Research Article
BibTex RIS Cite

FlooDOT-based Analysis of Floods in Turkey and Spatial Comparison of Various Data Sources

Year 2025, Volume: 36 Issue: 6
https://doi.org/10.18400/tjce.1618212

Abstract

Floods occur when rivers overflow their banks and rapidly spread into surrounding areas, filling nearby depressions and causing both fatalities and economic losses. In this context, the existence of inventories that include various characteristics of floods is of great importance for understanding both the flood generating mechanisms and the consequences they produce. Global inventories have been found insufficient in providing the necessary databases to understand regional and national-scale flood processes in countries like Türkiye, while data based solely on newspaper archives or official sources have proven inadequate for explaining such processes. To address this gap, the FlooD Inventory Of Türkiye (FlooDOT) was developed. The aim of this study is to introduce the flood inventory created using various data sources for the period between 1928 and 2022 in Türkiye, to reveal the temporal and spatial variations of floods based on this inventory, and to compare the spatial differences among the data sources used. In line with this aim, spatial variations of flood inventories obtained from different sources and the hot and cold spots they form were analysed using the Getis-Ord Gi* statistic. According to the results, a total of 3300 fatal floods were identified, and 9181 flood locations were recorded in the inventory based on 6799 flood events. The temporal distribution of floods in Turkey clearly reveals a quarter-century cycle and a bimodal pattern. Furthermore, the years 1972 and 2001 were identified as outlier years in the temporal distribution of floods. While flood events have been observed across the entire country, the Eastern Black Sea region has been identified as a hot spot in terms of both the number of floods and the frequency of fatal floods. Following the Eastern Black Sea basin, the Sakarya and Euphrates-Tigris basins stand out in terms of both fatal floods and total flood occurrences. Moreover, the comparison of spatial differences between the institutional data from the State Hydraulic Works (DSİ) and other sources, based on analyses using the Getis-Ord Gi** statistic, showed that no cold spots were found in Turkey, and that hot spots varied depending on the data source used. This finding indicates that the FlooDOT inventory provides a reliable spatial representation of flood processes in Türkiye and helps to fill the data gap created by global inventories. Therefore, utilizing records gathered from all available sources during inventory creation processes offers a significant advantage for flood hazard and vulnerability analyses.

Project Number

121Y578

References

  • IFCR-International Federation of Red Cross and Red Crescent Societies, (2020), World Disasters Report 2020: Come Heat or High Water - Tackling the Humanitarian Impacts of the Climate Crisis Together, Geneva. Switzerland
  • UNDDR-United Nations Office for Disaster Risk Reduction, (2020), Human Cost of Disasters: An Overview of the Last 20 Years 2000-2019, Geneva. Switzerland, DOI: https://doi.org/10.18356/79b92774-en
  • Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., ... & Zeng, Z. (2020). High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 1-7.
  • Mazzoleni, M., Mård, J., Rusca, M., Odongo, V., Lindersson, S., & Di Baldassarre, G. (2020). Floodplains in the Anthropocene: A global analysis of the interplay between human population, built environment and flood severity. Water Resources Research, e2020WR027744.
  • Wing, O. E. J., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A., Fargione, J., & Morefield, P. (2018). Estimates of present and future flood risk in the conterminous United States. Environmental Research Letters, 13(3), 034023. https://doi.org/10.1088/1748-9326/aaac65
  • Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., ... & Krajewski, W. F. (2021). Combined modeling of US fluvial, pluvial, and coastal flood hazard under current and future climates. Water Resources Research, 57(2), e2020WR028673.
  • Paprotny, D., Sebastian, A., Morales-Nápoles, O., & Jonkman, S. N. (2018). Trends in flood losses in Europe over the past 150 years. Nature communications, 9(1), 1-12.
  • Petrucci, O., Aceto, L., Bianchi, C., Bigot, V., Brázdil, R., Pereira, S., ... & Zêzere, J. L. (2019). Flood fatalities in Europe, 1980–2018: Variability, features, and lessons to learn. Water, 11(8), 1682.
  • Hall, J., & Blöschl, G. (2018). Spatial patterns and characteristics of flood seasonality in Europe. Hydrology and Earth System Sciences, 22(7), 3883-3901.
  • Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., & Kirchner, J. W. (2019). The relative importance of different flood‐generating mechanisms across Europe. Water Resources Research, 55(6), 4582-4593.
  • Stein, L., Pianosi, F., & Woods, R. (2020). Event‐based classification for global study of river flood generating processes. Hydrological Processes, 34(7), 1514-1529.
  • Alfieri, L., Burek, P., Feyen, L., & Forzieri, G. (2015). Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19(5), 2247-2260.
  • Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., ... & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth's Future, 5(2), 171-182.
  • Cloke, H. L., Wetterhall, F., He, Y., Freer, J. E., & Pappenberger, F. (2013). Modelling climate impact on floods with ensemble climate projections. Quarterly Journal of the Royal Meteorological Society, 139(671), 282-297.
  • Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., ... & Sherstyukov, B. (2014). Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59(1), 1-28.
  • Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B., Arheimer, B., ... & Živković, N. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588-590.
  • Chorley, R. J. (2019). The drainage basin as the fundamental geomorphic unit. In Introduction to physical hydrology (pp. 37-59). Routledge.
  • Akbas, A., Freer, J., Ozdemir, H., Bates, P. D., & Turp, M. T. (2020). What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes, 34(26), 5441-5455.
  • Yang, Y. and Tian, F. (2009). Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. Journal of Hydrology, 374(3-4), 373-383.
  • Ozdemir, H., & Elbaşı, E. (2015). Benchmarking land use change impacts on direct runoff in ungauged urban watersheds. Physics and Chemistry of the Earth, Parts A/B/C, 79, 100-107.
  • Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 1-10.
  • Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., & Andréassian, V. (2014). Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 18(2), 463-477.
  • Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., & Clark, M. P. (2018). A ranking of hydrological signatures based on their predictability in space. Water Resources Research, 54(11), 8792-8812.
  • Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., & Mendoza, P. A. (2020). Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges. Hydrological Sciences Journal, 65(5), 712-725.
  • Koç, G., Natho, S., & Thieken, A. H. (2021). Estimating direct economic impacts of severe flood events in Turkey (2015–2020). International Journal of Disaster Risk Reduction, 58, 102222.
  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12.
  • Akbas, A. (2023). Seasonality, persistency, regionalization, and control mechanism of extreme rainfall over complex terrain. Theoretical and Applied Climatology, 152(3), 981-997.
  • Barry, R. G., & Chorley, R. J. (2009). Atmosphere, weather and climate. Routledge.
  • Akbas, A., & Ozdemir, H. (2023). Influence of atmospheric circulation on the variability of hydroclimatic parameters in the Marmara Sea river basins. Hydrological Sciences Journal, 68(9), 1229-1240.
  • Baltacı, H., Akkoyunlu, B. O., & Tayanc, M. (2018). Relationships between teleconnection patterns and Turkish climatic extremes. Theoretical and applied climatology, 134, 1365-1386.
  • Erinç, S. (1996). Klimatoloji ve metodları. İstanbul Universitesi, Coğrafya Enstitüsü.
  • Karaca, M., Deniz, A., & Tayanç, M. (2000). Cyclone track variability over Turkey in association with regional climate. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(10), 1225-1236.
  • Türkeş, M. (1996). Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 16(9), 1057-1076.
  • Tatli, H., Nüzhet Dalfes, H., & Sibel Menteş, Ş. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(2), 161-180.
  • Gönüllü, A. B. (2018). Cumhuriyet Döneminde meydana gelen sel baskınları (1950-1970) , Master's thesis, Türkiyat Araştırmaları Enstitüsü, Marmara Üniversitesi
  • Brakenridge, G.R.. Global Active Archive of Large Flood Events. Dartmouth Flood Observatory, University of Colorado, USA. http://floodobservatory.colorado.edu/ Archives/ (Accessed 1 January 2023).
  • Chowdhury, J. R., Parida, Y., & Goel, P. A. (2021). Does inequality-adjusted human development reduce the impact of natural disasters? A gendered perspective. World Development, 141, 105394.
  • UNISDR (United Nations International Strategy for Disaster Reduction). 2015. Sendai framework for disaster risk reduction 2015–2030. Geneva: UNISDR.
  • Cutter, S. L., & Gall, M. (2015). Sendai targets at risk. Nature Climate Change, 5(8), 707-709.
  • Goniewicz, K., & Burkle Jr, F. M. (2019). Challenges in implementing Sendai framework for disaster risk reduction in Poland. International journal of environmental research and public health, 16(14), 2574.
  • Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., & Neal, J. (2022). A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters, 17(2), 024016.
  • Getis, A. and J.K. Ord. 1992. "The Analysis of Spatial Association by Use of Distance Statistics" in Geographical Analysis 24(3).
  • Ord, J.K. and A. Getis. 1995. "Local Spatial Autocorrelation Statistics: Distributional Issues and an Application" in Geographical Analysis 27(4).
  • Sen, O. L., Unal, A., Bozkurt, D., & Kindap, T. (2011). Temporal changes in the Euphrates and Tigris discharges and teleconnections. Environmental Research Letters, 6(2), 024012.
  • Batibeniz, F., Ashfaq, M., Önol, B., Turuncoglu, U. U., Mehmood, S., & Evans, K. J. (2020). Identification of major moisture sources across the Mediterranean Basin. Climate Dynamics, 54, 4109-4127.
  • Haltas, I., Yildirim, E., Oztas, F., & Demir, I. (2021). A comprehensive flood event specification and inventory: 1930–2020 Turkey case study. International Journal of Disaster Risk Reduction, 56, 102086.

Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması

Year 2025, Volume: 36 Issue: 6
https://doi.org/10.18400/tjce.1618212

Abstract

Taşkınlar, akarsuların yataklarını terk ederek çevresine yayılması ve nispeten çukur alanları doldurmasıyla birlikte hem ölümcül hem maddi sonuçlara yol açmaktadır. Bu açıdan gerek taşkınların oluşum mekanizmalarının gerekse neden olduğu sonuçların anlaşılması için taşkınlara ait çeşitli özelliklerin yer aldığı envanterlerin varlığı oldukça önem taşımaktadır. Küresel envanterlerin Türkiye gibi ülkelerin bölgesel ve ulusal ölçekteki süreçlerin anlaşılmasında gerekli olan veri tabanlarını sağlamadığı, sadece gazete arşivlerine veya resmi kaynaklara dayalı verilerin ise süreçleri açıklamada yetersiz kaldığı görülür. Bu eksikliği gidermek amacıyla Türkiye Taşkın Envanteri (FlooDOT) oluşturulmuştur. Bu çalışmanın amacı, Türkiye'de 1928-2022 yılları arasında farklı veri kaynakları kullanılarak oluşturulan taşkın envanterini tanıtmak, bu envantere dayanarak taşkınların zamansal ve alansal değişimlerini ortaya koymak ve kullanılan veri kaynaklarının mekânsal farklılıklarını karşılaştırmaktır. Bu amaç doğrultusunda Getis-Ord Gi* istatistik kullanarak farklı kaynaklardan elde edilmiş taşkın envanterlerinin mekânsal değişimleri ve oluşturdukları sıcak-soğuk bölgeler incelenmiştir. Sonuçlara göre, toplamda 3300 ölümcül taşkın tespit edilmiş ve 6799 taşkın olayı sonucunda envantere 9181 taşkın noktası eklenmiştir. Taşkınların zamansal dağılışı, Türkiye’de çeyrek yüzyıllık bir döngüye ve bimodal bir karaktere sahip olduğunu açıkça ortaya koymaktadır. Ayrıca, 1972 ve 2001 yılları taşkınların zamansal dağılışında ayrık yıllar olarak tespit edilmiştir. Diğer yandan Türkiye’nin her yerinde taşkın olayı görülmekle birlikte, Doğu Karadeniz’in hem taşkın sayısı hem de ölümcül taşkınlar açısından bir sıcak bölge olduğu belirlenmiştir. Doğu Karadeniz havzasından sonra Sakarya ve Fırat-Dicle hem ölümcül taşkın hem de taşkın sayısı bakımından öne çıkmaktadır. Ayrıca, Getis-Ord Gi* istatistiği kullanarak yapılan analiz sonucunda kurumsal olarak elde edilen Devlet Su İşleri taşkın envanteri verisiyle ve çeşitli kaynaklardan elde edilen verilerin mekânsal farklılıklarının karşılaştırılmasından elde edilen sonuçlar Türkiye’de soğuk bölgeye rastlanmadığını ve elde edilen sıcak bölgelerin ise farklı envanter kaynaklarının Türkiye’de taşkınların görüldüğü bölgeler açısından farklı sonuçlar ürettiğini ortaya koyduğu anlaşılmaktadır. Bu durum FlooDOT envanterinin Türkiye’deki taşkın süreçlerini mekânsal olarak iyi yansıttığı ve envanterin bu açıdan küresel envanterlerin yarattığı veri boşluğunu kapattığı görülmektedir. Bu nedenle envanter oluşturma süreçlerinde mevcut olan tüm kaynaklardan toplanan kayıtların kullanılması taşkın tehlike ve duyarlılık analizleri için büyük bir avantaj sağlamaktadır.

Project Number

121Y578

Thanks

Bu çalışma Tübitak 121Y578 kodlu projeyle desteklemiştir. Devlet Su İşlerine TAMBIS sistemindeki verileri ve taşkın yıllıklarını sağladığı için teşekkür ederiz.

References

  • IFCR-International Federation of Red Cross and Red Crescent Societies, (2020), World Disasters Report 2020: Come Heat or High Water - Tackling the Humanitarian Impacts of the Climate Crisis Together, Geneva. Switzerland
  • UNDDR-United Nations Office for Disaster Risk Reduction, (2020), Human Cost of Disasters: An Overview of the Last 20 Years 2000-2019, Geneva. Switzerland, DOI: https://doi.org/10.18356/79b92774-en
  • Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., ... & Zeng, Z. (2020). High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 1-7.
  • Mazzoleni, M., Mård, J., Rusca, M., Odongo, V., Lindersson, S., & Di Baldassarre, G. (2020). Floodplains in the Anthropocene: A global analysis of the interplay between human population, built environment and flood severity. Water Resources Research, e2020WR027744.
  • Wing, O. E. J., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A., Fargione, J., & Morefield, P. (2018). Estimates of present and future flood risk in the conterminous United States. Environmental Research Letters, 13(3), 034023. https://doi.org/10.1088/1748-9326/aaac65
  • Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., ... & Krajewski, W. F. (2021). Combined modeling of US fluvial, pluvial, and coastal flood hazard under current and future climates. Water Resources Research, 57(2), e2020WR028673.
  • Paprotny, D., Sebastian, A., Morales-Nápoles, O., & Jonkman, S. N. (2018). Trends in flood losses in Europe over the past 150 years. Nature communications, 9(1), 1-12.
  • Petrucci, O., Aceto, L., Bianchi, C., Bigot, V., Brázdil, R., Pereira, S., ... & Zêzere, J. L. (2019). Flood fatalities in Europe, 1980–2018: Variability, features, and lessons to learn. Water, 11(8), 1682.
  • Hall, J., & Blöschl, G. (2018). Spatial patterns and characteristics of flood seasonality in Europe. Hydrology and Earth System Sciences, 22(7), 3883-3901.
  • Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., & Kirchner, J. W. (2019). The relative importance of different flood‐generating mechanisms across Europe. Water Resources Research, 55(6), 4582-4593.
  • Stein, L., Pianosi, F., & Woods, R. (2020). Event‐based classification for global study of river flood generating processes. Hydrological Processes, 34(7), 1514-1529.
  • Alfieri, L., Burek, P., Feyen, L., & Forzieri, G. (2015). Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19(5), 2247-2260.
  • Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., ... & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth's Future, 5(2), 171-182.
  • Cloke, H. L., Wetterhall, F., He, Y., Freer, J. E., & Pappenberger, F. (2013). Modelling climate impact on floods with ensemble climate projections. Quarterly Journal of the Royal Meteorological Society, 139(671), 282-297.
  • Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., ... & Sherstyukov, B. (2014). Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59(1), 1-28.
  • Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B., Arheimer, B., ... & Živković, N. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588-590.
  • Chorley, R. J. (2019). The drainage basin as the fundamental geomorphic unit. In Introduction to physical hydrology (pp. 37-59). Routledge.
  • Akbas, A., Freer, J., Ozdemir, H., Bates, P. D., & Turp, M. T. (2020). What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes, 34(26), 5441-5455.
  • Yang, Y. and Tian, F. (2009). Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. Journal of Hydrology, 374(3-4), 373-383.
  • Ozdemir, H., & Elbaşı, E. (2015). Benchmarking land use change impacts on direct runoff in ungauged urban watersheds. Physics and Chemistry of the Earth, Parts A/B/C, 79, 100-107.
  • Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 1-10.
  • Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., & Andréassian, V. (2014). Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 18(2), 463-477.
  • Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., & Clark, M. P. (2018). A ranking of hydrological signatures based on their predictability in space. Water Resources Research, 54(11), 8792-8812.
  • Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., & Mendoza, P. A. (2020). Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges. Hydrological Sciences Journal, 65(5), 712-725.
  • Koç, G., Natho, S., & Thieken, A. H. (2021). Estimating direct economic impacts of severe flood events in Turkey (2015–2020). International Journal of Disaster Risk Reduction, 58, 102222.
  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12.
  • Akbas, A. (2023). Seasonality, persistency, regionalization, and control mechanism of extreme rainfall over complex terrain. Theoretical and Applied Climatology, 152(3), 981-997.
  • Barry, R. G., & Chorley, R. J. (2009). Atmosphere, weather and climate. Routledge.
  • Akbas, A., & Ozdemir, H. (2023). Influence of atmospheric circulation on the variability of hydroclimatic parameters in the Marmara Sea river basins. Hydrological Sciences Journal, 68(9), 1229-1240.
  • Baltacı, H., Akkoyunlu, B. O., & Tayanc, M. (2018). Relationships between teleconnection patterns and Turkish climatic extremes. Theoretical and applied climatology, 134, 1365-1386.
  • Erinç, S. (1996). Klimatoloji ve metodları. İstanbul Universitesi, Coğrafya Enstitüsü.
  • Karaca, M., Deniz, A., & Tayanç, M. (2000). Cyclone track variability over Turkey in association with regional climate. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(10), 1225-1236.
  • Türkeş, M. (1996). Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 16(9), 1057-1076.
  • Tatli, H., Nüzhet Dalfes, H., & Sibel Menteş, Ş. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(2), 161-180.
  • Gönüllü, A. B. (2018). Cumhuriyet Döneminde meydana gelen sel baskınları (1950-1970) , Master's thesis, Türkiyat Araştırmaları Enstitüsü, Marmara Üniversitesi
  • Brakenridge, G.R.. Global Active Archive of Large Flood Events. Dartmouth Flood Observatory, University of Colorado, USA. http://floodobservatory.colorado.edu/ Archives/ (Accessed 1 January 2023).
  • Chowdhury, J. R., Parida, Y., & Goel, P. A. (2021). Does inequality-adjusted human development reduce the impact of natural disasters? A gendered perspective. World Development, 141, 105394.
  • UNISDR (United Nations International Strategy for Disaster Reduction). 2015. Sendai framework for disaster risk reduction 2015–2030. Geneva: UNISDR.
  • Cutter, S. L., & Gall, M. (2015). Sendai targets at risk. Nature Climate Change, 5(8), 707-709.
  • Goniewicz, K., & Burkle Jr, F. M. (2019). Challenges in implementing Sendai framework for disaster risk reduction in Poland. International journal of environmental research and public health, 16(14), 2574.
  • Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., & Neal, J. (2022). A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters, 17(2), 024016.
  • Getis, A. and J.K. Ord. 1992. "The Analysis of Spatial Association by Use of Distance Statistics" in Geographical Analysis 24(3).
  • Ord, J.K. and A. Getis. 1995. "Local Spatial Autocorrelation Statistics: Distributional Issues and an Application" in Geographical Analysis 27(4).
  • Sen, O. L., Unal, A., Bozkurt, D., & Kindap, T. (2011). Temporal changes in the Euphrates and Tigris discharges and teleconnections. Environmental Research Letters, 6(2), 024012.
  • Batibeniz, F., Ashfaq, M., Önol, B., Turuncoglu, U. U., Mehmood, S., & Evans, K. J. (2020). Identification of major moisture sources across the Mediterranean Basin. Climate Dynamics, 54, 4109-4127.
  • Haltas, I., Yildirim, E., Oztas, F., & Demir, I. (2021). A comprehensive flood event specification and inventory: 1930–2020 Turkey case study. International Journal of Disaster Risk Reduction, 56, 102086.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Water Resources Engineering, Water Resources and Water Structures
Journal Section Research Articles
Authors

Abdullah Akbaş 0000-0003-2024-0565

Tolga Görüm 0000-0001-9407-7946

Hasan Özdemir 0000-0001-8885-9298

Project Number 121Y578
Early Pub Date June 20, 2025
Publication Date
Submission Date January 12, 2025
Acceptance Date June 13, 2025
Published in Issue Year 2025 Volume: 36 Issue: 6

Cite

APA Akbaş, A., Görüm, T., & Özdemir, H. (2025). Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması. Turkish Journal of Civil Engineering, 36(6). https://doi.org/10.18400/tjce.1618212
AMA Akbaş A, Görüm T, Özdemir H. Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması. TJCE. June 2025;36(6). doi:10.18400/tjce.1618212
Chicago Akbaş, Abdullah, Tolga Görüm, and Hasan Özdemir. “Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi Ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması”. Turkish Journal of Civil Engineering 36, no. 6 (June 2025). https://doi.org/10.18400/tjce.1618212.
EndNote Akbaş A, Görüm T, Özdemir H (June 1, 2025) Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması. Turkish Journal of Civil Engineering 36 6
IEEE A. Akbaş, T. Görüm, and H. Özdemir, “Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması”, TJCE, vol. 36, no. 6, 2025, doi: 10.18400/tjce.1618212.
ISNAD Akbaş, Abdullah et al. “Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi Ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması”. Turkish Journal of Civil Engineering 36/6 (June 2025). https://doi.org/10.18400/tjce.1618212.
JAMA Akbaş A, Görüm T, Özdemir H. Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması. TJCE. 2025;36. doi:10.18400/tjce.1618212.
MLA Akbaş, Abdullah et al. “Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi Ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması”. Turkish Journal of Civil Engineering, vol. 36, no. 6, 2025, doi:10.18400/tjce.1618212.
Vancouver Akbaş A, Görüm T, Özdemir H. Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması. TJCE. 2025;36(6).