Research Article
BibTex RIS Cite

Green synthesis of fluorescent carbon quantum dots from field horsetail Equisetum Arvense L and fluorimetric detection of Pd2+ ions

Year 2025, Volume: 7 Issue: 2, 209 - 219, 31.05.2025
https://doi.org/10.51435/turkjac.1680680

Abstract

Fluorescent carbon quantum dots (CQDs) were synthesized via a hydrothermal approach using field horsetail (Equisetum Arvense L) as a green carbon source at 180 °C. The resulting CQDs were characterized through various techniques, such as UV–vis absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). Under UV illumination (365 nm), the CQDs displayed intense blue fluorescence. The effects of 32 different metal ions, including Li⁺, Na⁺, K⁺, Ag⁺, NH₄⁺, Tl⁺, Ba²⁺, Be²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cu²⁺, Pb²⁺, Mg²⁺, Mn²⁺, Ni²⁺, Zn²⁺, Sr²⁺, Cr³⁺, Au³⁺, Y³⁺, Al³⁺, V³⁺, Bi³⁺, B³⁺, Sc³⁺, Sb³⁺, Ti⁴⁺, Se⁴⁺, Mo⁶⁺, W⁶⁺, and Pd²⁺, on the fluorescence properties of the CQDs were systematically investigated using emission spectrophotometry. Among these, Pd²⁺ ions induced a pronounced quenching effect on CQD fluorescence. Based on this response, a sensitive and straightforward fluorometric sensing strategy was developed for the detection of Pd²⁺ in tap water. The method showed a good linear correlation over the concentration range of 0.5 to 15.0 µM, with a detection limit of 50.2 nM and a quantification limit of 150.6 nM. The applicability of the method was further confirmed by spiking experiments, yielding satisfactory recoveries across various concentrations. The approach also demonstrated excellent reproducibility, with a relative standard deviation (RSD) consistently remaining below 2.3%.

Ethical Statement

This article does not contain any studies with human participants or animals performed by the author

Supporting Institution

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The author has no relevant financial or non-financial interests to disclose.

Project Number

-

References

  • X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, J. Am. Chem. Soc. 126 (2004) 12736–12737.
  • Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, J. Am. Chem. Soc. 128 (2006) 7756–7757.
  • J.T. Margraf, V. Strauss, D.M. Guldi, T. Clark, The Electronic Structure of Amorphous Carbon Nanodots, J. Phys. Chem. B 119 (2015) 7258–7265.
  • A.B. Siddique, V.P. Singh, A.K. Pramanick, M. Ray, Amorphous carbon dot and chitosan based composites as fluorescent inks and luminescent films, Mater. Chem. Phys. 249 (2020) 122984.
  • L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M. Li, J. Zhang, R. Vajtai, P.M. Ajayan, M. Wu, Full-color fluorescent carbon quantum dots, Sci. Adv. 6 (2020) eabb6772.
  • F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs, Nat. Commun. 9 (2018) 2249.
  • M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission, J. Am. Chem. Soc. 134 (2012) 747–750.
  • H. Ding, J.-S. Wei, P. Zhang, Z.-Y. Zhou, Q.-Y. Gao, H.-M. Xiong, Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths, Small 14 (2018) 1–10.
  • D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction, Energy Environ. Sci. 7 (2014) 576–591.
  • J. Schneider, C.J. Reckmeier, Y. Xiong, M. Von Seckendorff, A.S. Susha, P. Kasak, A.L. Rogach, Molecular fluorescence in citric acid-based carbon dots, J. Phys. Chem. C 121 (2017) 2014–2022.
  • W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge, J. Hu, W. Wei, G. Zou, H. Hou, X. Ji, Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage, Nano Energy 65 (2019) 104038.
  • M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, S. Efremova Aaron, J. Aaron, Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review, Environ. Sci. Pollut. Res. 27 (2020) 29927–29942.
  • T.V.S. Adinarayana, A. Mishra, I. Singhal, D.V.R.R. Koti, Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe(III) ions, Nanoscale Adv. 2 (2020) 4125–4132.
  • J. Kielhorn, C. Melber, D. Keller, I. Mangelsdorf, Palladium - A review of exposure and effects to human health, Int. J. Hyg. Environ. Health 205 (2002) 417–432.
  • J. Wataha, Palladium, Biological Effects, in: Encyclopedia of Metalloproteins, Springer New York, New York, NY, 2013, pp. 1628–1635.
  • L. Savignan, S. Faucher, P. Chéry, G. Lespes, Platinum group elements contamination in soils: Review of the current state, Chemosphere 271 (2021) 129517.
  • G.O. Conti, S. Giurdanella, P. Rapisarda, G. Leotta, A. Cristaldi, C. Favara, M. Ferrante, Toxicological Implications of Platinum Group Elements (PGEs): A Systematic Review of In Vivo and In Vitro Studies Using Mammalian Models, Front. Biosci. - Landmark 29 (2024) 304.
  • E.S. Koçoğlu, Ö. Yılmaz, E.G. Bakırdere, S. Bakırdere, Quantification of palladium in wastewater samples by matrix-matching calibration strategy assisted deep eutectic solvent based microextraction, Environ. Monit. Assess. 193 (2021) 1–7.
  • WHO, Lead in drinking-water: Health risks, monitoring and corrective actions, (2022) 1–26.
  • A. Gümrükçüoğlu, A. Başoğlu, S. Kolayli, S. Dinç, M. Kara, M. Ocak, Ü. Ocak, Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples, Turk. J. Chem. 44 (2020) 99–111.
  • A. Başoğlu, G. Tosun, M. Ocak, H. Alp, N. Yaylı, Ü. Ocak, Simple Time-Saving Method for Iron Determination Based on Fluorescence Quenching of an Azaflavanon-3-ol Compound, J. Agric. Food Chem. 63 (2015) 2654–2659.
  • F.S. Salim, İ. Sargin, G. Arslan, Carbon quantum dots and chitosan-based heterogeneous silver catalyst for reduction of nitroaromatic compounds, Turk. J. Chem. 47 (2023) 148–163.
  • H. Shabbir, E. Csapó, M. Wojnicki, Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing, Inorganics 11 (2023).
  • H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing, Mater. Today 16 (2013) 433–442.
  • H. Wang, H. Luo, Y. Liu, F. Wang, B. Peng, X. Li, D. Hu, G. He, D. Zhang, Improved Energy Density at High Temperatures of FPE Dielectrics by Extreme Low Loading of CQDs, Materials 17 (2024) 3625.
  • X.-W. Hua, Y.-W. Bao, H.-Y. Wang, Z. Chen, F.-G. Wu, Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation, Nanoscale 9 (2017) 2150–2161.
  • F.N. Ajjan, M.J. Jafari, T. Rębiś, T. Ederth, O. Inganäs, Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material, J. Mater. Chem. A 3 (2015) 12927–12937.
  • S. Devi, A. Kaur, S. Sarkar, S. Vohra, S. Tyagi, Synthesis and characterization of highly luminescent N-doped carbon quantum dots for metal ion sensing, Integr. Ferroelectr. 186 (2018) 32–39.
  • S.J. Phang, J. Lee, V.-L. Wong, L.-L. Tan, S.-P. Chai, Synergistic effects of the hybridization between boron-doped carbon quantum dots and n/n-type g-C3N4 homojunction for boosted visible-light photocatalytic activity, Environ. Sci. Pollut. Res. 29 (2022) 41272–41292.
  • A. Kumari, A. Kumar, S.K. Sahu, S. Kumar, Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging, Sens. Actuators B Chem. 254 (2018) 197–205.
  • J.-W. Zhou, X.-M. Zou, S.-H. Song, G.-H. Chen, Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues, J. Agric. Food Chem. 66 (2018) 1307–1319.
  • S. Erdemir, D. Aydin, M. Oguz, O. Kocyigit, S. Malkondu, Building an eco-friendly, biocompatible, and ratiometric NIR fluorescent sensor for the rapid detection of trace Pd2+ in real samples and living cells, J. Hazard. Mater. 488 (2025) 137463.
  • A.S.G.T. Lawson, M.G. Ellis, M. Davis, J. Turner-Dore, A.S.H. Ryder, M.H. Frosz, M. Ciaccia, E. Reisner, A.J. Cresswell, T.G. Euser, Stern-Volmer analysis of photocatalyst fluorescence quenching within hollow-core photonic crystal fibre microreactors, Chem. Commun. 58 (2022) 10548–10551.
  • T. Kohlmann, M. Goez, Combined static and dynamic intramicellar fluorescence quenching: effects on stationary and time-resolved Stern–Volmer experiments, Phys. Chem. Chem. Phys. 21 (2019) 10075–10085.
  • K. Kang, B. Liu, G. Yue, H. Ren, K. Zheng, L. Wang, Z. Wang, Preparation of carbon quantum dots from ionic liquid modified biomass for the detection of Fe3+ and Pd2+ in environmental water, Ecotoxicol. Environ. Saf. 255 (2023) 114795.
  • Y. Dong, Y. Zhang, S. Zhi, X. Yang, C. Yao, Green Synthesized Fluorescent Carbon Dots from Momordica charantia for Selective and Sensitive Detection of Pd2+ and Fe3+, ChemistrySelect 6 (2021) 123–130.
  • S. Gao, H. Zhang, H. Li, Y. Pei, Synthesis of sulfur-chlorine-doped fluorescent carbon quantum dots from leachate membrane concentrate as a selective probe for Pd2+ detection, Opt. Mater. 139 (2023) 113746.
  • S. Pawar, S. Kaja, A. Nag, Red-Emitting Carbon Dots as a Dual Sensor for In3+ and Pd2+ in Water, ACS Omega 5 (2020) 8362–8372.
  • R. Swathi, G.B. Reddy, B. Rajkumar, G. Yaku, S. Kondaiah, P.Y. Swamy, Microwave-assisted green synthesis of Pithecellobium dulce seed pods derived fluorescent carbon dots for Pd2+ detection, Emergent Mater. 6 (2023) 1207–1215.

Tarla atkuyruğu (Equisetum Arvense L.) bitkisinden floresan karbon kuantum noktalarının yeşil sentezi ve Pd²⁺ iyonlarının florimetrik tayini

Year 2025, Volume: 7 Issue: 2, 209 - 219, 31.05.2025
https://doi.org/10.51435/turkjac.1680680

Abstract

Floresan karbon kuantum noktaları (CQD’ler), yeşil bir karbon kaynağı olarak tarla atkuyruğu (Equisetum Arvense L.) kullanılarak, 180 °C’de hidrotermal bir yöntemle sentezlenmiştir. Elde edilen CQD’ler; UV–vis absorpsiyon spektroskopisi, floresans spektroskopisi, Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ve geçirimli elektron mikroskobu (TEM) gibi çeşitli tekniklerle karakterize edilmiştir. 365 nm dalga boyundaki UV ışığı altında, CQD’ler yoğun mavi floresans göstermiştir. Li⁺, Na⁺, K⁺, Ag⁺, NH₄⁺, Tl⁺, Ba²⁺, Be²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cu²⁺, Pb²⁺, Mg²⁺, Mn²⁺, Ni²⁺, Zn²⁺, Sr²⁺, Cr³⁺, Au³⁺, Y³⁺, Al³⁺, V³⁺, Bi³⁺, B³⁺, Sc³⁺, Sb³⁺, Ti⁴⁺, Se⁴⁺, Mo⁶⁺, W⁶⁺ ve Pd²⁺ dahil olmak üzere 32 farklı metal iyonunun CQD’lerin floresans özellikleri üzerindeki etkisi, emisyon spektrofotometrisi ile sistematik olarak araştırılmıştır. Bu iyonlar arasında, Pd²⁺ iyonları CQD floresansı üzerinde belirgin bir sönümleme etkisi göstermiştir. Bu etkiye dayanarak, musluk suyunda Pd²⁺ tayini için hassas ve pratik bir florometrik algılama yöntemi geliştirilmiştir. Geliştirilen yöntem, 0.5–15.0 µM konsantrasyon aralığında iyi bir doğrusal ilişki göstermiş; tespit limiti 50.2 nM ve miktar tayin limiti 150.6 nM olarak belirlenmiştir. Yöntemin uygulanabilirliği, farklı konsantrasyonlarda gerçekleştirilen zenginleştirme deneyleri ile doğrulanmış; tatmin edici geri kazanım sonuçları elde edilmiştir. Ayrıca, yöntemin mükemmel tekrarlanabilirlik sunduğu görülmüş ve bağıl standart sapma (RSD) değerinin her zaman %2.3’ün altında kaldığı tespit edilmiştir.

Project Number

-

References

  • X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, J. Am. Chem. Soc. 126 (2004) 12736–12737.
  • Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, J. Am. Chem. Soc. 128 (2006) 7756–7757.
  • J.T. Margraf, V. Strauss, D.M. Guldi, T. Clark, The Electronic Structure of Amorphous Carbon Nanodots, J. Phys. Chem. B 119 (2015) 7258–7265.
  • A.B. Siddique, V.P. Singh, A.K. Pramanick, M. Ray, Amorphous carbon dot and chitosan based composites as fluorescent inks and luminescent films, Mater. Chem. Phys. 249 (2020) 122984.
  • L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M. Li, J. Zhang, R. Vajtai, P.M. Ajayan, M. Wu, Full-color fluorescent carbon quantum dots, Sci. Adv. 6 (2020) eabb6772.
  • F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs, Nat. Commun. 9 (2018) 2249.
  • M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission, J. Am. Chem. Soc. 134 (2012) 747–750.
  • H. Ding, J.-S. Wei, P. Zhang, Z.-Y. Zhou, Q.-Y. Gao, H.-M. Xiong, Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths, Small 14 (2018) 1–10.
  • D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction, Energy Environ. Sci. 7 (2014) 576–591.
  • J. Schneider, C.J. Reckmeier, Y. Xiong, M. Von Seckendorff, A.S. Susha, P. Kasak, A.L. Rogach, Molecular fluorescence in citric acid-based carbon dots, J. Phys. Chem. C 121 (2017) 2014–2022.
  • W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge, J. Hu, W. Wei, G. Zou, H. Hou, X. Ji, Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage, Nano Energy 65 (2019) 104038.
  • M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, S. Efremova Aaron, J. Aaron, Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review, Environ. Sci. Pollut. Res. 27 (2020) 29927–29942.
  • T.V.S. Adinarayana, A. Mishra, I. Singhal, D.V.R.R. Koti, Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe(III) ions, Nanoscale Adv. 2 (2020) 4125–4132.
  • J. Kielhorn, C. Melber, D. Keller, I. Mangelsdorf, Palladium - A review of exposure and effects to human health, Int. J. Hyg. Environ. Health 205 (2002) 417–432.
  • J. Wataha, Palladium, Biological Effects, in: Encyclopedia of Metalloproteins, Springer New York, New York, NY, 2013, pp. 1628–1635.
  • L. Savignan, S. Faucher, P. Chéry, G. Lespes, Platinum group elements contamination in soils: Review of the current state, Chemosphere 271 (2021) 129517.
  • G.O. Conti, S. Giurdanella, P. Rapisarda, G. Leotta, A. Cristaldi, C. Favara, M. Ferrante, Toxicological Implications of Platinum Group Elements (PGEs): A Systematic Review of In Vivo and In Vitro Studies Using Mammalian Models, Front. Biosci. - Landmark 29 (2024) 304.
  • E.S. Koçoğlu, Ö. Yılmaz, E.G. Bakırdere, S. Bakırdere, Quantification of palladium in wastewater samples by matrix-matching calibration strategy assisted deep eutectic solvent based microextraction, Environ. Monit. Assess. 193 (2021) 1–7.
  • WHO, Lead in drinking-water: Health risks, monitoring and corrective actions, (2022) 1–26.
  • A. Gümrükçüoğlu, A. Başoğlu, S. Kolayli, S. Dinç, M. Kara, M. Ocak, Ü. Ocak, Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples, Turk. J. Chem. 44 (2020) 99–111.
  • A. Başoğlu, G. Tosun, M. Ocak, H. Alp, N. Yaylı, Ü. Ocak, Simple Time-Saving Method for Iron Determination Based on Fluorescence Quenching of an Azaflavanon-3-ol Compound, J. Agric. Food Chem. 63 (2015) 2654–2659.
  • F.S. Salim, İ. Sargin, G. Arslan, Carbon quantum dots and chitosan-based heterogeneous silver catalyst for reduction of nitroaromatic compounds, Turk. J. Chem. 47 (2023) 148–163.
  • H. Shabbir, E. Csapó, M. Wojnicki, Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing, Inorganics 11 (2023).
  • H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing, Mater. Today 16 (2013) 433–442.
  • H. Wang, H. Luo, Y. Liu, F. Wang, B. Peng, X. Li, D. Hu, G. He, D. Zhang, Improved Energy Density at High Temperatures of FPE Dielectrics by Extreme Low Loading of CQDs, Materials 17 (2024) 3625.
  • X.-W. Hua, Y.-W. Bao, H.-Y. Wang, Z. Chen, F.-G. Wu, Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation, Nanoscale 9 (2017) 2150–2161.
  • F.N. Ajjan, M.J. Jafari, T. Rębiś, T. Ederth, O. Inganäs, Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material, J. Mater. Chem. A 3 (2015) 12927–12937.
  • S. Devi, A. Kaur, S. Sarkar, S. Vohra, S. Tyagi, Synthesis and characterization of highly luminescent N-doped carbon quantum dots for metal ion sensing, Integr. Ferroelectr. 186 (2018) 32–39.
  • S.J. Phang, J. Lee, V.-L. Wong, L.-L. Tan, S.-P. Chai, Synergistic effects of the hybridization between boron-doped carbon quantum dots and n/n-type g-C3N4 homojunction for boosted visible-light photocatalytic activity, Environ. Sci. Pollut. Res. 29 (2022) 41272–41292.
  • A. Kumari, A. Kumar, S.K. Sahu, S. Kumar, Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging, Sens. Actuators B Chem. 254 (2018) 197–205.
  • J.-W. Zhou, X.-M. Zou, S.-H. Song, G.-H. Chen, Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues, J. Agric. Food Chem. 66 (2018) 1307–1319.
  • S. Erdemir, D. Aydin, M. Oguz, O. Kocyigit, S. Malkondu, Building an eco-friendly, biocompatible, and ratiometric NIR fluorescent sensor for the rapid detection of trace Pd2+ in real samples and living cells, J. Hazard. Mater. 488 (2025) 137463.
  • A.S.G.T. Lawson, M.G. Ellis, M. Davis, J. Turner-Dore, A.S.H. Ryder, M.H. Frosz, M. Ciaccia, E. Reisner, A.J. Cresswell, T.G. Euser, Stern-Volmer analysis of photocatalyst fluorescence quenching within hollow-core photonic crystal fibre microreactors, Chem. Commun. 58 (2022) 10548–10551.
  • T. Kohlmann, M. Goez, Combined static and dynamic intramicellar fluorescence quenching: effects on stationary and time-resolved Stern–Volmer experiments, Phys. Chem. Chem. Phys. 21 (2019) 10075–10085.
  • K. Kang, B. Liu, G. Yue, H. Ren, K. Zheng, L. Wang, Z. Wang, Preparation of carbon quantum dots from ionic liquid modified biomass for the detection of Fe3+ and Pd2+ in environmental water, Ecotoxicol. Environ. Saf. 255 (2023) 114795.
  • Y. Dong, Y. Zhang, S. Zhi, X. Yang, C. Yao, Green Synthesized Fluorescent Carbon Dots from Momordica charantia for Selective and Sensitive Detection of Pd2+ and Fe3+, ChemistrySelect 6 (2021) 123–130.
  • S. Gao, H. Zhang, H. Li, Y. Pei, Synthesis of sulfur-chlorine-doped fluorescent carbon quantum dots from leachate membrane concentrate as a selective probe for Pd2+ detection, Opt. Mater. 139 (2023) 113746.
  • S. Pawar, S. Kaja, A. Nag, Red-Emitting Carbon Dots as a Dual Sensor for In3+ and Pd2+ in Water, ACS Omega 5 (2020) 8362–8372.
  • R. Swathi, G.B. Reddy, B. Rajkumar, G. Yaku, S. Kondaiah, P.Y. Swamy, Microwave-assisted green synthesis of Pithecellobium dulce seed pods derived fluorescent carbon dots for Pd2+ detection, Emergent Mater. 6 (2023) 1207–1215.
There are 39 citations in total.

Details

Primary Language English
Subjects Analytical Spectrometry, Instrumental Methods, Sensor Technology
Journal Section Research Articles
Authors

Aysel Başoğlu 0000-0002-2300-1554

Project Number -
Publication Date May 31, 2025
Submission Date April 21, 2025
Acceptance Date May 22, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Başoğlu, A. (2025). Green synthesis of fluorescent carbon quantum dots from field horsetail Equisetum Arvense L and fluorimetric detection of Pd2+ ions. Turkish Journal of Analytical Chemistry, 7(2), 209-219. https://doi.org/10.51435/turkjac.1680680
AMA Başoğlu A. Green synthesis of fluorescent carbon quantum dots from field horsetail Equisetum Arvense L and fluorimetric detection of Pd2+ ions. TurkJAC. May 2025;7(2):209-219. doi:10.51435/turkjac.1680680
Chicago Başoğlu, Aysel. “Green Synthesis of Fluorescent Carbon Quantum Dots from Field Horsetail Equisetum Arvense L and Fluorimetric Detection of Pd2+ Ions”. Turkish Journal of Analytical Chemistry 7, no. 2 (May 2025): 209-19. https://doi.org/10.51435/turkjac.1680680.
EndNote Başoğlu A (May 1, 2025) Green synthesis of fluorescent carbon quantum dots from field horsetail Equisetum Arvense L and fluorimetric detection of Pd2+ ions. Turkish Journal of Analytical Chemistry 7 2 209–219.
IEEE A. Başoğlu, “Green synthesis of fluorescent carbon quantum dots from field horsetail Equisetum Arvense L and fluorimetric detection of Pd2+ ions”, TurkJAC, vol. 7, no. 2, pp. 209–219, 2025, doi: 10.51435/turkjac.1680680.
ISNAD Başoğlu, Aysel. “Green Synthesis of Fluorescent Carbon Quantum Dots from Field Horsetail Equisetum Arvense L and Fluorimetric Detection of Pd2+ Ions”. Turkish Journal of Analytical Chemistry 7/2 (May 2025), 209-219. https://doi.org/10.51435/turkjac.1680680.
JAMA Başoğlu A. Green synthesis of fluorescent carbon quantum dots from field horsetail Equisetum Arvense L and fluorimetric detection of Pd2+ ions. TurkJAC. 2025;7:209–219.
MLA Başoğlu, Aysel. “Green Synthesis of Fluorescent Carbon Quantum Dots from Field Horsetail Equisetum Arvense L and Fluorimetric Detection of Pd2+ Ions”. Turkish Journal of Analytical Chemistry, vol. 7, no. 2, 2025, pp. 209-1, doi:10.51435/turkjac.1680680.
Vancouver Başoğlu A. Green synthesis of fluorescent carbon quantum dots from field horsetail Equisetum Arvense L and fluorimetric detection of Pd2+ ions. TurkJAC. 2025;7(2):209-1.