Research Article
BibTex RIS Cite

DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS

Year 2025, Volume: 24 Issue: 47, 303 - 317, 30.06.2025
https://doi.org/10.55071/ticaretfbd.1699770

Abstract

Vacuum measurements are widely utilized in numerous critical applications including defense industries, aerospace technologies, composite material manufacturing, and various industrial processes. The key performance parameters in vacuum systems include measurement range, accuracy, and operational lifetime of the sensing elements. This study presents a comprehensive investigation of an Inverted Magnetron (IMT) cold cathode vacuum measurement sensor, which offers distinct advantages over conventional hot cathode systems, including an extended measurement range, prolonged operational lifetime, and user-friendly operation. The IMT cathode configuration demonstrates superior performance in low-pressure regimes (below 10⁻³ Torr) by optimizing electron trajectories through magnetic field confinement, thereby achieving high ionization efficiency. To optimize sensor performance, a high-stability digital electronic readout system was designed and implemented. Experimental characterization was conducted using a turbo-molecular vacuum pump, with measurement results successfully demonstrating the system's capability to accurately measure vacuum levels down to 9,9 ×10⁻⁸ Torr. These findings validate the IMT cathode design's exceptional stability and wide dynamic range in ultra-high vacuum applications. The developed flexible electronic system enables high-precision digital measurement and control of vacuum systems. This research contributes to the development of an economical, long-lifetime vacuum measurement system capable of stable operation at low-pressure regimes, based on IMT cathode technology.

References

  • Arpornthip, T., Sackett, C. A., & Hughes, K. J. (2012). Vacuum-pressure measurement using a magneto-optical trap. Physical Review A—Atomic, Molecular, and Optical Physics, 85(3), 033420 doi:10.1103/physreva.85.033420.
  • Calcatelli, A. (2013). The development of vacuum measurements down to extremely high vacuum–XHV. Measurement, 46(2), 1029-1039 doi:10.1016/j.measurement.2012.08.018.
  • Chen, S., Feng, L., Guo, S., Ji, Y., Zeng, S., Peng, X., ... & Wang, S. (2023). A composite-type MEMS Pirani gauge for wide range and high accuracy. Sensors, 23(3), 1276 doi:10.3390/s23031276.
  • Cui, Y., Zhang, X., Lei, W., Wang, J., Di, Y., Yang, X., & Chen, J. (2012). Effect of outgassing on the field emission property of tetrapod ZnO. physica status solidi c, 9(1), 44-47 doi:10.1002/pssc.201084163.
  • Fu, Z., Huang, X., Li, J., Yang, S., & Zheng, J. (2024, March). Review of cold atom quantum-based vacuum metrology. In Advanced Fiber Laser Conference (AFL2023) (Vol. 13104, pp. 56-65). SPIE doi:10.1117/12.3016054.
  • Grzebyk, T., Górecka-Drzazga, A., Dziuban, J. A., Maamari, K., An, S., Dankovic, T., ... & Busta, H. (2015). Integration of a MEMS-type vacuum pump with a MEMS-type Pirani pressure gauge. Journal of Vacuum Science & Technology B, 33(3) doi:10.1116/1.4903448.
  • Guangci, Z., Stephen, R., Tao, W., & Nay, Y. (2014). Fuel Heat of Vaporization Values Measured with Vacuum Thermogravimetric Analysis Method.
  • Hubbard, B. R., Putman, L. I., Techtmann, S., & Pearce, J. M. (2021). Open source vacuum oven design for low-temperature drying: performance evaluation for recycled PET and biomass. Journal of Manufacturing and Materials Processing, 5(2), 52 doi:10.3390/jmmp5020052.
  • Jousten, K., Boineau, F., Bundaleski, N., Illgen, C., Setina, J., Teodoro, O. M., ... & Wüest, M. (2020). A review on hot cathode ionisation gauges with focus on a suitable design for measurement accuracy and stability. Vacuum, 179, 109545 doi:10.1016/j.vacuum.2020.109545.
  • Krishnan, R., & Cahay, M. (2003). Transition from sub-Poissonian to super-Poissonian shot noise in planar cold cathodes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21(4), 1278-1285 doi:10.1116/1.1575251.
  • Lee, K. R., Kim, K., Park, H. D., Kim, Y. K., Choi, S. W., & Choi, W. B. (2006, April). Fabrication of capacitive absolute pressure sensor using Si-Au eutectic bonding in SOI wafer. In Journal of Physics: Conference Series (Vol. 34, No. 1, p. 393). IOP Publishing doi:10.1088/1742-6596/34/1/064.
  • Li, D., Wang, Y., Zhang, H., Xi, Z., & Li, G. (2021). Applications of vacuum measurement technology in china’s space programs. Space: Science & Technology doi:10.34133/2021/7592858.
  • Shirhatti, V., Kedambaimoole, V., Nuthalapati, S., Neella, N., Nayak, M. M., & Rajanna, K. (2019). High-range noise immune supersensitive graphene-electrolyte capacitive strain sensor for biomedical applications. Nanotechnology, 30(47), 475502 doi:10.1109/jmems.2024.3367380.
  • Song, X., Huang, L., Lin, Y., Hong, L., & Xu, W. (2024). Surface Micromachined CMOS-MEMS Pirani Vacuum Gauge With Stacked Temperature Sensor. Journal of Microelectromechanical Systems doi:10.1109/jmems.2024.3367380.
  • Sparks, D., Queen, G., Weston, R., Woodward, G., Putty, M., Jordan, L., ... & Jayakar, K. (2001). Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder. Journal of Micromechanics and Microengineering, 11(6), 630 doi:10.1088/0960-1317/11/6/303.
  • Takashima, N., & Kimura, M. (2008). Investigation on the Thin Film Pirani Vacuum Sensor Using A Constant Voltage Drive-Mode Diode-Heater. IEEJ Transactions on Sensors and Micromachines, 128(5), 209-213 doi:10.1541/ieejsmas.128.209.
  • Wang, J. Q., & Yu, J. (2015). Fabrication process and electro-thermal modeling for the cathode of the cmos-compatible hot-filament vacuum gauge. Key Engineering Materials, 645, 836-840 doi:10.4028/www.scientific.net/kem.645-646.836.
  • Wei, D., Fu, J., Liu, R., Hou, Y., Liu, C., Wang, W., & Chen, D. (2019). Highly sensitive diode-based micro-Pirani vacuum sensor with low power consumption. Sensors, 19(1), 188 doi:10.3390/s19010188.
  • Yang, Y., Qian, L., Tang, J., Liu, L., & Fan, S. (2008). A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics Letters, 92(15) doi:10.1063/1.2909467.
  • Yuan, X., Zhu, W., Zhang, Y., Xu, N., Yan, Y., Wu, J., ... & Deng, S. (2016). A fully-sealed carbon-nanotube cold-cathode terahertz gyrotron. Scientific Reports, 6(1), 32936 doi:10.1038/srep32936.
  • Zhang, J., Li, D., Zhao, Y., Cheng, Y., & Dong, C. (2016). Wide-range vacuum measurements from MWNT field emitters grown directly on stainless steel substrates. Nanoscale Research Letters, 11, 1-7 doi:10.1186/s11671-016-1956-6.
  • Zhang, J., Wei, J., Li, D., Zhang, H., Wang, Y., & Zhang, X. (2021). A Cylindrical Triode Ultrahigh Vacuum Ionization Gauge with a Carbon Nanotube Cathode. Nanomaterials, 11(7), 1636 doi:10.3390/nano11071636.
  • Zhou, G., Roby, S., Wei, T., & Yee, N. (2014). Fuel heat of vaporization values measured with vacuum thermogravimetric analysis method. Energy & fuels, 28(5), 3138-3142 doi:10.1021/ef402491p.
  • Zhu, Y., Cai, H., Ding, H., Pan, N., & Wang, X. (2019). Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS applied materials & interfaces, 11(6), 6195-6200 doi:10.1021/acsami.8b17085

ULTRA YÜKSEK VAKUM UYGULAMALARI İÇİN GÖMÜLÜ SİSTEM TABANLI SOĞUK KATOT VAKUM ÖLÇÜM SİSTEMİNİN GELİŞTİRİLMESİ

Year 2025, Volume: 24 Issue: 47, 303 - 317, 30.06.2025
https://doi.org/10.55071/ticaretfbd.1699770

Abstract

Vakum ölçümleri, savunma sanayisi, uzay teknolojileri, kompozit malzeme üretimi ve endüstriyel uygulamalar gibi birçok kritik alanda yaygın olarak kullanılmaktadır. Vakum sistemlerinde performansı belirleyen temel parametreler arasında ölçüm aralığının genişliği, ölçüm hassasiyeti ve sensör kullanım ömrü yer almaktadır. Bu çalışmada, sıcak katot sistemlere kıyasla daha geniş ölçüm aralığı, uzun kullanım ömrü ve kullanım kolaylığı sunan Inverted Magnetron (IMT) soğuk katot vakum ölçüm sensörü detaylı bir şekilde incelenmiştir. IMT katot yapısı, düşük basınçlarda (10⁻³ Torr altı) manyetik alan etkisiyle elektron hareketini optimize ederek yüksek iyonizasyon verimliliği sağlamasıyla öne çıkmaktadır. Sensörün performansını optimize etmek amacıyla, dijital okuma yapabilen yüksek kararlılığa sahip bir elektronik sistem tasarlanmış ve turbo moleküler vakum pompası ile deneysel karakterizasyon çalışmaları gerçekleştirilmiştir. Yapılan deneysel çalışmalar sonucunda, IMT katot soğuk katot sensör ile 9,9 ×10⁻⁸ Torr seviyesine kadar olan vakum değerleri başarıyla ölçülmüştür. Bu sonuçlar, IMT katot tasarımının düşük basınç uygulamalarında sunduğu stabilite ve geniş dinamik aralığın bir göstergesidir. Tasarlanan esnek elektronik sistem sayesinde, vakum sistemlerinde yüksek hassasiyetle dijital ölçüm ve kontrol imkânı sağlanmıştır. Bu çalışma, IMT katot teknolojisini temel alan ekonomik, uzun ömürlü ve düşük basınç seviyelerinde kararlı ölçüm yapabilen bir vakum ölçüm sisteminin geliştirilmesine katkı sunmaktadır.

References

  • Arpornthip, T., Sackett, C. A., & Hughes, K. J. (2012). Vacuum-pressure measurement using a magneto-optical trap. Physical Review A—Atomic, Molecular, and Optical Physics, 85(3), 033420 doi:10.1103/physreva.85.033420.
  • Calcatelli, A. (2013). The development of vacuum measurements down to extremely high vacuum–XHV. Measurement, 46(2), 1029-1039 doi:10.1016/j.measurement.2012.08.018.
  • Chen, S., Feng, L., Guo, S., Ji, Y., Zeng, S., Peng, X., ... & Wang, S. (2023). A composite-type MEMS Pirani gauge for wide range and high accuracy. Sensors, 23(3), 1276 doi:10.3390/s23031276.
  • Cui, Y., Zhang, X., Lei, W., Wang, J., Di, Y., Yang, X., & Chen, J. (2012). Effect of outgassing on the field emission property of tetrapod ZnO. physica status solidi c, 9(1), 44-47 doi:10.1002/pssc.201084163.
  • Fu, Z., Huang, X., Li, J., Yang, S., & Zheng, J. (2024, March). Review of cold atom quantum-based vacuum metrology. In Advanced Fiber Laser Conference (AFL2023) (Vol. 13104, pp. 56-65). SPIE doi:10.1117/12.3016054.
  • Grzebyk, T., Górecka-Drzazga, A., Dziuban, J. A., Maamari, K., An, S., Dankovic, T., ... & Busta, H. (2015). Integration of a MEMS-type vacuum pump with a MEMS-type Pirani pressure gauge. Journal of Vacuum Science & Technology B, 33(3) doi:10.1116/1.4903448.
  • Guangci, Z., Stephen, R., Tao, W., & Nay, Y. (2014). Fuel Heat of Vaporization Values Measured with Vacuum Thermogravimetric Analysis Method.
  • Hubbard, B. R., Putman, L. I., Techtmann, S., & Pearce, J. M. (2021). Open source vacuum oven design for low-temperature drying: performance evaluation for recycled PET and biomass. Journal of Manufacturing and Materials Processing, 5(2), 52 doi:10.3390/jmmp5020052.
  • Jousten, K., Boineau, F., Bundaleski, N., Illgen, C., Setina, J., Teodoro, O. M., ... & Wüest, M. (2020). A review on hot cathode ionisation gauges with focus on a suitable design for measurement accuracy and stability. Vacuum, 179, 109545 doi:10.1016/j.vacuum.2020.109545.
  • Krishnan, R., & Cahay, M. (2003). Transition from sub-Poissonian to super-Poissonian shot noise in planar cold cathodes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21(4), 1278-1285 doi:10.1116/1.1575251.
  • Lee, K. R., Kim, K., Park, H. D., Kim, Y. K., Choi, S. W., & Choi, W. B. (2006, April). Fabrication of capacitive absolute pressure sensor using Si-Au eutectic bonding in SOI wafer. In Journal of Physics: Conference Series (Vol. 34, No. 1, p. 393). IOP Publishing doi:10.1088/1742-6596/34/1/064.
  • Li, D., Wang, Y., Zhang, H., Xi, Z., & Li, G. (2021). Applications of vacuum measurement technology in china’s space programs. Space: Science & Technology doi:10.34133/2021/7592858.
  • Shirhatti, V., Kedambaimoole, V., Nuthalapati, S., Neella, N., Nayak, M. M., & Rajanna, K. (2019). High-range noise immune supersensitive graphene-electrolyte capacitive strain sensor for biomedical applications. Nanotechnology, 30(47), 475502 doi:10.1109/jmems.2024.3367380.
  • Song, X., Huang, L., Lin, Y., Hong, L., & Xu, W. (2024). Surface Micromachined CMOS-MEMS Pirani Vacuum Gauge With Stacked Temperature Sensor. Journal of Microelectromechanical Systems doi:10.1109/jmems.2024.3367380.
  • Sparks, D., Queen, G., Weston, R., Woodward, G., Putty, M., Jordan, L., ... & Jayakar, K. (2001). Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder. Journal of Micromechanics and Microengineering, 11(6), 630 doi:10.1088/0960-1317/11/6/303.
  • Takashima, N., & Kimura, M. (2008). Investigation on the Thin Film Pirani Vacuum Sensor Using A Constant Voltage Drive-Mode Diode-Heater. IEEJ Transactions on Sensors and Micromachines, 128(5), 209-213 doi:10.1541/ieejsmas.128.209.
  • Wang, J. Q., & Yu, J. (2015). Fabrication process and electro-thermal modeling for the cathode of the cmos-compatible hot-filament vacuum gauge. Key Engineering Materials, 645, 836-840 doi:10.4028/www.scientific.net/kem.645-646.836.
  • Wei, D., Fu, J., Liu, R., Hou, Y., Liu, C., Wang, W., & Chen, D. (2019). Highly sensitive diode-based micro-Pirani vacuum sensor with low power consumption. Sensors, 19(1), 188 doi:10.3390/s19010188.
  • Yang, Y., Qian, L., Tang, J., Liu, L., & Fan, S. (2008). A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics Letters, 92(15) doi:10.1063/1.2909467.
  • Yuan, X., Zhu, W., Zhang, Y., Xu, N., Yan, Y., Wu, J., ... & Deng, S. (2016). A fully-sealed carbon-nanotube cold-cathode terahertz gyrotron. Scientific Reports, 6(1), 32936 doi:10.1038/srep32936.
  • Zhang, J., Li, D., Zhao, Y., Cheng, Y., & Dong, C. (2016). Wide-range vacuum measurements from MWNT field emitters grown directly on stainless steel substrates. Nanoscale Research Letters, 11, 1-7 doi:10.1186/s11671-016-1956-6.
  • Zhang, J., Wei, J., Li, D., Zhang, H., Wang, Y., & Zhang, X. (2021). A Cylindrical Triode Ultrahigh Vacuum Ionization Gauge with a Carbon Nanotube Cathode. Nanomaterials, 11(7), 1636 doi:10.3390/nano11071636.
  • Zhou, G., Roby, S., Wei, T., & Yee, N. (2014). Fuel heat of vaporization values measured with vacuum thermogravimetric analysis method. Energy & fuels, 28(5), 3138-3142 doi:10.1021/ef402491p.
  • Zhu, Y., Cai, H., Ding, H., Pan, N., & Wang, X. (2019). Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS applied materials & interfaces, 11(6), 6195-6200 doi:10.1021/acsami.8b17085
There are 24 citations in total.

Details

Primary Language English
Subjects Electrical Circuits and Systems, Mechanical Engineering (Other)
Journal Section Research Article
Authors

Tarık Ünler 0000-0002-2658-1902

Early Pub Date June 14, 2025
Publication Date June 30, 2025
Submission Date May 15, 2025
Acceptance Date June 3, 2025
Published in Issue Year 2025 Volume: 24 Issue: 47

Cite

APA Ünler, T. (2025). DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(47), 303-317. https://doi.org/10.55071/ticaretfbd.1699770
AMA Ünler T. DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. June 2025;24(47):303-317. doi:10.55071/ticaretfbd.1699770
Chicago Ünler, Tarık. “DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, no. 47 (June 2025): 303-17. https://doi.org/10.55071/ticaretfbd.1699770.
EndNote Ünler T (June 1, 2025) DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 47 303–317.
IEEE T. Ünler, “DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 24, no. 47, pp. 303–317, 2025, doi: 10.55071/ticaretfbd.1699770.
ISNAD Ünler, Tarık. “DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/47 (June 2025), 303-317. https://doi.org/10.55071/ticaretfbd.1699770.
JAMA Ünler T. DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:303–317.
MLA Ünler, Tarık. “DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 24, no. 47, 2025, pp. 303-17, doi:10.55071/ticaretfbd.1699770.
Vancouver Ünler T. DEVELOPMENT OF AN EMBEDDED SYSTEM-BASED COLD CATHODE VACUUM MEASUREMENT SYSTEM FOR (ULTRA HIGH VACUUM) UHV APPLICATIONS. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(47):303-17.