Research Article
BibTex RIS Cite

Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces

Year 2025, Volume: 17 Issue: 1, 47 - 58, 30.06.2025
https://doi.org/10.47000/tjmcs.1362700

Abstract

Let $H$ be a Hilbert space. In this paper we show among others that, if $f$
is continuous differentiable convex on the open interval $I$ and $A,$ $B$
are selfadjoint operators in $B\left( H\right) $ with spectra $Sp( A) ,$ $Sp( B) \subset I,$ then we have the
tensorial inequality
\begin{align*}
\left( f^{\prime }\left( A\right) \otimes 1\right)\left( A\otimes1-1\otimes B\right)& \geq f\left(A\right) \otimes 1-1\otimes f\left(B\right) \\
& \geq \left( A\otimes 1-1\otimes B\right) \left( 1\otimes f^{\prime }\left(
B\right) \right)
\end{align*}
and the inequality for Hadamard product
\begin{align*}
\left( f^{\prime }\left( A\right) A\right) \circ 1-f^{\prime }\left(
A\right) \circ B& \geq \left[ f\left( A\right) -f\left( B\right) \right]
\circ 1 \\
& \geq A\circ f^{\prime }\left( B\right) -\left( f^{\prime }\left( B\right)
B\right) \circ 1.
\end{align*}.

References

  • Ando, T., Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl., 26(1979), 203–241.
  • Araki, H., Hansen, F., Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128(7)(2000), 2075–2084.
  • Aujila, J.S., Vasudeva, H.L., Inequalities involving Hadamard product and operator means, Math. Japon., 42(1995), 265–272.
  • Fujii, J.I., The Marcus-Khan theorem for Hilbert space operators, Math. Jpn., 41(1995), 531–535.
  • Furuta, T., Micic Hot, J., Pecaric, J., Seo, Y., Mond-Pecaric Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • Kitamura, K., Seo, Y., Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math.,1(2)(1998), 237–241.
  • Koranyi, A., On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101(1961), 520–554.
  • Wada, S., On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl., 420(2007), 433–440.
Year 2025, Volume: 17 Issue: 1, 47 - 58, 30.06.2025
https://doi.org/10.47000/tjmcs.1362700

Abstract

References

  • Ando, T., Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl., 26(1979), 203–241.
  • Araki, H., Hansen, F., Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128(7)(2000), 2075–2084.
  • Aujila, J.S., Vasudeva, H.L., Inequalities involving Hadamard product and operator means, Math. Japon., 42(1995), 265–272.
  • Fujii, J.I., The Marcus-Khan theorem for Hilbert space operators, Math. Jpn., 41(1995), 531–535.
  • Furuta, T., Micic Hot, J., Pecaric, J., Seo, Y., Mond-Pecaric Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • Kitamura, K., Seo, Y., Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math.,1(2)(1998), 237–241.
  • Koranyi, A., On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101(1961), 520–554.
  • Wada, S., On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl., 420(2007), 433–440.
There are 8 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Sever Dragomır 0000-0003-2902-6805

Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Dragomır, S. (2025). Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces. Turkish Journal of Mathematics and Computer Science, 17(1), 47-58. https://doi.org/10.47000/tjmcs.1362700
AMA Dragomır S. Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces. TJMCS. June 2025;17(1):47-58. doi:10.47000/tjmcs.1362700
Chicago Dragomır, Sever. “Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 47-58. https://doi.org/10.47000/tjmcs.1362700.
EndNote Dragomır S (June 1, 2025) Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces. Turkish Journal of Mathematics and Computer Science 17 1 47–58.
IEEE S. Dragomır, “Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces”, TJMCS, vol. 17, no. 1, pp. 47–58, 2025, doi: 10.47000/tjmcs.1362700.
ISNAD Dragomır, Sever. “Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces”. Turkish Journal of Mathematics and Computer Science 17/1 (June 2025), 47-58. https://doi.org/10.47000/tjmcs.1362700.
JAMA Dragomır S. Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces. TJMCS. 2025;17:47–58.
MLA Dragomır, Sever. “Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 47-58, doi:10.47000/tjmcs.1362700.
Vancouver Dragomır S. Some Tensorial and Hadamard Product Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces. TJMCS. 2025;17(1):47-58.