • Cao, M., Wang, Y., Liu, J., Yin, Z., Guo, X., & Ren, X. (2022). Day ahead electricity price forecasting based on the deep belief network. Wireless Communications and Mobile Computing, 2022, 1–8. https://doi.org/10.1155/2022/3960597
  • Cao, H., Xiao, W., Sun, J., Gan, M. G., & Wang, G. (2024, July). Fusing data-and model-driven methods for RUL prediction in smart manufacturing systems. 2024 43rd Chinese Control Conference (CCC), 6945–6949. IEEE.
  • Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research, 77(10), 1297–1304. https://doi.org/10.1016/j.epsr.2006.09.022
  • Chughatta, K. (2023). Short-term electricity price forecasting using EEMD and GRU-NN. International Journal of Advanced Natural Sciences and Engineering Researches, 7(4), 420–427. https://doi.org/10.59287/ijanser.772
  • Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXiv. https://arxiv.org/abs/1412.3555
  • Dash, S. K., & Dash, P. K. (2019). Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving average and functional link neural network. Journal of Modern Power Systems and Clean Energy, 7(5), 1241–1255. https://doi.org/10.1007/s40565-019-0535-0
  • Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471. https://doi.org/10.1162/089976600300015015
  • Geetha, G., Shanthini, C., & Geethanjali, P. (2024). Non-conventional feature-based LSTM model for prediction of bearing performance degradation. Engineering Research Express. https://doi.org/10.1088/2631-8695/ad8d33
  • Grifa, M. (2018). Electric energy price forecasting: Descriptive analysis and features selection. International Journal of Pure and Applied Mathematics, 117(1), 15. https://doi.org/10.12732/ijpam.v117i1.15
  • Guo, W., & Zhao, Z. (2017). A novel hybrid BND-FOA-LSSVM model for electricity price forecasting. Information, 8(4), 120. https://doi.org/10.3390/info8040120
  • Hamilton, J. D. (2020). Time series analysis. Princeton University Press.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hu, G., Fu, S., Zhong, S., Lin, L., Liu, Y., Zhang, S., & Guo, F. (2024). Remaining useful life prediction of mechanical equipment based on time-series auto-correlation decomposition and CNN. Measurement Science and Technology. https://doi.org/10.1088/1361-6501/ad5c8c
  • Kaggle. (2024). Predict energy behavior of prosumers [Data set]. Retrieved November 4, 2024, from https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers/data
  • Kara, A. (2021). A hybrid prognostic approach based on deep learning for the degradation prediction of machinery. SAUCIS, 4(2), 216–226. https://doi.org/10.35377/saucis.04.02.912154
  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.
  • Lago, J., De Ridder, F., & De Schutter, B. (2018). Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy, 221, 386–405. https://doi.org/10.1016/j.apenergy.2018.02.069
  • Lehna, M., Scheller, F., & Herwartz, H. (2022). Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account. Energy Economics, 106, 105742. https://doi.org/10.1016/j.eneco.2021.105742
  • Liu, X., Shen, J., & Li, Y. (2010). A generalized auto-regressive conditional heteroskedasticity model for system marginal price forecasting based on weighted double Gaussian distribution. Power System Technology, 34, 139–144.
  • Liang, J., Liu, H., & Xiao, N. (2024). A hybrid approach based on deep neural network and double exponential model for remaining useful life prediction. Expert Systems with Applications, 249, 123563. https://doi.org/10.1016/j.eswa.2024.123563
  • Mandal, P., Senjyu, T., & Funabashi, T. (2006). Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Conversion and Management, 47(15–16), 2128–2142. https://doi.org/10.1016/j.enconman.2005.11.015
  • Mandal, P., Srivastava, A. K., Senjyu, T., & Negnevitsky, M. (2010). A new recursive neural network algorithm to forecast electricity price for PJM day-ahead market. International Journal of Energy Research, 34(6), 507–522. https://doi.org/10.1002/er.1569
  • Marín, J. B., Orozco, E. T., & Velilla, E. (n.d.). Forecasting electricity price in Colombia: A comparison between neural network, ARMA process and hybrid models.
  • Meher, S. (2020). Estimating and forecasting residential electricity demand in Odisha. Journal of Public Affairs, 20(3), e2065. https://doi.org/10.1002/pa.2065
  • Muniain, P., & Ziel, F. (2020). Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices. International Journal of Forecasting, 36(4), 1193–1210. https://doi.org/10.1016/j.ijforecast.2019.11.006
  • Nogueira, F. (2014). Bayesian Optimization. Retrieved from https://github.com/fmfn/BayesianOptimization.
  • Peng, L., Liu, S., Liu, R., & Wang, L. (2018). Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy, 162, 1301–1314. https://doi.org/10.1016/j.energy.2018.05.052
  • Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48. https://doi.org/10.2307/1912017
  • Su, H., Peng, X., Liu, H., Quan, H., Wu, K., & Chen, Z. (2022). Multi-step-ahead electricity price forecasting based on temporal graph convolutional network. Mathematics, 10(14), 2366. https://doi.org/10.3390/math10142366
  • Sun, A., Miao, X., Xu, K., & Jia, C. (2024). An adaptive method for predicting bearing remaining useful life across various degradation stages. Measurement Science and Technology, 36(1), 016154. https://doi.org/10.1088/1361-6501/ad903e
  • Uğurlu, U., Öksüz, İ., & Taş, O. (2018). Electricity price forecasting using recurrent neural networks. Energies, 11(5), 1255. https://doi.org/10.3390/en11051255
  • Wang, J., Du, Y., & Wang, J. (2020). LSTM based long-term energy consumption prediction with periodicity. Energy, 197, 117197. https://doi.org/10.1016/j.energy.2020.117197
  • Wang, D., Gryshova, I., Kyzym, M., Salashenko, T., Khaustova, V., & Shcherbata, M. (2022). Electricity price instability over time: Time series analysis and forecasting. Sustainability, 14(15), 9081. https://doi.org/10.3390/su14159081
  • Wang, Y., Lu, K., Dong, R., Fan, Y., & Jiang, X. (2024). Review of rolling bearings performance degradation trend prediction. Noise & Vibration Worldwide, 55(11), 585–604. https://doi.org/10.1177/09574565241282690
  • Xie, X., Li, M., & Zhang, D. (2021). A multiscale electricity price forecasting model based on tensor fusion and deep learning. Energies, 14(21), 7333. https://doi.org/10.3390/en14217333
  • Xuan, H., Nepal, R., & Jamasb, T. (2020). Electricity market integration, decarbonization and security of supply: Dynamic volatility connectedness in the Irish and Great Britain markets.
  • Yan, L., Yan, Z., Li, Z., Ma, N., Li, R., & Qin, J. (2023). Electricity market price prediction based on quadratic hybrid decomposition and THPO algorithm. Energies, 16(13), 5098. https://doi.org/10.3390/en16135098
  • Yao, M., Xie, W., & Mo, L. (2021). Short-term electricity price forecasting based on BP neural network optimized by SAPSO. Energies, 14(20), 6514. https://doi.org/10.3390/en14206514
  • Zareipour, H., Canizares, C., & Bhattacharya, K. (2010). Economic impact of electricity market price forecasting errors: A demand-side analysis. IEEE Transactions on Power Systems, 25(1), 254–262. https://doi.org/10.1109/TPWRS.2009.2030380
  • Zhang, J., & Cheng, C. (2008, October 6–7). Day-ahead electricity price forecasting using artificial intelligence. In Proceedings of the Electric Power Conference (pp. 1–5). Vancouver, BC, Canada. https://doi.org/10.1109/EPC.2008.4763350
  • Zhang, J., Wei, Y., Li, D., Tan, Z., & Zhou, J. (2018). Short term electricity load forecasting using a hybrid model. Energy, 158, 774-781. https://doi.org/10.1016/j.energy.2018.06.012
  • Zhong, B. (2023). Deep learning integration optimization of electric energy load forecasting and market price based on the ANN–LSTM–transformer method. Frontiers in Energy Research, 11, 1292204. https://doi.org/10.3389/fenrg.2023.1292204
  • Zhou, S., Zhou, L., Mao, M., Tai, H., & Wan, Y. (2019). An optimized heterogeneous structure LSTM network for electricity price forecasting. IEEE Access, 7, 108161-108173. https://doi.org/10.1109/ACCESS.2019.2932999

ENERJİ FİYATI TAHMİNİ İÇİN EKONOMETRİK VE DERİN ÖĞRENME MODELLERİNİN ENTEGRASYONU: HAVA DURUMU VE PİYASA VERİLERİNİ KULLANAN KARMA BİR YAKLAŞIM

Year 2025, Volume: 24 Issue: 47, 135 - 175, 30.06.2025
https://doi.org/10.55071/ticaretfbd.1578209

Abstract

Bu çalışma, elektrik fiyat tahminini geliştirmek için üç farklı modeli, ekonometrik (Vektör Otoregresyon, VAR) ve derin öğrenme tekniklerini (Uzun Kısa Süreli Bellek, LSTM ve Geçitli Tekrarlayan Birim, GRU) entegre ederek hibrit bir yaklaşım önermektedir. Geçmiş verileri hava durumu ve piyasa göstergeleri gibi dış faktörlerle birleştiren bu hibrit yaklaşım, değişken enerji piyasalarında tahmin doğruluğunu artırmayı amaçlamaktadır. Model, hibrit bir VAR, LSTM ve GRU yapısı aracılığıyla karmaşık zamansal bağımlılıkları yakalar ve hava durumu ve piyasa değişkenleri ile desteklenen geçmiş elektrik fiyatı verileri üzerinde test edilir. Performans, ortalama mutlak hata (MAE), kök ortalama kare hata (RMSE), simetrik ortalama mutlak yüzde hata (SMAPE) ve kök ortalama karesel logaritmik hata (RMSLE) kullanılarak değerlendirilmiştir. Sonuçlar, özellikle GRU olmak üzere derin öğrenme modellerinin MAE, RMSE ve RMSLE açısından VAR'dan daha iyi performans gösterdiğini ve mutlak ve göreceli tahmin görevleri için üstün tahmin doğruluğu sağladığını ortaya koymaktadır. Bununla birlikte, SMAPE sonuçları VAR modelinin oransal hataları yakalamada daha iyi performans gösterdiğini vurgulamakta ve bu da değişken fiyat ortamlarında göreceli sağlamlığını ortaya koymaktadır. Hava durumu ve piyasa verilerinin dahil edilmesi, modelin sağlamlığını ve doğruluğunu önemli ölçüde artırmaktadır. Bu çalışmanın hibrit yaklaşımı, ekonometrik modellerin yorumlanabilirliği ile derin öğrenmenin tahmin gücünü birleştirerek dış faktörlerin enerji fiyatları üzerindeki etkisine dair içgörüler sunmaktadır. Model, dinamik piyasa ortamlarında enerji piyasası katılımcıları için daha iyi karar alma ve risk yönetimini desteklemektedir.

References

  • Cao, M., Wang, Y., Liu, J., Yin, Z., Guo, X., & Ren, X. (2022). Day ahead electricity price forecasting based on the deep belief network. Wireless Communications and Mobile Computing, 2022, 1–8. https://doi.org/10.1155/2022/3960597
  • Cao, H., Xiao, W., Sun, J., Gan, M. G., & Wang, G. (2024, July). Fusing data-and model-driven methods for RUL prediction in smart manufacturing systems. 2024 43rd Chinese Control Conference (CCC), 6945–6949. IEEE.
  • Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research, 77(10), 1297–1304. https://doi.org/10.1016/j.epsr.2006.09.022
  • Chughatta, K. (2023). Short-term electricity price forecasting using EEMD and GRU-NN. International Journal of Advanced Natural Sciences and Engineering Researches, 7(4), 420–427. https://doi.org/10.59287/ijanser.772
  • Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXiv. https://arxiv.org/abs/1412.3555
  • Dash, S. K., & Dash, P. K. (2019). Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving average and functional link neural network. Journal of Modern Power Systems and Clean Energy, 7(5), 1241–1255. https://doi.org/10.1007/s40565-019-0535-0
  • Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471. https://doi.org/10.1162/089976600300015015
  • Geetha, G., Shanthini, C., & Geethanjali, P. (2024). Non-conventional feature-based LSTM model for prediction of bearing performance degradation. Engineering Research Express. https://doi.org/10.1088/2631-8695/ad8d33
  • Grifa, M. (2018). Electric energy price forecasting: Descriptive analysis and features selection. International Journal of Pure and Applied Mathematics, 117(1), 15. https://doi.org/10.12732/ijpam.v117i1.15
  • Guo, W., & Zhao, Z. (2017). A novel hybrid BND-FOA-LSSVM model for electricity price forecasting. Information, 8(4), 120. https://doi.org/10.3390/info8040120
  • Hamilton, J. D. (2020). Time series analysis. Princeton University Press.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hu, G., Fu, S., Zhong, S., Lin, L., Liu, Y., Zhang, S., & Guo, F. (2024). Remaining useful life prediction of mechanical equipment based on time-series auto-correlation decomposition and CNN. Measurement Science and Technology. https://doi.org/10.1088/1361-6501/ad5c8c
  • Kaggle. (2024). Predict energy behavior of prosumers [Data set]. Retrieved November 4, 2024, from https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers/data
  • Kara, A. (2021). A hybrid prognostic approach based on deep learning for the degradation prediction of machinery. SAUCIS, 4(2), 216–226. https://doi.org/10.35377/saucis.04.02.912154
  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.
  • Lago, J., De Ridder, F., & De Schutter, B. (2018). Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy, 221, 386–405. https://doi.org/10.1016/j.apenergy.2018.02.069
  • Lehna, M., Scheller, F., & Herwartz, H. (2022). Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account. Energy Economics, 106, 105742. https://doi.org/10.1016/j.eneco.2021.105742
  • Liu, X., Shen, J., & Li, Y. (2010). A generalized auto-regressive conditional heteroskedasticity model for system marginal price forecasting based on weighted double Gaussian distribution. Power System Technology, 34, 139–144.
  • Liang, J., Liu, H., & Xiao, N. (2024). A hybrid approach based on deep neural network and double exponential model for remaining useful life prediction. Expert Systems with Applications, 249, 123563. https://doi.org/10.1016/j.eswa.2024.123563
  • Mandal, P., Senjyu, T., & Funabashi, T. (2006). Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Conversion and Management, 47(15–16), 2128–2142. https://doi.org/10.1016/j.enconman.2005.11.015
  • Mandal, P., Srivastava, A. K., Senjyu, T., & Negnevitsky, M. (2010). A new recursive neural network algorithm to forecast electricity price for PJM day-ahead market. International Journal of Energy Research, 34(6), 507–522. https://doi.org/10.1002/er.1569
  • Marín, J. B., Orozco, E. T., & Velilla, E. (n.d.). Forecasting electricity price in Colombia: A comparison between neural network, ARMA process and hybrid models.
  • Meher, S. (2020). Estimating and forecasting residential electricity demand in Odisha. Journal of Public Affairs, 20(3), e2065. https://doi.org/10.1002/pa.2065
  • Muniain, P., & Ziel, F. (2020). Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices. International Journal of Forecasting, 36(4), 1193–1210. https://doi.org/10.1016/j.ijforecast.2019.11.006
  • Nogueira, F. (2014). Bayesian Optimization. Retrieved from https://github.com/fmfn/BayesianOptimization.
  • Peng, L., Liu, S., Liu, R., & Wang, L. (2018). Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy, 162, 1301–1314. https://doi.org/10.1016/j.energy.2018.05.052
  • Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48. https://doi.org/10.2307/1912017
  • Su, H., Peng, X., Liu, H., Quan, H., Wu, K., & Chen, Z. (2022). Multi-step-ahead electricity price forecasting based on temporal graph convolutional network. Mathematics, 10(14), 2366. https://doi.org/10.3390/math10142366
  • Sun, A., Miao, X., Xu, K., & Jia, C. (2024). An adaptive method for predicting bearing remaining useful life across various degradation stages. Measurement Science and Technology, 36(1), 016154. https://doi.org/10.1088/1361-6501/ad903e
  • Uğurlu, U., Öksüz, İ., & Taş, O. (2018). Electricity price forecasting using recurrent neural networks. Energies, 11(5), 1255. https://doi.org/10.3390/en11051255
  • Wang, J., Du, Y., & Wang, J. (2020). LSTM based long-term energy consumption prediction with periodicity. Energy, 197, 117197. https://doi.org/10.1016/j.energy.2020.117197
  • Wang, D., Gryshova, I., Kyzym, M., Salashenko, T., Khaustova, V., & Shcherbata, M. (2022). Electricity price instability over time: Time series analysis and forecasting. Sustainability, 14(15), 9081. https://doi.org/10.3390/su14159081
  • Wang, Y., Lu, K., Dong, R., Fan, Y., & Jiang, X. (2024). Review of rolling bearings performance degradation trend prediction. Noise & Vibration Worldwide, 55(11), 585–604. https://doi.org/10.1177/09574565241282690
  • Xie, X., Li, M., & Zhang, D. (2021). A multiscale electricity price forecasting model based on tensor fusion and deep learning. Energies, 14(21), 7333. https://doi.org/10.3390/en14217333
  • Xuan, H., Nepal, R., & Jamasb, T. (2020). Electricity market integration, decarbonization and security of supply: Dynamic volatility connectedness in the Irish and Great Britain markets.
  • Yan, L., Yan, Z., Li, Z., Ma, N., Li, R., & Qin, J. (2023). Electricity market price prediction based on quadratic hybrid decomposition and THPO algorithm. Energies, 16(13), 5098. https://doi.org/10.3390/en16135098
  • Yao, M., Xie, W., & Mo, L. (2021). Short-term electricity price forecasting based on BP neural network optimized by SAPSO. Energies, 14(20), 6514. https://doi.org/10.3390/en14206514
  • Zareipour, H., Canizares, C., & Bhattacharya, K. (2010). Economic impact of electricity market price forecasting errors: A demand-side analysis. IEEE Transactions on Power Systems, 25(1), 254–262. https://doi.org/10.1109/TPWRS.2009.2030380
  • Zhang, J., & Cheng, C. (2008, October 6–7). Day-ahead electricity price forecasting using artificial intelligence. In Proceedings of the Electric Power Conference (pp. 1–5). Vancouver, BC, Canada. https://doi.org/10.1109/EPC.2008.4763350
  • Zhang, J., Wei, Y., Li, D., Tan, Z., & Zhou, J. (2018). Short term electricity load forecasting using a hybrid model. Energy, 158, 774-781. https://doi.org/10.1016/j.energy.2018.06.012
  • Zhong, B. (2023). Deep learning integration optimization of electric energy load forecasting and market price based on the ANN–LSTM–transformer method. Frontiers in Energy Research, 11, 1292204. https://doi.org/10.3389/fenrg.2023.1292204
  • Zhou, S., Zhou, L., Mao, M., Tai, H., & Wan, Y. (2019). An optimized heterogeneous structure LSTM network for electricity price forecasting. IEEE Access, 7, 108161-108173. https://doi.org/10.1109/ACCESS.2019.2932999
There are 43 citations in total.

Details

Primary Language English
Subjects Deep Learning
Journal Section Research Article
Authors

Cemal Öztürk 0000-0003-3850-7416

Early Pub Date June 14, 2025
Publication Date June 30, 2025
Submission Date November 5, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 24 Issue: 47

Cite

APA Öztürk, C. (2025). INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(47), 135-175. https://doi.org/10.55071/ticaretfbd.1578209
AMA Öztürk C. INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. June 2025;24(47):135-175. doi:10.55071/ticaretfbd.1578209
Chicago Öztürk, Cemal. “INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, no. 47 (June 2025): 135-75. https://doi.org/10.55071/ticaretfbd.1578209.
EndNote Öztürk C (June 1, 2025) INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 47 135–175.
IEEE C. Öztürk, “INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 24, no. 47, pp. 135–175, 2025, doi: 10.55071/ticaretfbd.1578209.
ISNAD Öztürk, Cemal. “INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/47 (June 2025), 135-175. https://doi.org/10.55071/ticaretfbd.1578209.
JAMA Öztürk C. INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:135–175.
MLA Öztürk, Cemal. “INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 24, no. 47, 2025, pp. 135-7, doi:10.55071/ticaretfbd.1578209.
Vancouver Öztürk C. INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(47):135-7.