Research Article
BibTex RIS Cite

Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block

Year 2025, Volume: 68 Issue: 2, 225 - 258, 30.04.2025
https://doi.org/10.25288/tjb.1627676

Abstract

Iğdır Fay Zonu (IFZ) Türkiye’nin en doğu ucunda, Ağrı Dağı’nın yaklaşık 13 km kuzeybatısında yer almaktadır. Kuzeybatıda Küllük köyünden başlayan fay güneydoğuda Kavaktepe köyüne kadar devam etmektedir. Yaklaşık olarak K20°B ile K60°B arasında değişen doğrultulara sahip olan sağ yanal doğrultu atımlı Iğdır Fay Zonu 19 alt geometrik segmentten oluşmaktadır. Fay kontrollü drenaj ağı, ötelenmiş akarsular ve alüvyal, kolüvyal yelpazeler ve başı kesik dereler fayın aktif olduğunu morfoloji üzerinde gösteren belirteçlerdir. Bu çalışmada Küçük Kafkas Tektonik Bloğu içerisinde konumlanan Iğdır Fay Zonu’nun bölge içerisindeki tektonik etkisinin belirlenmesi hedeflenmiştir. Bu hedefe bağlı olarak Iğdır Fay Zonu ve yakın civarının hem tarihsel hem de aletsel deprem kataloğu oluşturulmuş ve fay üzerinde morfometrik analizler (yüzey pürüzlülüğü, hipsometrik integral, havza asimetri faktörü, dağ önü kıvrımlılığı, vadi tabanı genişliğinin vadi yüksekliğine oranı) gerçekleştirilmiştir. Fay Zonu üzerinde belirlenen morfotektonik belirteçler ve indis sonuçları IFZ’nin normal bileşene de sahip olduğunu göstermektedir. Birbirine parelel 5 alt kol halinde bulunan IFZ gevşeyen büklüm yapısı sergilemekte ve güneydoğu kısımda Ağrı Dağı açılma çatlağı ile birleşmektedir. Tarihsel dönem depremsellik ve morfometrik indis sonuçlarına bakıldığında çalışma alanının morfolojik olarak genç olduğu, yükselim hızının KB ve GD kesimlerinde yılda 0,5 mm’den fazla olduğu görülmektedir. Iğdır Fay Zonu boyu yapılan indis sonuçları değerlendirildiğinde Iğdır Fay Zonu’nun Ağrı Dağı’na yakın olan güneydoğu ucundaki segmentlerin göreceli olarak daha fazla deformasyon biriktirdiği ve daha fazla yükselme hızına sahip olduğu görülmektedir.

References

  • Abich, A. & Suess, E. (Eds.), (1882). Geologische Forschungen in den kaukasischen Ländern. In commission bei A. Hölder.
  • Abich, G. (1847). Geological news of a journey to Ararat and particularly the collapse of the valley of Aguri in 1840. Montsberichte under die Verhandlungen der Gesseslschaft fur Erkunde zu Berlin Neue Folge, 4, 28-62.
  • AFAD-DDB. Deprem Verileri. https://deprem.afad.gov.tr/ddakatalogu. Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Dairesi, Ankara. Erişim tarihi: 05.01.2025.
  • Alim, M. (1998). Doğu Iğdır Ovasında doğal çevre sorunları [Yayımlanmamış Yüksek Lisans tezi]. Sosyal Bilimler Enstitüsü).
  • AL-Suyutı, (1974). Jalal Ed-Din, Kashf Al-Salsala an Wasf Al-Zalzala. F Cahiers du Centre Universitaire de la Recherche Scientifique, Rabat
  • AL-SUYUTI, J. E. D. (1984). Kashf Al-Salsala an Wasf Al-Zalzala.
  • Ambraseys N. (2009). Earthquakes in the Mediterranean and Middle East: A multidisciplinary study of seismicity up to 1900. Cambridge University Press. 947 pp.
  • Ambraseys, N. N. & Melville, C. P. (1982). A History of Persian Earthquakes. Cambridge Univ. Press, New York.
  • Andreani, L. & Gloaguen, R. (2016). Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya Mountains (northern Central America): implications for the North American–Caribbean–Cocos plate boundary. Earth Surface Dynamics, 4(1), 71-102. https://doi.org/10.5194/esurf-4-71-2016
  • Andreani, L., Stanek, K. P., Gloaguen, R., Krentz, O., & Domínguez-González, L. (2014). DEM-based analysis of interactions between tectonics and landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic). Remote Sensing, 6(9), 7971-8001. https://doi.org/10.3390/rs6097971
  • Ardos, M. (1984). Türkiye Ovalarının Jeomorfolojisi (Vol. 2). İstanbul Üniversitesi Edebiyat Fakültesi.
  • Azor, A., Keller, E. A., Yeats, R. S. (2002). Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Bulletin of the Geological Society of America 114, 745-753.
  • Azzoni, R. S., Fugazza, D., Garzonio, C. A., Nicoll, K., Diolaiuti, G. A., Pelfini, M. & Zerboni, A. (2019). Geomorphological effects of the 1840 Ahora Gorge catastrophe on Mount Ararat (Eastern Turkey). Geomorphology, 332, 10-21. http://dx.doi.org/10.1016/j.geomorph.2019.02.001
  • Balkaya, M., Ozden, S. & Akyüz, H. S. (2021). Morphometric and morphotectonic characteristics of sürgü and çardak faults (east anatolian fault zone). Journal of Advanced Research in Natural and Applied Sciences, 7(3), 375-392. http://dx.doi.org/10.28979/jarnas.939075
  • Barka, A. & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, 3, 587 610.
  • Berberian, M. (1996). The Historical Record of Earthquakes in Persia. Encyclopaedia Iranica,VIIF. Drugs-Ebn al-Atir, Mazda Publishers, Costa Mesa, CA, 635-640.
  • Bistacchi, A., Griffith, W. A., Smith, S. A., Di Toro, G., Jones, R. & Nielsen, S. (2011). Fault roughness at seismogenic depths from LIDAR and photogrammetric analysis. Pure and Applied Geophysics, 168, 2345-2363.
  • Bull, W. B. (1977). Tectonic geomorphology of the Mojave Desert, California, U.S (Report no: Report 14-0-001-G-394). Geological Survey Contract.
  • Bull, W. B. (2007). Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Wiley Blackwell, USA.
  • Bull, W. B. & McFadden, L. D. (2020). Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in arid regions (pp. 115-138). Routledge.
  • Bull, W. B. & McFadden, L. D. (1977) Tectonic Geomorphology North and South of the Garlock Fault, California. In Doehring, D. O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium (pp.: 115-138). State University of New York, Binghamton.
  • Byus, E. I. (1948). Seismic conditions of Transcaucasus. Academy of Sciences of USSR.
  • Copley, A. & Jackson, J. (2006). Active tectonics of the Turkish-Iranian Plateau. Tectonics, 25, 1-19. https://doi.org/10.1029/2005TC001906
  • Cox, R. T. (1994). Analysis of Drainage basin symmetry as a rapid technique to identify areas of possible quaternary tilt block tectonics: An Example from the Mississippi Embayment. Geological Society American Bulletin, 106, 571-581.
  • Day, M. J. (1979). Surface roughness as a discriminator of tropical karst styles. Zeitschrift für Geomorphologie 32 (Supplement),1–8.
  • DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2):425-478.
  • Diercks, M. L., Grützner, C., Welte, J. & Ustaszewski, K. (2023). Challenges of geomorphologic analysis of active tectonics in a slowly deforming karst landscape (W Slovenia and NE Italy). Geomorphology, 440, Article 108894. https://doi.org/10.1016/j.geomorph.2023.108894
  • Djamour, Y., Vernant, P., Nankali, H.R. & Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: Results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307, 27-34. https://doi.org/10.1016/j.epsl.2011.04.029
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. & Keller, E. A.(2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96, 150-173. https://doi.org/10.1016/j.geomorph.2007.08.004
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, S. (2012). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi Ağrı (NJ 38-1) Paftası. MTA Yayınları. Ankara.
  • EMSC. Avrupa-Akdeniz Sismoloji Merkezi. https://www.emsc-csem.org/#2. Erişim tarihi: 05.01.2025.
  • Ergen, A. & Sümengen, M. (2018). 1:100.000 ölçekli Ağrı İ50 Paftası. MTA Yayınları. Ankara.
  • Ergin, K., Güçlü, U. & Uz, Z. (1967). Türkiye ve civarının Deprem Kataloğu (Milattan Sonra 11 yılından 1964 sonuna kadar). İTÜ Maden Fakültesi Ofset Matbaası. Yayın No.24. İstanbul
  • Font, M., Amorese, D. & Lagarde, J. L. (2010). DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France). Geomorphology, 119, 172-180. https://doi.org/10.1016/j.geomorph.2010.03.017
  • Giaconia, F., Booth-Rea, G., Martínez-Martínez, J.M., Azañón, J.M. &Pérez-Peña, J.V. (2012). Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain). Tectonophysics 580, 27-42, https://doi.org/10.1016/j.tecto.2012.08.028
  • GRASS Development Team (2009). Geographic Resources Analysis Support System (GRASS GIS) Software, version 6.3.0. http://www.grass.osgeo.org
  • Grohmann, C. H. (2004a). Morphometric analysis in Geographic Information Systems: applications of free software GRASS and R. Computers & Geosciences, 30(9-10) 1055–1067. https://doi.org/10.1016/j.cageo.2004.08.002
  • Grohmann, C. H. (2004b). Tecnicas de geoprocessamento aplicadas a analise morfometrica [M.Sc. Thesis]. Instituto de Geociencias, Universidade de Sao Paulo, Sao Paulo.
  • Grohmann, C.H. & Riccomini, C. (2009). Comparison of roving-window and search-window techniques for characterising landscape morphometry. Computers & Geosciences, 35(10), 2164-2169. https://doi.org/10.1016/j.cageo.2008.12.014
  • Grohmann, C. H., Riccomini, C. & Chamani, M. A. C. (2011). Regional scale analysis of landform configuration with base-level (isobase) maps. Hydrology and Earth System Sciences, 15(5), 1493-1504. https://doi.org/10.5194/hess-15-1493-2011
  • Guidoboni, E., Comastri, A. & Traina, G. (1994). Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century. Rome. Istituto Nazionale Di Geofisica.
  • Guidoboni, E., R. Haroutiunian, & A. Karakhanian (2003). The Garni (Armenia) large earthquake on 14 June 1679: A new analysis. Journal of Seismology, 7(3), 301–328. https://doi.org/10.1023/A:1024561622879
  • Guidoboni, E. & Traina, G. (1995). A new catalogue of earthquakes in the historicalArmenian area from antiquity to the 12th century. Annali di Geofisica, 38(1):85-147.
  • Gürbüz, A. & Gürer, Ö. F. (2008). Tectonic geomorphology of the North Anatolian fault zone in the lake Sapanca Basin (eastern Marmara Region, Turkey). Geosciences Journal, 12(3), 215-225.
  • Gürbüz, A. & Şaroğlu, F. (2019). Right-lateral strike-slip faulting and related basin formations in the Turkish-Iranian plateau. Developments in Structural Geology and Tectonics, 3,101-130. https://doi.org/10.1016/B978-0-12-815048-1.00007-X
  • Hare, P. W. & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.
  • Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6(6):687-705.
  • Hobson, R. D. (1972). Surface roughness in topography: quantitative approach. In Chorley, R. J. (Ed.), Spatial Analysis in Geomorphology, (p.: 225–245). Methuer, London.
  • Ibn Al-Athır, (1982). Ezz Ad-Din, Al-Kamil fi Al-Tarikh (Dar Sader). Beirut
  • Jackson, J. & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264.
  • Keller, E. A. (1986). Investigation of active tectonics: Use of surfi cial Earth processes. In R. E. Wallace (Ed.), Active tectonics (pp. 136–147), Studies in Geophysics. Washington, DC, National Academy Press.
  • Keller, E. A. & Pinter, N. (2002). Active Tectonics. Prentice Hall, New Jersey.
  • Keller, E. A. Seaver, D. B., Laduzinsky, D. L., Johnson, D. L., Ku, T. L. (2000). Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, Southern San Joaquin Valley, California. Bulletin of the Geological Society of America, 112, 86-97. http://dx.doi.org/10.1130/0016-7606(2000)112%3C0086:TGOAFO%3E2.3.CO;2
  • Keskin, M. (2007). Eastern Anatolia: A hotspot in a collision zone without a mantle plume. In Foulger, G. R. & Jurdy, D. M. (Eds.), Plates, Plumes and Planetary Processes. https://doi.org/10.1130/2007.2430(32)
  • Ketin, İ. (1983). Türkiye jeolojisine genel bir bakış. İstanbul Teknik Üniversitesi.
  • Khalifa, A., Cakir, Z., Owen, L. & Kaya, Ş. (2018). Morphotectonic analysis of the east Anatolian fault, Turkey. Turkish Journal of Earth Sciences, 27(2), 110-126. http://dx.doi.org/10.3906/yer-1707-16
  • Kim Y-S., Peacock D. & Sanderson D. J. (2004) Fault damage zones. Journal of Structural Geology, 26(3), 503–517.
  • Kim, Y. S., Peacock, D. C. P. & Sanderson, D. J. (2003). Strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793 812.
  • Koçyiğit, A. & Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284(3-4), 317-336.
  • Kondorskaya, N. V. & Shebalin, N. V. (1982). New Catalogue of the Strong Earthquakes of the USSR from Ancient Times through 1977. World Data Center A for Solid Earth Geophysics, Report SE-31. 2nd edition, Boulder, Colorado, 608.
  • Loftus, W. K. (1855). On the geology of portions of the Turko-Persian frontier, and of the districts adjoining. Quarterly Journal of the Geological Society,11(1-2), 247-344.
  • Mayer, L. (1986). Tectonic geomorphology of escarpments and mountain fronts. In Active Tectonics, Studies in Geophysics (pp.: 125-135). National Academy Press.
  • McKenzie, D.P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591-601.
  • McKenzie, D. P. (1970). Plate tectonics of the Mediterranean region. Nature, 226(5242), 239-243.
  • McKenzie, D. P (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • Morino, M., Kaneko, F., Avanesyan, M. & Karakhanyan, A. (2012). Characteristics of the Garni Fault Confirmed by Trench Investigation at North Garni and Yelpin, Republic of Armenia. The Journal of the Geological Society of Japan, 118(12), 11-12. http://dx.doi.org/10.5575/geosoc.118.12.XI_XII
  • Mutlu, S. (2022). Balık gölü fay zonu'nun paleosismolojik özellikleri ve segmentasyonu [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van.
  • Mutlu, S., Kul, A. Ö. & Sağlam Selçuk, A. (2023). Tectonic Geomorphology of the Maku Fault. Ases International Van Scientific Research Conference (ss.43-44). Van, Türkiye.
  • Mutlu, S., Sağlam Selçuk, A., Kul, A. Ö., Çakar, S., Zabcı, C., Kıray, H. N., ... ve Selçuk, L. (2024). Maku ve Doğubayazıt Fayının (Ağrı Dağı’nın Güneyi) Morfometrik İndis Yöntemleri ile Deformasyon Paylaşımının Ortaya Konulması. Uluslararası Katılımlı 76. Türkiye Jeoloji Kurultayı (ss. 448). Ankara, Türkiye. https://www.jmo.org.tr/resimler/ekler/fed21205db99c2d_ek.pdf
  • Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology 8, 263-277. https://doi.org/10.1016/0169-555X(93)90023-U
  • Özkaymak, Ç. & Sözbilir, H. (2012). Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173–174, 128–140. https://doi.org/10.1016/j.geomorph.2012.06.003
  • Özsayın, E. (2016). Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253. https://doi.org/10.1080/09853111.2015.1128180
  • Öztürk, Y. (2023). Iğdır Ovası Çevresinin Sismik Kaynak Zonları ve Bazı Depremlerin Mekansal Sonuçları, İçinde Aydın, T., Bayat, G., Alma, M.H. (Ed.ler), Doğal ve Beşerî Bilimler Açısından Iğdır 2 (s.: 1-28), Detay Yayıncılık.
  • Öztürk, Y. ve Zorer, H. (2024). Tektonizma ve İklim Denetimli Süreçlerin Volkanik Yapıların Morfolojisine Etkisi: Aras Dağları Volkanik Dağ Kuşağı’nda Kraterlerin Jeomorfik Özellikleri (Doğu Anadolu). Doğu Coğrafya Dergisi, 29(52), 118-136.
  • Parejas, E. & Pamir, H. N. (1939). 19/4/1938 Orta Anadolu Yer Depremi. Istanbul University, Faculty of Science Publication IV.
  • Pérez-Peña, J. V., Azañón, J. M. & Azor, A. (2009a). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35, 1214-1223, https://doi.org/10.1016/j. cageo.2008.06.006
  • Pérez-Peña, J. V., Azañón, J.M., Booth-Rea, G., Azor, A. & Delgado, J. (2009b). Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. Journal of Geophysical Research: Earth Surface, 114, Article F02018. https://doi.org/10.1029/2008JF001092
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119, 74-87. https://doi.org/10.1029/2008JF001092
  • Philip, H., Rogozhin, E., Cisternas, A., Bousguet, J. C., Borisov, A. & Karakhanian, A. (1992). The Armenian earthquake of 1988 December 7: faulting and folding, neotecton ics and paleoseismicity. Geophysical Journal International, 110, 141–158. https://doi.org/10.1111/j.1365-246X.1992.tb00718.x
  • Pike, R. J. & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079-1084.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R. & Karam, G. (2006). GPS constraints on continental deformation in the Africa - arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Solid Earth, 111, (B5), 1-26. https://doi.org/10.1029/2005JB004051
  • Rizza, M., Vernant, J., Ritz, F., Peyret, M., Nankali, H., Nazari, H., Djamour,Y., Salamati, R.,Tavakoli, F., Chery, J., Mahan, S. & Masson, F. (2013). Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophysical Journal International, 199(3), 1083–1094. https://doi.org/10.1093/gji/ggt041
  • Robertson, A. H. F., Grasso, M. (1995). Overview of the Late Tertiary–Recent tectonic and palaeo‐environmental development of the Mediterranean region. Terra Nova, 7(2):114-127.
  • Rockwell, T. K., Keller, E. A., Johnson, D. L. (1985). Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Morisawa, M. (Ed.), Tectonic Geomorphology, Proceedings of the 15th Annual Geomorphology Symposium (pp.: 183-207). Allen and Unwin Publishers, Boston.
  • Sağlam Selçuk, A. & Düzgün, M. (2017). Tectonic geomorphology of Başkale Fault zone. Bulletin of the Mineral Research and Exploration, 155, 33-46. https://doi.org/10.19111/bulletinofmre.315757
  • Sağlam Selçuk, A. & Kul, A. Ö. (2021). Long-term slip rate estimation for Ercis¸ Fault in East Anatolian Compressive Tectonic Block from geologic and geomorphologic field evidence. Geological Journal, 56(10), 5290-5310. https://doi.org/10.1002/gj.4237
  • Saglam-Selçuk, A., Erturaç, M. K. & Nomade, S. (2016). Geology of the Caldiran Fault, Eastern Turkey: Age, slip rate and implications on the characteristic slip behavior. Tectonophysics, 680, 155–173. https://doi.org/10.1016/j.tecto.2016.05.019
  • Sançar, T., Zabcı, C. & Akyüz, H. S. (2011). Morphometric analysis of secondary faults around the Karlıova Triple Junction (EGU2011-4991). Vienna: EGU. In Geophysical Research Abstracts.
  • Şaroğlu, F. (1985). Doğu Anadolu’nun Neotektonik Dönemde Jeolojik ve Yapısal Evrimi [Yayımlanmamış Doktora Tezi]. İstanbul Üniversitesi Fen Bilimleri Fakültesi, İstanbul.
  • Şaroǧlu, F., Emre, Ö. ve Boray, A. (1987). Türkiye'nin diri fayları ve depremsellikleri (Rapor no: 5216). Maden Teknik Arama Enstitüsü Raporu.
  • Şaroǧlu, F. ve Yılmaz, Y. (1986). Doğu Anadolu'da neotektonik dönemdeki jeolojik evrim ve havza modelleri. Maden Tektik ve Arama Dergisi, 107, 73-94.
  • Sarp, G. & Düzgün, Ş. (2012). Spatial analysis of morphometric indices: the case of Bolu pull-apart basin, western section of North Anatolian Fault System, Turkey. Geodinamica acta, 25(1-2), 86-95. https://doi.org/10.1080/09853111.2013.841382
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America Bulletin, 67(5), 597-646.
  • Şengör, A. M. C. (1979). Türkiye'nin Neotektoniǧinin Esasları. Department of Geological Sciences, State University of New York.
  • Şengör, A. M. C. (1980). Türkiye’nin neotektoniğinin esaslar. Türkiye Jeoloji Kurumu, Ankara, 40 sayfa.
  • Şengör, A. M. C. & Kidd, W. S. F. (1979). Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55(3-4), 361-376.
  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 3-4.
  • Şengör, A. M. C. ve Yılmaz, Y. (1983). Türkiye’de Tetis’in evrimi: Levha tektoniği açısından bir yaklaşım. Türkiye Jeoloji Kurumu Yerbilimleri Özel Dizisi, 1: 75.
  • Silva, P. G., Goy, J. L., Zazo, C. & Bardají, T. (2003). Faulth generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203-225, https://doi.org/10.1016/S0169-555X(02)00215-5
  • Step’anian, V. (1964). Earthquakes in the Armenian Upland and Adjacent Areas. House Hayastan: Yerevan, Armenia, 247.
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America 63, 1117-1142
  • Tapan, M., Özvan, A. ve Şengül, M. A. (2005). 2 Temmuz 2004 Doğubayazıt Depremi Yer–Yapı İlişkisi ve Yaşanan Kayıplar. Deprem Sempozyumu, (s.: 1074-1080). 23-25 Mart 2005, Kocaeli.
  • Tuncay, E. & Sümengen, M. (2018). 1:100.000 ölçekli Doğubayazıt İ51 Paftası. Maden Teknik Arama Yayınları. Ankara.
  • Tunçdilek, N. (1985). Türkiye'de relief şekilleri ve arazi kullanımı (Vol. 3). İstanbul Üniversitesi Fen Fakültesi.
  • Wallace, R. E. (1978). Geometry and rates of change of fault-generated range fronts, north-central Nevada. Journal of Research of the U.S. Geological Survey, 6(5), 637-650.
  • Weidenbaum, E. G. (1884). Bolshoi Ararat i popitki voskhozhdenia na ego bershinu (Great Ararat and attempts to reach its summit). Zap. Imp. Russ Geogr. O-Va., 13, 103.
  • Yalçınlar, İ. (1967). Türkiye’de bazı şehirlerin kuruluş ve gelişmesinde jeomorfolojik temeller. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 16, 53-66.
  • Yıldırım, C. (2014). Relative tectonic activity assessment of theTuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183–192. https://doi.org/10.1016/j.tecto.2014.05.023
  • Zebari, M., Grützner, C., Navabpour, P. & Ustaszewski, K. (2019). Relative timing of uplift along the Zagros Mountain Front Flexure: Constrained by geomorphic indices and landscape evolution modeling. Solid Earth, 10(3), 663-682. https://doi.org/10.5194/se-10-663-2019

The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block

Year 2025, Volume: 68 Issue: 2, 225 - 258, 30.04.2025
https://doi.org/10.25288/tjb.1627676

Abstract

The Iğdır Fault Zone (IFZ) is located at the easternmost edge of Turkey, approximately 13 km northwest of Mount Ağrı. The fault extends from Küllük village in the northwest to Kavaktepe village in the southeast. The right-lateral strike-slip Iğdır Fault Zone, which exhibits strike variations between N20°E and N60°E, consists of 19 sub-geometric segments. Fault-controlled drainage networks, offset streams, alluvial and colluvial fans, and truncated valleys are key morphological indicators of the fault’s activity. This study aims to determine the tectonic influence of the Iğdır Fault Zone, which is situated within the Small Caucasus Tectonic Block. To achieve this objective, both historical and instrumental earthquake catalogs were compiled for the IFZ and its vicinity. Additionally, morphometric analyses were conducted on the fault zone, including surface roughness, hypsometric integral, basin asymmetry factor, mountain front sinuosity, and the ratio of valley floor width to valley height. The identified morphotectonic markers and index results indicate that the IFZ also possesses a normal fault component. The fault zone consists of five parallel sub-branches and exhibits a releasing bend structure, merging with the Mount Ağrı extensional crack in the southeastern section. The historical seismicity and morphometric index results suggest that the study area is morphologically young, with an uplift rate exceeding 0.5 mm per year in the NW and SE sections. When the fault length and index results are evaluated, it is observed that the southeastern segments of the Iğdır Fault Zone, particularly those closer to Mount Ağrı, have accumulated relatively higher deformation and exhibit a greater uplift rate.

References

  • Abich, A. & Suess, E. (Eds.), (1882). Geologische Forschungen in den kaukasischen Ländern. In commission bei A. Hölder.
  • Abich, G. (1847). Geological news of a journey to Ararat and particularly the collapse of the valley of Aguri in 1840. Montsberichte under die Verhandlungen der Gesseslschaft fur Erkunde zu Berlin Neue Folge, 4, 28-62.
  • AFAD-DDB. Deprem Verileri. https://deprem.afad.gov.tr/ddakatalogu. Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Dairesi, Ankara. Erişim tarihi: 05.01.2025.
  • Alim, M. (1998). Doğu Iğdır Ovasında doğal çevre sorunları [Yayımlanmamış Yüksek Lisans tezi]. Sosyal Bilimler Enstitüsü).
  • AL-Suyutı, (1974). Jalal Ed-Din, Kashf Al-Salsala an Wasf Al-Zalzala. F Cahiers du Centre Universitaire de la Recherche Scientifique, Rabat
  • AL-SUYUTI, J. E. D. (1984). Kashf Al-Salsala an Wasf Al-Zalzala.
  • Ambraseys N. (2009). Earthquakes in the Mediterranean and Middle East: A multidisciplinary study of seismicity up to 1900. Cambridge University Press. 947 pp.
  • Ambraseys, N. N. & Melville, C. P. (1982). A History of Persian Earthquakes. Cambridge Univ. Press, New York.
  • Andreani, L. & Gloaguen, R. (2016). Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya Mountains (northern Central America): implications for the North American–Caribbean–Cocos plate boundary. Earth Surface Dynamics, 4(1), 71-102. https://doi.org/10.5194/esurf-4-71-2016
  • Andreani, L., Stanek, K. P., Gloaguen, R., Krentz, O., & Domínguez-González, L. (2014). DEM-based analysis of interactions between tectonics and landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic). Remote Sensing, 6(9), 7971-8001. https://doi.org/10.3390/rs6097971
  • Ardos, M. (1984). Türkiye Ovalarının Jeomorfolojisi (Vol. 2). İstanbul Üniversitesi Edebiyat Fakültesi.
  • Azor, A., Keller, E. A., Yeats, R. S. (2002). Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Bulletin of the Geological Society of America 114, 745-753.
  • Azzoni, R. S., Fugazza, D., Garzonio, C. A., Nicoll, K., Diolaiuti, G. A., Pelfini, M. & Zerboni, A. (2019). Geomorphological effects of the 1840 Ahora Gorge catastrophe on Mount Ararat (Eastern Turkey). Geomorphology, 332, 10-21. http://dx.doi.org/10.1016/j.geomorph.2019.02.001
  • Balkaya, M., Ozden, S. & Akyüz, H. S. (2021). Morphometric and morphotectonic characteristics of sürgü and çardak faults (east anatolian fault zone). Journal of Advanced Research in Natural and Applied Sciences, 7(3), 375-392. http://dx.doi.org/10.28979/jarnas.939075
  • Barka, A. & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, 3, 587 610.
  • Berberian, M. (1996). The Historical Record of Earthquakes in Persia. Encyclopaedia Iranica,VIIF. Drugs-Ebn al-Atir, Mazda Publishers, Costa Mesa, CA, 635-640.
  • Bistacchi, A., Griffith, W. A., Smith, S. A., Di Toro, G., Jones, R. & Nielsen, S. (2011). Fault roughness at seismogenic depths from LIDAR and photogrammetric analysis. Pure and Applied Geophysics, 168, 2345-2363.
  • Bull, W. B. (1977). Tectonic geomorphology of the Mojave Desert, California, U.S (Report no: Report 14-0-001-G-394). Geological Survey Contract.
  • Bull, W. B. (2007). Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Wiley Blackwell, USA.
  • Bull, W. B. & McFadden, L. D. (2020). Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in arid regions (pp. 115-138). Routledge.
  • Bull, W. B. & McFadden, L. D. (1977) Tectonic Geomorphology North and South of the Garlock Fault, California. In Doehring, D. O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium (pp.: 115-138). State University of New York, Binghamton.
  • Byus, E. I. (1948). Seismic conditions of Transcaucasus. Academy of Sciences of USSR.
  • Copley, A. & Jackson, J. (2006). Active tectonics of the Turkish-Iranian Plateau. Tectonics, 25, 1-19. https://doi.org/10.1029/2005TC001906
  • Cox, R. T. (1994). Analysis of Drainage basin symmetry as a rapid technique to identify areas of possible quaternary tilt block tectonics: An Example from the Mississippi Embayment. Geological Society American Bulletin, 106, 571-581.
  • Day, M. J. (1979). Surface roughness as a discriminator of tropical karst styles. Zeitschrift für Geomorphologie 32 (Supplement),1–8.
  • DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2):425-478.
  • Diercks, M. L., Grützner, C., Welte, J. & Ustaszewski, K. (2023). Challenges of geomorphologic analysis of active tectonics in a slowly deforming karst landscape (W Slovenia and NE Italy). Geomorphology, 440, Article 108894. https://doi.org/10.1016/j.geomorph.2023.108894
  • Djamour, Y., Vernant, P., Nankali, H.R. & Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: Results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307, 27-34. https://doi.org/10.1016/j.epsl.2011.04.029
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. & Keller, E. A.(2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96, 150-173. https://doi.org/10.1016/j.geomorph.2007.08.004
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, S. (2012). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi Ağrı (NJ 38-1) Paftası. MTA Yayınları. Ankara.
  • EMSC. Avrupa-Akdeniz Sismoloji Merkezi. https://www.emsc-csem.org/#2. Erişim tarihi: 05.01.2025.
  • Ergen, A. & Sümengen, M. (2018). 1:100.000 ölçekli Ağrı İ50 Paftası. MTA Yayınları. Ankara.
  • Ergin, K., Güçlü, U. & Uz, Z. (1967). Türkiye ve civarının Deprem Kataloğu (Milattan Sonra 11 yılından 1964 sonuna kadar). İTÜ Maden Fakültesi Ofset Matbaası. Yayın No.24. İstanbul
  • Font, M., Amorese, D. & Lagarde, J. L. (2010). DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France). Geomorphology, 119, 172-180. https://doi.org/10.1016/j.geomorph.2010.03.017
  • Giaconia, F., Booth-Rea, G., Martínez-Martínez, J.M., Azañón, J.M. &Pérez-Peña, J.V. (2012). Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain). Tectonophysics 580, 27-42, https://doi.org/10.1016/j.tecto.2012.08.028
  • GRASS Development Team (2009). Geographic Resources Analysis Support System (GRASS GIS) Software, version 6.3.0. http://www.grass.osgeo.org
  • Grohmann, C. H. (2004a). Morphometric analysis in Geographic Information Systems: applications of free software GRASS and R. Computers & Geosciences, 30(9-10) 1055–1067. https://doi.org/10.1016/j.cageo.2004.08.002
  • Grohmann, C. H. (2004b). Tecnicas de geoprocessamento aplicadas a analise morfometrica [M.Sc. Thesis]. Instituto de Geociencias, Universidade de Sao Paulo, Sao Paulo.
  • Grohmann, C.H. & Riccomini, C. (2009). Comparison of roving-window and search-window techniques for characterising landscape morphometry. Computers & Geosciences, 35(10), 2164-2169. https://doi.org/10.1016/j.cageo.2008.12.014
  • Grohmann, C. H., Riccomini, C. & Chamani, M. A. C. (2011). Regional scale analysis of landform configuration with base-level (isobase) maps. Hydrology and Earth System Sciences, 15(5), 1493-1504. https://doi.org/10.5194/hess-15-1493-2011
  • Guidoboni, E., Comastri, A. & Traina, G. (1994). Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century. Rome. Istituto Nazionale Di Geofisica.
  • Guidoboni, E., R. Haroutiunian, & A. Karakhanian (2003). The Garni (Armenia) large earthquake on 14 June 1679: A new analysis. Journal of Seismology, 7(3), 301–328. https://doi.org/10.1023/A:1024561622879
  • Guidoboni, E. & Traina, G. (1995). A new catalogue of earthquakes in the historicalArmenian area from antiquity to the 12th century. Annali di Geofisica, 38(1):85-147.
  • Gürbüz, A. & Gürer, Ö. F. (2008). Tectonic geomorphology of the North Anatolian fault zone in the lake Sapanca Basin (eastern Marmara Region, Turkey). Geosciences Journal, 12(3), 215-225.
  • Gürbüz, A. & Şaroğlu, F. (2019). Right-lateral strike-slip faulting and related basin formations in the Turkish-Iranian plateau. Developments in Structural Geology and Tectonics, 3,101-130. https://doi.org/10.1016/B978-0-12-815048-1.00007-X
  • Hare, P. W. & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.
  • Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6(6):687-705.
  • Hobson, R. D. (1972). Surface roughness in topography: quantitative approach. In Chorley, R. J. (Ed.), Spatial Analysis in Geomorphology, (p.: 225–245). Methuer, London.
  • Ibn Al-Athır, (1982). Ezz Ad-Din, Al-Kamil fi Al-Tarikh (Dar Sader). Beirut
  • Jackson, J. & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264.
  • Keller, E. A. (1986). Investigation of active tectonics: Use of surfi cial Earth processes. In R. E. Wallace (Ed.), Active tectonics (pp. 136–147), Studies in Geophysics. Washington, DC, National Academy Press.
  • Keller, E. A. & Pinter, N. (2002). Active Tectonics. Prentice Hall, New Jersey.
  • Keller, E. A. Seaver, D. B., Laduzinsky, D. L., Johnson, D. L., Ku, T. L. (2000). Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, Southern San Joaquin Valley, California. Bulletin of the Geological Society of America, 112, 86-97. http://dx.doi.org/10.1130/0016-7606(2000)112%3C0086:TGOAFO%3E2.3.CO;2
  • Keskin, M. (2007). Eastern Anatolia: A hotspot in a collision zone without a mantle plume. In Foulger, G. R. & Jurdy, D. M. (Eds.), Plates, Plumes and Planetary Processes. https://doi.org/10.1130/2007.2430(32)
  • Ketin, İ. (1983). Türkiye jeolojisine genel bir bakış. İstanbul Teknik Üniversitesi.
  • Khalifa, A., Cakir, Z., Owen, L. & Kaya, Ş. (2018). Morphotectonic analysis of the east Anatolian fault, Turkey. Turkish Journal of Earth Sciences, 27(2), 110-126. http://dx.doi.org/10.3906/yer-1707-16
  • Kim Y-S., Peacock D. & Sanderson D. J. (2004) Fault damage zones. Journal of Structural Geology, 26(3), 503–517.
  • Kim, Y. S., Peacock, D. C. P. & Sanderson, D. J. (2003). Strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793 812.
  • Koçyiğit, A. & Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284(3-4), 317-336.
  • Kondorskaya, N. V. & Shebalin, N. V. (1982). New Catalogue of the Strong Earthquakes of the USSR from Ancient Times through 1977. World Data Center A for Solid Earth Geophysics, Report SE-31. 2nd edition, Boulder, Colorado, 608.
  • Loftus, W. K. (1855). On the geology of portions of the Turko-Persian frontier, and of the districts adjoining. Quarterly Journal of the Geological Society,11(1-2), 247-344.
  • Mayer, L. (1986). Tectonic geomorphology of escarpments and mountain fronts. In Active Tectonics, Studies in Geophysics (pp.: 125-135). National Academy Press.
  • McKenzie, D.P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591-601.
  • McKenzie, D. P. (1970). Plate tectonics of the Mediterranean region. Nature, 226(5242), 239-243.
  • McKenzie, D. P (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • Morino, M., Kaneko, F., Avanesyan, M. & Karakhanyan, A. (2012). Characteristics of the Garni Fault Confirmed by Trench Investigation at North Garni and Yelpin, Republic of Armenia. The Journal of the Geological Society of Japan, 118(12), 11-12. http://dx.doi.org/10.5575/geosoc.118.12.XI_XII
  • Mutlu, S. (2022). Balık gölü fay zonu'nun paleosismolojik özellikleri ve segmentasyonu [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van.
  • Mutlu, S., Kul, A. Ö. & Sağlam Selçuk, A. (2023). Tectonic Geomorphology of the Maku Fault. Ases International Van Scientific Research Conference (ss.43-44). Van, Türkiye.
  • Mutlu, S., Sağlam Selçuk, A., Kul, A. Ö., Çakar, S., Zabcı, C., Kıray, H. N., ... ve Selçuk, L. (2024). Maku ve Doğubayazıt Fayının (Ağrı Dağı’nın Güneyi) Morfometrik İndis Yöntemleri ile Deformasyon Paylaşımının Ortaya Konulması. Uluslararası Katılımlı 76. Türkiye Jeoloji Kurultayı (ss. 448). Ankara, Türkiye. https://www.jmo.org.tr/resimler/ekler/fed21205db99c2d_ek.pdf
  • Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology 8, 263-277. https://doi.org/10.1016/0169-555X(93)90023-U
  • Özkaymak, Ç. & Sözbilir, H. (2012). Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173–174, 128–140. https://doi.org/10.1016/j.geomorph.2012.06.003
  • Özsayın, E. (2016). Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253. https://doi.org/10.1080/09853111.2015.1128180
  • Öztürk, Y. (2023). Iğdır Ovası Çevresinin Sismik Kaynak Zonları ve Bazı Depremlerin Mekansal Sonuçları, İçinde Aydın, T., Bayat, G., Alma, M.H. (Ed.ler), Doğal ve Beşerî Bilimler Açısından Iğdır 2 (s.: 1-28), Detay Yayıncılık.
  • Öztürk, Y. ve Zorer, H. (2024). Tektonizma ve İklim Denetimli Süreçlerin Volkanik Yapıların Morfolojisine Etkisi: Aras Dağları Volkanik Dağ Kuşağı’nda Kraterlerin Jeomorfik Özellikleri (Doğu Anadolu). Doğu Coğrafya Dergisi, 29(52), 118-136.
  • Parejas, E. & Pamir, H. N. (1939). 19/4/1938 Orta Anadolu Yer Depremi. Istanbul University, Faculty of Science Publication IV.
  • Pérez-Peña, J. V., Azañón, J. M. & Azor, A. (2009a). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35, 1214-1223, https://doi.org/10.1016/j. cageo.2008.06.006
  • Pérez-Peña, J. V., Azañón, J.M., Booth-Rea, G., Azor, A. & Delgado, J. (2009b). Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. Journal of Geophysical Research: Earth Surface, 114, Article F02018. https://doi.org/10.1029/2008JF001092
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119, 74-87. https://doi.org/10.1029/2008JF001092
  • Philip, H., Rogozhin, E., Cisternas, A., Bousguet, J. C., Borisov, A. & Karakhanian, A. (1992). The Armenian earthquake of 1988 December 7: faulting and folding, neotecton ics and paleoseismicity. Geophysical Journal International, 110, 141–158. https://doi.org/10.1111/j.1365-246X.1992.tb00718.x
  • Pike, R. J. & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079-1084.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R. & Karam, G. (2006). GPS constraints on continental deformation in the Africa - arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Solid Earth, 111, (B5), 1-26. https://doi.org/10.1029/2005JB004051
  • Rizza, M., Vernant, J., Ritz, F., Peyret, M., Nankali, H., Nazari, H., Djamour,Y., Salamati, R.,Tavakoli, F., Chery, J., Mahan, S. & Masson, F. (2013). Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophysical Journal International, 199(3), 1083–1094. https://doi.org/10.1093/gji/ggt041
  • Robertson, A. H. F., Grasso, M. (1995). Overview of the Late Tertiary–Recent tectonic and palaeo‐environmental development of the Mediterranean region. Terra Nova, 7(2):114-127.
  • Rockwell, T. K., Keller, E. A., Johnson, D. L. (1985). Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Morisawa, M. (Ed.), Tectonic Geomorphology, Proceedings of the 15th Annual Geomorphology Symposium (pp.: 183-207). Allen and Unwin Publishers, Boston.
  • Sağlam Selçuk, A. & Düzgün, M. (2017). Tectonic geomorphology of Başkale Fault zone. Bulletin of the Mineral Research and Exploration, 155, 33-46. https://doi.org/10.19111/bulletinofmre.315757
  • Sağlam Selçuk, A. & Kul, A. Ö. (2021). Long-term slip rate estimation for Ercis¸ Fault in East Anatolian Compressive Tectonic Block from geologic and geomorphologic field evidence. Geological Journal, 56(10), 5290-5310. https://doi.org/10.1002/gj.4237
  • Saglam-Selçuk, A., Erturaç, M. K. & Nomade, S. (2016). Geology of the Caldiran Fault, Eastern Turkey: Age, slip rate and implications on the characteristic slip behavior. Tectonophysics, 680, 155–173. https://doi.org/10.1016/j.tecto.2016.05.019
  • Sançar, T., Zabcı, C. & Akyüz, H. S. (2011). Morphometric analysis of secondary faults around the Karlıova Triple Junction (EGU2011-4991). Vienna: EGU. In Geophysical Research Abstracts.
  • Şaroğlu, F. (1985). Doğu Anadolu’nun Neotektonik Dönemde Jeolojik ve Yapısal Evrimi [Yayımlanmamış Doktora Tezi]. İstanbul Üniversitesi Fen Bilimleri Fakültesi, İstanbul.
  • Şaroǧlu, F., Emre, Ö. ve Boray, A. (1987). Türkiye'nin diri fayları ve depremsellikleri (Rapor no: 5216). Maden Teknik Arama Enstitüsü Raporu.
  • Şaroǧlu, F. ve Yılmaz, Y. (1986). Doğu Anadolu'da neotektonik dönemdeki jeolojik evrim ve havza modelleri. Maden Tektik ve Arama Dergisi, 107, 73-94.
  • Sarp, G. & Düzgün, Ş. (2012). Spatial analysis of morphometric indices: the case of Bolu pull-apart basin, western section of North Anatolian Fault System, Turkey. Geodinamica acta, 25(1-2), 86-95. https://doi.org/10.1080/09853111.2013.841382
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America Bulletin, 67(5), 597-646.
  • Şengör, A. M. C. (1979). Türkiye'nin Neotektoniǧinin Esasları. Department of Geological Sciences, State University of New York.
  • Şengör, A. M. C. (1980). Türkiye’nin neotektoniğinin esaslar. Türkiye Jeoloji Kurumu, Ankara, 40 sayfa.
  • Şengör, A. M. C. & Kidd, W. S. F. (1979). Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55(3-4), 361-376.
  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 3-4.
  • Şengör, A. M. C. ve Yılmaz, Y. (1983). Türkiye’de Tetis’in evrimi: Levha tektoniği açısından bir yaklaşım. Türkiye Jeoloji Kurumu Yerbilimleri Özel Dizisi, 1: 75.
  • Silva, P. G., Goy, J. L., Zazo, C. & Bardají, T. (2003). Faulth generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203-225, https://doi.org/10.1016/S0169-555X(02)00215-5
  • Step’anian, V. (1964). Earthquakes in the Armenian Upland and Adjacent Areas. House Hayastan: Yerevan, Armenia, 247.
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America 63, 1117-1142
  • Tapan, M., Özvan, A. ve Şengül, M. A. (2005). 2 Temmuz 2004 Doğubayazıt Depremi Yer–Yapı İlişkisi ve Yaşanan Kayıplar. Deprem Sempozyumu, (s.: 1074-1080). 23-25 Mart 2005, Kocaeli.
  • Tuncay, E. & Sümengen, M. (2018). 1:100.000 ölçekli Doğubayazıt İ51 Paftası. Maden Teknik Arama Yayınları. Ankara.
  • Tunçdilek, N. (1985). Türkiye'de relief şekilleri ve arazi kullanımı (Vol. 3). İstanbul Üniversitesi Fen Fakültesi.
  • Wallace, R. E. (1978). Geometry and rates of change of fault-generated range fronts, north-central Nevada. Journal of Research of the U.S. Geological Survey, 6(5), 637-650.
  • Weidenbaum, E. G. (1884). Bolshoi Ararat i popitki voskhozhdenia na ego bershinu (Great Ararat and attempts to reach its summit). Zap. Imp. Russ Geogr. O-Va., 13, 103.
  • Yalçınlar, İ. (1967). Türkiye’de bazı şehirlerin kuruluş ve gelişmesinde jeomorfolojik temeller. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 16, 53-66.
  • Yıldırım, C. (2014). Relative tectonic activity assessment of theTuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183–192. https://doi.org/10.1016/j.tecto.2014.05.023
  • Zebari, M., Grützner, C., Navabpour, P. & Ustaszewski, K. (2019). Relative timing of uplift along the Zagros Mountain Front Flexure: Constrained by geomorphic indices and landscape evolution modeling. Solid Earth, 10(3), 663-682. https://doi.org/10.5194/se-10-663-2019
There are 109 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other), Geomorphology and Earth Surface Processes, Structural Geology and Tectonics
Journal Section Makaleler - Articles
Authors

Sacit Mutlu 0000-0003-1632-722X

Early Pub Date April 22, 2025
Publication Date April 30, 2025
Submission Date January 27, 2025
Acceptance Date April 5, 2025
Published in Issue Year 2025 Volume: 68 Issue: 2

Cite

APA Mutlu, S. (2025). Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block. Türkiye Jeoloji Bülteni, 68(2), 225-258. https://doi.org/10.25288/tjb.1627676
AMA Mutlu S. Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block. Geol. Bull. Turkey. April 2025;68(2):225-258. doi:10.25288/tjb.1627676
Chicago Mutlu, Sacit. “Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi Ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault Within the Eastern Anatolian Compressional Tectonic Block”. Türkiye Jeoloji Bülteni 68, no. 2 (April 2025): 225-58. https://doi.org/10.25288/tjb.1627676.
EndNote Mutlu S (April 1, 2025) Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block. Türkiye Jeoloji Bülteni 68 2 225–258.
IEEE S. Mutlu, “Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block”, Geol. Bull. Turkey, vol. 68, no. 2, pp. 225–258, 2025, doi: 10.25288/tjb.1627676.
ISNAD Mutlu, Sacit. “Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi Ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault Within the Eastern Anatolian Compressional Tectonic Block”. Türkiye Jeoloji Bülteni 68/2 (April 2025), 225-258. https://doi.org/10.25288/tjb.1627676.
JAMA Mutlu S. Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block. Geol. Bull. Turkey. 2025;68:225–258.
MLA Mutlu, Sacit. “Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi Ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault Within the Eastern Anatolian Compressional Tectonic Block”. Türkiye Jeoloji Bülteni, vol. 68, no. 2, 2025, pp. 225-58, doi:10.25288/tjb.1627676.
Vancouver Mutlu S. Iğdır Fay Zonu’nun Doğu Anadolu Kısalmalı Tektonik Bloğu içerisindeki önemi ve Morfotektonik Özellikleri / The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block. Geol. Bull. Turkey. 2025;68(2):225-58.

Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php