Research Article
BibTex RIS Cite

Oyo Eyaleti, Nijerya’da Termoelektrik Klima Sistemi için Maliyet-Verimlilik Takasının Geliştirilmesi

Year 2025, Volume: 20 Issue: 1, 185 - 192, 27.03.2025
https://doi.org/10.55525/tjst.1545362

Abstract

Değişken hızlı termoelektrik (TE) klima sistemi, akıllı kontrol sistemi kullanılarak verimli güç yönetimi için geliştirilmiştir. Araştırmada, Değişken Gerilim Değişken Frekans (VVVF) düzenleyici modunu içeren, AC–DC ve DC–AC dönüştürücü yöntemlerinin entegre edildiği katı hal elektronik dönüşüm sistemi kullanılmıştır. Sistem, 230V AC ana güç kaynağından beslenmiş ve bir indirgeme transformatörü yardımıyla 150V AC’ye dönüştürülmüştür. Köprü doğrultucu, çıkış gerilimini frekansı düzenleyerek değişken DC gerilime dönüştürmüştür. DC gerilim, Darbe Genişlik Modülasyonu (PWM) tekniğiyle tekrar AC’ye dönüştürülerek izole kapılı bipolar transistörlü (IGBT) inverter tarafından programlanmış bir mikrodenetleyici (PIC18F4431) aracılığıyla sinüzoidal dalga formu oluşturulmuş ve klima kompresör motoruna iletilmiştir. Deneysel sonuçlar, frekans azaldıkça hız ve torkun düştüğünü ve bunun da önemli ölçüde güç tüketimini azalttığını ortaya koymuştur. Çalışma, geleneksel bir klima sisteminin (CAC) sabit çalışmada aylık 80.280 kWh enerji tükettiğini, buna karşılık termoelektrik klima sisteminin (TEAC) aynı sürede 15.624 kWh enerji tükettiğini göstermiştir. Bu, enerji maliyetlerinin geleneksel klima (CAC) için günlük 602.100 NGN (387,5 USD) ve aylık 18.063,000 NGN (11,625.27 USD) olarak hesaplanmasına karşılık, TEAC sistemi için günlük 117.180 NGN (75,42 USD) ve aylık 3.515.400 NGN (2,262.50 USD) olarak gerçekleştiğini göstermektedir. Geliştirilen TE sürücü sistemi ile günlük 484.920 NGN (312.09 USD), aylık 14.547.600 NGN (9,362.78 USD) ve yıllık 174.571.200 NGN (112,353.31 USD) tasarruf sağlanmıştır. Çalışmada tahmin edilen elektrik tüketimi, geleneksel iklimlendirme sistemine kıyasla enerji ve maliyet faturalarında %67’lik tasarruf sağlandığını göstermektedir.

References

  • Zuazua-Ros A, Martín-Gómez C, Ibañez-Puy E, Vidaurre-Arbizu M, Gelbstein Y. Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: characterization options and applications. Renew Energy 2019; 131: 229–239.
  • Xiaoli Ma, Han Zhao, Xudong Zhao, Guiqiang Li, Samson Shittu. Building integrated thermoelectric air conditioners - a potentially fully environmentally friendly solution in building services. Future Cities Environ 2019; 5(1): 1–13.
  • Sheu AL, Adagunodo TA. Performance evaluation of inverter-equipped drive to regulate the speed of motor and cooling output of air conditioner. IOP Conference Series: J Phys 2019; 1299: 012029.
  • Zhang X, Huang Y. Chen Z. A hybrid system integrating photovoltaic module and thermoelectric devices for power and cooling cogeneration. Sol Energy 2022; 239: 350–358.
  • Adeyanju AA, Manohar K. Design and analysis of a thermoelectric air-conditioning system. J Sci Res 2020; 26 (4): 1–11.
  • Sheu AL. Design of Energy Efficient Drive for Effective Power Management in Nigeria. South-West Journal of Teacher Education 2017; 8: 103 - 111.
  • Cai Y, Wang WW, Liu CW, Ding WT, Liu D, Zhao FY. Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations. Renew Energ 2020; 147(1): 1565–1583.
  • Xiao-Xiao Tian, Soheil Asaadi, Hazim Moria, Amr Kaood, Samira Pourhedayat, Kittisak Jermsittiparsert. Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler. Energy 2020; 208: 118428.
  • Carlo Fanciulli, Hossein Abedi, Adelaide Nespoli, Roberto Dondè, Caterina La Terra, Francesca Migliorini, Francesca Passaretti, Silvana De Iuliis. Additive fabrication and experimental validation of a lightweight thermoelectric generator. Sci Rep 2023; 13(1): 1- 13.
  • Vián JG, Astrain D, Domínguez M. Numerical modelling and a design of a thermoelectric dehumid. Therm Eng 2002; 22: 407–422.
  • Dario Narducci, Bruno Lorenzi. Economic convenience of hybrid thermoelectric-photovoltaic solar harvesters. ACS Appl Energy Mater 2021; 4(4): 4029-4037.
  • Tingrui Gong, Lei Gao, Yongjia Wu, Long Zhang, Shan Yin, Juntao Li, Tingzhen Ming Numerical simulation on 180 a compact thermoelectric cooler for the optimized design. Appl Therm Eng 2019; 146: 815–825.
  • Sheu AL. Power Management and Regulation of Motor Driven Appliances using Developed Control System. Journal of Pure Science and Science Education 2018; 10: 16 - 21.
  • Kim M, Kang YK, Joung J, Jeong JW. Cooling performance prediction for hydraulic thermoelectric radiant cooling panels with experimental validation. Sustainability 2022; 14(23): 1 - 17.
  • Saini A, Watzman SJ, Bahk JH. Cost-performance trade-off in thermoelectric air conditioning system with graded and constant material properties. Energy Build 2021; 240:110931.
  • Tai-feng Shi, Jing-yuan Zheng, Xia Wang, Peng Zhang, Peng-an Zong, Kafil M. Razeeb. Recent advances of electrodeposition of Bi2 Te3 and its thermoelectric applications in miniaturized power generation and cooling. International Materials Review 2023; 68(5): 521-555.
  • Shoeibi S, Kargarsharifabad H, Sadi M, Arabkoohsar A, Mirjalily SAA. A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustain Energy Technol Assess 2022; 52: 102105.
  • Seungho Lee, Kihyun Kim, Deok-Hong Kang, M. Meyyappan, Chang-Ki Baek. Vertical silicon nanowire thermoelectric modules with enhanced thermoelectric properties. Nano Lett 2019; 19(2): 747-755.
  • Kony Chatterjee, Ankit Negi, Kyunghoon Kim, Jun Liu, Tushar K. Ghosh. In-plane thermoelectric properties of flexible and room-temperature-doped carbon nanotube films. ACS Appl Energy Mater 2020; 3(7): 6929-6936.

Enhancing Cost-efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria

Year 2025, Volume: 20 Issue: 1, 185 - 192, 27.03.2025
https://doi.org/10.55525/tjst.1545362

Abstract

A variable speed thermoelectric (TE) air conditioner system is developed for efficient power management using intelligent control system. The investigation adopted Variable Voltage Variable Frequency (VVVF) regulator mode of a solid state electronic conversion system with integration of AC–DC and DC–AC Converter method. The system received power from the main 230VAC source and a step-down transformer converted it to 150VAC. The bridge rectifier converted the output voltage varying DCV by regulating the frequency. The DC voltage is transformed back into AC through Pulse Width Modulation (PWM) technique. The sinusoidal waveform is formed automatically by programmed microcontroller (PIC18F4431) Insulated Gate Bipolar Transistor (IGBT) inverter that fed the air conditional compressor motor. The investigational results revealed that as the frequency declines, speed and torque drop which resulted to substantial reduction of power intake. The study reveals that 80,280kWh of energy is expended by a conventional air conditioner (CAC) in a month under steady operation while 15,624kWh is consumed by a thermoelectric air conditioner (TEAC) at the same period. This translates to energy cost of 602,100 NGN (387.51 USD) and 18,063,000 NGN (11625.27 USD) by conventional air conditioner (CAC) daily and monthly respectively while TEAC accounts for 117,180 NGN (75.42 USD) and 3,515,400 NGN (2262.50 USD) at the same period correspondingly. The energy savings cost with the developed TE drive are 484,920 NGN (312.09 USD), 14,547,600 NGN(9362.78 USD) and 174,571,200 NGN(112353.31 NGN) averagely on daily, monthly and yearly respectively. The estimated electricity in the study shows that 67% of the energy and cost bill is saved periodically using the developed TE drive likened to traditional climate control system.

Ethical Statement

The research is carried out at Oyo, Oyo State, Nigeria

Supporting Institution

No supporting institution

Thanks

All authors are well appreciated for the meaningful contributions

References

  • Zuazua-Ros A, Martín-Gómez C, Ibañez-Puy E, Vidaurre-Arbizu M, Gelbstein Y. Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: characterization options and applications. Renew Energy 2019; 131: 229–239.
  • Xiaoli Ma, Han Zhao, Xudong Zhao, Guiqiang Li, Samson Shittu. Building integrated thermoelectric air conditioners - a potentially fully environmentally friendly solution in building services. Future Cities Environ 2019; 5(1): 1–13.
  • Sheu AL, Adagunodo TA. Performance evaluation of inverter-equipped drive to regulate the speed of motor and cooling output of air conditioner. IOP Conference Series: J Phys 2019; 1299: 012029.
  • Zhang X, Huang Y. Chen Z. A hybrid system integrating photovoltaic module and thermoelectric devices for power and cooling cogeneration. Sol Energy 2022; 239: 350–358.
  • Adeyanju AA, Manohar K. Design and analysis of a thermoelectric air-conditioning system. J Sci Res 2020; 26 (4): 1–11.
  • Sheu AL. Design of Energy Efficient Drive for Effective Power Management in Nigeria. South-West Journal of Teacher Education 2017; 8: 103 - 111.
  • Cai Y, Wang WW, Liu CW, Ding WT, Liu D, Zhao FY. Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations. Renew Energ 2020; 147(1): 1565–1583.
  • Xiao-Xiao Tian, Soheil Asaadi, Hazim Moria, Amr Kaood, Samira Pourhedayat, Kittisak Jermsittiparsert. Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler. Energy 2020; 208: 118428.
  • Carlo Fanciulli, Hossein Abedi, Adelaide Nespoli, Roberto Dondè, Caterina La Terra, Francesca Migliorini, Francesca Passaretti, Silvana De Iuliis. Additive fabrication and experimental validation of a lightweight thermoelectric generator. Sci Rep 2023; 13(1): 1- 13.
  • Vián JG, Astrain D, Domínguez M. Numerical modelling and a design of a thermoelectric dehumid. Therm Eng 2002; 22: 407–422.
  • Dario Narducci, Bruno Lorenzi. Economic convenience of hybrid thermoelectric-photovoltaic solar harvesters. ACS Appl Energy Mater 2021; 4(4): 4029-4037.
  • Tingrui Gong, Lei Gao, Yongjia Wu, Long Zhang, Shan Yin, Juntao Li, Tingzhen Ming Numerical simulation on 180 a compact thermoelectric cooler for the optimized design. Appl Therm Eng 2019; 146: 815–825.
  • Sheu AL. Power Management and Regulation of Motor Driven Appliances using Developed Control System. Journal of Pure Science and Science Education 2018; 10: 16 - 21.
  • Kim M, Kang YK, Joung J, Jeong JW. Cooling performance prediction for hydraulic thermoelectric radiant cooling panels with experimental validation. Sustainability 2022; 14(23): 1 - 17.
  • Saini A, Watzman SJ, Bahk JH. Cost-performance trade-off in thermoelectric air conditioning system with graded and constant material properties. Energy Build 2021; 240:110931.
  • Tai-feng Shi, Jing-yuan Zheng, Xia Wang, Peng Zhang, Peng-an Zong, Kafil M. Razeeb. Recent advances of electrodeposition of Bi2 Te3 and its thermoelectric applications in miniaturized power generation and cooling. International Materials Review 2023; 68(5): 521-555.
  • Shoeibi S, Kargarsharifabad H, Sadi M, Arabkoohsar A, Mirjalily SAA. A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustain Energy Technol Assess 2022; 52: 102105.
  • Seungho Lee, Kihyun Kim, Deok-Hong Kang, M. Meyyappan, Chang-Ki Baek. Vertical silicon nanowire thermoelectric modules with enhanced thermoelectric properties. Nano Lett 2019; 19(2): 747-755.
  • Kony Chatterjee, Ankit Negi, Kyunghoon Kim, Jun Liu, Tushar K. Ghosh. In-plane thermoelectric properties of flexible and room-temperature-doped carbon nanotube films. ACS Appl Energy Mater 2020; 3(7): 6929-6936.
There are 19 citations in total.

Details

Primary Language English
Subjects Lasers and Quantum Electronics
Journal Section TJST
Authors

Akeem Lawal Sheu 0000-0003-4877-880X

Aremu Olaosebikan 0000-0002-6506-609X

Kamaldeen Olasunkanmi Suleman 0000-0002-9103-1974

Ibraheem Abiodun Azeez 0000-0002-6399-8782

Hakeem Olayinka Oyeshola 0000-0002-1628-1455

Publication Date March 27, 2025
Submission Date September 11, 2024
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 20 Issue: 1

Cite

APA Sheu, A. L., Olaosebikan, A., Suleman, K. O., Azeez, I. A., et al. (2025). Enhancing Cost-efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria. Turkish Journal of Science and Technology, 20(1), 185-192. https://doi.org/10.55525/tjst.1545362
AMA Sheu AL, Olaosebikan A, Suleman KO, Azeez IA, Oyeshola HO. Enhancing Cost-efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria. TJST. March 2025;20(1):185-192. doi:10.55525/tjst.1545362
Chicago Sheu, Akeem Lawal, Aremu Olaosebikan, Kamaldeen Olasunkanmi Suleman, Ibraheem Abiodun Azeez, and Hakeem Olayinka Oyeshola. “Enhancing Cost-Efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria”. Turkish Journal of Science and Technology 20, no. 1 (March 2025): 185-92. https://doi.org/10.55525/tjst.1545362.
EndNote Sheu AL, Olaosebikan A, Suleman KO, Azeez IA, Oyeshola HO (March 1, 2025) Enhancing Cost-efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria. Turkish Journal of Science and Technology 20 1 185–192.
IEEE A. L. Sheu, A. Olaosebikan, K. O. Suleman, I. A. Azeez, and H. O. Oyeshola, “Enhancing Cost-efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria”, TJST, vol. 20, no. 1, pp. 185–192, 2025, doi: 10.55525/tjst.1545362.
ISNAD Sheu, Akeem Lawal et al. “Enhancing Cost-Efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria”. Turkish Journal of Science and Technology 20/1 (March 2025), 185-192. https://doi.org/10.55525/tjst.1545362.
JAMA Sheu AL, Olaosebikan A, Suleman KO, Azeez IA, Oyeshola HO. Enhancing Cost-efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria. TJST. 2025;20:185–192.
MLA Sheu, Akeem Lawal et al. “Enhancing Cost-Efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria”. Turkish Journal of Science and Technology, vol. 20, no. 1, 2025, pp. 185-92, doi:10.55525/tjst.1545362.
Vancouver Sheu AL, Olaosebikan A, Suleman KO, Azeez IA, Oyeshola HO. Enhancing Cost-efficiency Trade-off for Thermoelectric Air Conditioning System in Oyo State, Nigeria. TJST. 2025;20(1):185-92.