Let $H$ be a Hilbert space. In this paper we show among others that, if $f$
is continuous differentiable convex on the open interval $I$ and $A,$ $B$
are selfadjoint operators in $B\left( H\right) $ with spectra $Sp( A) ,$ $Sp( B) \subset I,$ then we have the
tensorial inequality
\begin{align*}
\left( f^{\prime }\left( A\right) \otimes 1\right)\left( A\otimes1-1\otimes B\right)& \geq f\left(A\right) \otimes 1-1\otimes f\left(B\right) \\
& \geq \left( A\otimes 1-1\otimes B\right) \left( 1\otimes f^{\prime }\left(
B\right) \right)
\end{align*}
and the inequality for Hadamard product
\begin{align*}
\left( f^{\prime }\left( A\right) A\right) \circ 1-f^{\prime }\left(
A\right) \circ B& \geq \left[ f\left( A\right) -f\left( B\right) \right]
\circ 1 \\
& \geq A\circ f^{\prime }\left( B\right) -\left( f^{\prime }\left( B\right)
B\right) \circ 1.
\end{align*}.
Primary Language | English |
---|---|
Subjects | Operator Algebras and Functional Analysis |
Journal Section | Articles |
Authors | |
Publication Date | June 30, 2025 |
Published in Issue | Year 2025 Volume: 17 Issue: 1 |