Research Article
BibTex RIS Cite

Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength

Year 2025, Volume: 36 Issue: 4
https://doi.org/10.18400/tjce.1525770

Abstract

This study investigates the mechanical properties of fiber-reinforced concrete by evaluating the effects of steel, polypropylene and basalt fibers on the compressive, flexural and impact strength of concrete. Experimental studies and optimization were carried out by determining the concrete mixture by creating Taguchi L16 (4^4) matrix. As a result of the analysis, steel fibers significantly increased the mechanical and impact strength of concrete due to their high strength and hooked end structures. On the other hand, the effect of polypropylene and basalt fibers was more limited. Basalt fibers, especially due to their microstructure and polypropylene fibers, had limited effectiveness due to their lower tensile strength. The amount of binder also plays an important role in the overall strength of concrete and it was found that the optimum binder content increased the strength of concrete. The results obtained from Taguchi analyses provide an important roadmap for the advancement of concrete technology. It is important to understand the effects of different types and amounts of fibers on the mechanical and impact properties of concrete.

Ethical Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Institution

Süleyman Demirel Üniversitesi

Project Number

SDÜ BAP FDK-2022-8439

Thanks

This research was conducted within the scope of the doctoral program in the thematic field of YÖK 100/2000 "building-building material-construction management”, the SDÜ BAP project with project code FDK-2022-8439 and TUBITAK BİDEB 2211 programs. The authors would like to thank SDÜ BAP unit, YÖK and those who contributed to the YÖK 100/2000 program.

References

  • Arıcı, E., Dursun, R., & İnce, R. (2007). Betonun Çarpma Mukavemetinin Tesbiti.
  • Anık, S., Metalik Malzemelerin Mekanik Deneyleri, Birsen Yayın Evi, İstanbul, 1999.
  • Oltulu, M., & Altun, M. G. (2018). Betonun Darbe Dayanımının Tespitinde Ağırlık Düşürme Deney Yöntemi Ve Yapılan Çalışmalar. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 155-163.
  • Yazıcı, Ş., & Sezer, G. İ. (2008). Çelik Lifli Betonların Darbe Direncine Agrega Maksimum Boyutunun Etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 237-245.
  • Kızılırmak, C., Aydın, S., & Yardımcı, M. Y. (2019). Çelik Lif Kanca Geometrisinin Yüksek Dayanımlı Lifli Betonların Statik Ve Darbe Yükleri Altında Eğilme Özelliklerine Etkisi. Journal Of The Faculty Of Engineering & Architecture Of Gazi University, 34(3).
  • Nataraja, M. C., Nagaraj, T. S., & Basavaraja, S. B. (2005). Reproportioning Of Steel Fibre Reinforced Concrete Mixes And Their İmpact Resistance. Cement And Concrete Research, 35(12), 2350-2359.
  • Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927-933.
  • Mohammadi, Y., Carkon-Azad, R., Singh, S. P., & Kaushik, S. K. (2009). Impact resistance of steel fibrous concrete containing fibres of mixed aspect ratio. Construction and Building Materials, 23(1), 183-189.
  • Yavaş, A., Birol, T., Türker, K., Hasgül, U., vd. (2020). Improvement on Flexural Performance of UHPFRC with Hybrid Steel Fiber. Teknik Dergi, 31(6), 10379-10397. https://doi.org/10.18400/tekderg.485
  • Soufeiani, L., Raman, S. N., Jumaat, M. Z. B., Alengaram, U. J., Ghadyani, G., & Mendis, P. (2016). Influences Of The Volume Fraction And Shape Of Steel Fibers On Fiber- Reinforced Concrete Subjected To Dynamic Loading–A Review. Engineering Structures, 124, 405-417.
  • Banthia, N., Yan, C., & Sakai, K. (1998). Impact Resistance Of Fiber Reinforced Concrete At Subnorma Temperatures. Cement And Concrete Composites, 20(5), 393-404.
  • Türker, K., Birol, T., Yavaş, A., Hasgül, U., vd. (2019). Ultra Yüksek Performanslı Lifli Beton İçeren Kirişlerin Eğilme Davranışı. Teknik Dergi, 30(1), 8777-8801. https://doi.org/10.18400/tekderg.287116.
  • Sharifi, E., Sadjadi, S. J., Aliha, M. R. M., & Moniri, A. (2020). Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method. Construction and Building Materials, 236, 117547.
  • Tanyildizi, H., & Şahin, M. (2015). Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Construction and Building materials, 79, 97-103.
  • Mehta, A., Siddique, R., Singh, B. P., Aggoun, S., Łagód, G., & Barnat-Hunek, D. (2017). Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Construction and Building Materials, 150, 817-824.
  • Lei, B., Li, W., Liu, H., Tang, Z., & Tam, V. W. (2020). Synergistic effects of polypropylene and glass fiber on mechanical properties and durability of recycled aggregate concrete. International Journal of Concrete Structures and Materials, 14, 1-14.
  • Mindess S., Young F.J., “Concrete”, Prentice-Hall Inc., 1981, p.1, 6-7, 119-137, 184-185, 600, 603, 628-634.
  • Donza H., Cabrera O., Irassar E.F., High-strength concrete with different fine aggregate, Cement and Concrete Research 32, 2002, p.1755-1761.
  • Zhang, W., Chen, S., & Liu, Y. (2017). Effect of weight and drop height of hammer on the flexural impact performance of fiber-reinforced concrete. Construction and Building Materials, 140, 31-35.
  • TS EN 206-1 "Beton-Bölüm 1: Özellik, Performans, İmalat ve Uygunluk", Turk Standardları Enstitüsü, 2002.
  • Şirvancı, M. (1997). Kalite için deney tasarımı" Taguçi yaklaşımı". Literatür.
  • Tawfiq, K., Amaghani, J., & Ruiz, R. (1999). Fatigue cracking of polypropylene fiber reinforced concrete. Materials Journal, 96(2), 226-233.
  • Janson, A. (2023). Influence of Fiber Properties on the Behavior of Fiber-Reinforced Concrete (Master's thesis, University of Minnesota).
  • Lee, H., Choi, M. K., & Kim, B. J. (2023). Structural and functional properties of fiber reinforced concrete composites for construction applications. Journal of Industrial and Engineering Chemistry, 125, 38-49.
  • Yao, W., Li, J. ve Wu, K. (2003). Mechanical properties of hybrid fiber reinforced concrete at low fiber volume fraction. Cement and concrete research, 33 (1), 27-30.
  • Zhang, D. M., Zhou, W. D., Bu, X. H., Jiang, Y., Jia, K., & Yang, G. H. (2022). Failure mechanism and stiffness degradation of double lining with inner R/FRC lining subjected to internal water pressure. Tunnelling and Underground Space Technology, 130, 104737.
  • Kumar, R., Babu, T. R., Venkatesan, G., Padhi, S. N., Parida, J. L., & Kumar, V. R. (2023). Investigation of fiber reinforced concrete–Energy absorption capacity with steel and polymeric fibers. Materials Today: Proceedings.
  • Zollo, R. F. (1997). Fiber-reinforced concrete: an overview after 30 years of development. Cement and concrete composites, 19(2), 107-122.
  • Balaguru, P. N., & Shah, S. P. (1992). Fiber-reinforced cement composites.

Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength

Year 2025, Volume: 36 Issue: 4
https://doi.org/10.18400/tjce.1525770

Abstract

This study investigates the mechanical properties of fiber-reinforced concrete by evaluating the effects of steel, polypropylene and basalt fibers on the compressive, flexural and impact strength of concrete. Experimental studies and optimization were carried out by determining the concrete mixture by creating Taguchi L16 (4^4) matrix. As a result of the analysis, steel fibers significantly increased the mechanical and impact strength of concrete due to their high strength and hooked end structures. On the other hand, the effect of polypropylene and basalt fibers was more limited. Basalt fibers, especially due to their microstructure and polypropylene fibers, had limited effectiveness due to their lower tensile strength. The amount of binder also plays an important role in the overall strength of concrete and it was found that the optimum binder content increased the strength of concrete. The results obtained from Taguchi analyses provide an important roadmap for the advancement of concrete technology. It is important to understand the effects of different types and amounts of fibers on the mechanical and impact properties of concrete.

Project Number

SDÜ BAP FDK-2022-8439

References

  • Arıcı, E., Dursun, R., & İnce, R. (2007). Betonun Çarpma Mukavemetinin Tesbiti.
  • Anık, S., Metalik Malzemelerin Mekanik Deneyleri, Birsen Yayın Evi, İstanbul, 1999.
  • Oltulu, M., & Altun, M. G. (2018). Betonun Darbe Dayanımının Tespitinde Ağırlık Düşürme Deney Yöntemi Ve Yapılan Çalışmalar. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 155-163.
  • Yazıcı, Ş., & Sezer, G. İ. (2008). Çelik Lifli Betonların Darbe Direncine Agrega Maksimum Boyutunun Etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 237-245.
  • Kızılırmak, C., Aydın, S., & Yardımcı, M. Y. (2019). Çelik Lif Kanca Geometrisinin Yüksek Dayanımlı Lifli Betonların Statik Ve Darbe Yükleri Altında Eğilme Özelliklerine Etkisi. Journal Of The Faculty Of Engineering & Architecture Of Gazi University, 34(3).
  • Nataraja, M. C., Nagaraj, T. S., & Basavaraja, S. B. (2005). Reproportioning Of Steel Fibre Reinforced Concrete Mixes And Their İmpact Resistance. Cement And Concrete Research, 35(12), 2350-2359.
  • Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927-933.
  • Mohammadi, Y., Carkon-Azad, R., Singh, S. P., & Kaushik, S. K. (2009). Impact resistance of steel fibrous concrete containing fibres of mixed aspect ratio. Construction and Building Materials, 23(1), 183-189.
  • Yavaş, A., Birol, T., Türker, K., Hasgül, U., vd. (2020). Improvement on Flexural Performance of UHPFRC with Hybrid Steel Fiber. Teknik Dergi, 31(6), 10379-10397. https://doi.org/10.18400/tekderg.485
  • Soufeiani, L., Raman, S. N., Jumaat, M. Z. B., Alengaram, U. J., Ghadyani, G., & Mendis, P. (2016). Influences Of The Volume Fraction And Shape Of Steel Fibers On Fiber- Reinforced Concrete Subjected To Dynamic Loading–A Review. Engineering Structures, 124, 405-417.
  • Banthia, N., Yan, C., & Sakai, K. (1998). Impact Resistance Of Fiber Reinforced Concrete At Subnorma Temperatures. Cement And Concrete Composites, 20(5), 393-404.
  • Türker, K., Birol, T., Yavaş, A., Hasgül, U., vd. (2019). Ultra Yüksek Performanslı Lifli Beton İçeren Kirişlerin Eğilme Davranışı. Teknik Dergi, 30(1), 8777-8801. https://doi.org/10.18400/tekderg.287116.
  • Sharifi, E., Sadjadi, S. J., Aliha, M. R. M., & Moniri, A. (2020). Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method. Construction and Building Materials, 236, 117547.
  • Tanyildizi, H., & Şahin, M. (2015). Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Construction and Building materials, 79, 97-103.
  • Mehta, A., Siddique, R., Singh, B. P., Aggoun, S., Łagód, G., & Barnat-Hunek, D. (2017). Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Construction and Building Materials, 150, 817-824.
  • Lei, B., Li, W., Liu, H., Tang, Z., & Tam, V. W. (2020). Synergistic effects of polypropylene and glass fiber on mechanical properties and durability of recycled aggregate concrete. International Journal of Concrete Structures and Materials, 14, 1-14.
  • Mindess S., Young F.J., “Concrete”, Prentice-Hall Inc., 1981, p.1, 6-7, 119-137, 184-185, 600, 603, 628-634.
  • Donza H., Cabrera O., Irassar E.F., High-strength concrete with different fine aggregate, Cement and Concrete Research 32, 2002, p.1755-1761.
  • Zhang, W., Chen, S., & Liu, Y. (2017). Effect of weight and drop height of hammer on the flexural impact performance of fiber-reinforced concrete. Construction and Building Materials, 140, 31-35.
  • TS EN 206-1 "Beton-Bölüm 1: Özellik, Performans, İmalat ve Uygunluk", Turk Standardları Enstitüsü, 2002.
  • Şirvancı, M. (1997). Kalite için deney tasarımı" Taguçi yaklaşımı". Literatür.
  • Tawfiq, K., Amaghani, J., & Ruiz, R. (1999). Fatigue cracking of polypropylene fiber reinforced concrete. Materials Journal, 96(2), 226-233.
  • Janson, A. (2023). Influence of Fiber Properties on the Behavior of Fiber-Reinforced Concrete (Master's thesis, University of Minnesota).
  • Lee, H., Choi, M. K., & Kim, B. J. (2023). Structural and functional properties of fiber reinforced concrete composites for construction applications. Journal of Industrial and Engineering Chemistry, 125, 38-49.
  • Yao, W., Li, J. ve Wu, K. (2003). Mechanical properties of hybrid fiber reinforced concrete at low fiber volume fraction. Cement and concrete research, 33 (1), 27-30.
  • Zhang, D. M., Zhou, W. D., Bu, X. H., Jiang, Y., Jia, K., & Yang, G. H. (2022). Failure mechanism and stiffness degradation of double lining with inner R/FRC lining subjected to internal water pressure. Tunnelling and Underground Space Technology, 130, 104737.
  • Kumar, R., Babu, T. R., Venkatesan, G., Padhi, S. N., Parida, J. L., & Kumar, V. R. (2023). Investigation of fiber reinforced concrete–Energy absorption capacity with steel and polymeric fibers. Materials Today: Proceedings.
  • Zollo, R. F. (1997). Fiber-reinforced concrete: an overview after 30 years of development. Cement and concrete composites, 19(2), 107-122.
  • Balaguru, P. N., & Shah, S. P. (1992). Fiber-reinforced cement composites.
There are 29 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Mehmet Hanifi Alkayış 0000-0003-0177-043X

Celalettin Başyiğit 0000-0003-0084-1320

Project Number SDÜ BAP FDK-2022-8439
Early Pub Date April 10, 2025
Publication Date
Submission Date July 31, 2024
Acceptance Date April 8, 2025
Published in Issue Year 2025 Volume: 36 Issue: 4

Cite

APA Alkayış, M. H., & Başyiğit, C. (2025). Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength. Turkish Journal of Civil Engineering, 36(4). https://doi.org/10.18400/tjce.1525770
AMA Alkayış MH, Başyiğit C. Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength. TJCE. April 2025;36(4). doi:10.18400/tjce.1525770
Chicago Alkayış, Mehmet Hanifi, and Celalettin Başyiğit. “Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength”. Turkish Journal of Civil Engineering 36, no. 4 (April 2025). https://doi.org/10.18400/tjce.1525770.
EndNote Alkayış MH, Başyiğit C (April 1, 2025) Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength. Turkish Journal of Civil Engineering 36 4
IEEE M. H. Alkayış and C. Başyiğit, “Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength”, TJCE, vol. 36, no. 4, 2025, doi: 10.18400/tjce.1525770.
ISNAD Alkayış, Mehmet Hanifi - Başyiğit, Celalettin. “Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength”. Turkish Journal of Civil Engineering 36/4 (April 2025). https://doi.org/10.18400/tjce.1525770.
JAMA Alkayış MH, Başyiğit C. Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength. TJCE. 2025;36. doi:10.18400/tjce.1525770.
MLA Alkayış, Mehmet Hanifi and Celalettin Başyiğit. “Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength”. Turkish Journal of Civil Engineering, vol. 36, no. 4, 2025, doi:10.18400/tjce.1525770.
Vancouver Alkayış MH, Başyiğit C. Optimization of Mechanical Properties of Mixed Fiber Concrete by Taguchi Method: Impact, Compressive and Flexural Strength. TJCE. 2025;36(4).