Research Article
BibTex RIS Cite

Rapid and Efficient In Vitro Micropropagation of Ginger (Zingiber officinale rosc.)

Year 2025, Volume: 12 Issue: 2, 297 - 303, 16.04.2025
https://doi.org/10.30910/turkjans.1578266

Abstract

Ginger (Zingiber officinale Rosc.), a member of the Zingiberaceae family, is a commercially important medicinal and aromatic plant with many uses in medicine, food and cosmetics. Ginger is very difficult to propagate from seed due to poor flowering and seed set. Long-term vegetative propagation through rhizomes also causes weakening of the rhizomes. Therefore, in order to develop ginger cultivation, it is necessary to produce a large number of disease-free plants in a short time. In this study, the effect of 20 different combinations of 6-benzyl amino purine (BAP) and -naphthalene acetic acid (NAA) added to Murashige and Skoog (MS) medium on in vitro micropropagation of ginger was investigated. The highest rate of shoot (9.25 shoots/explant) and root formation (11.41 roots/explant) was obtained when 0.5 mg/L BAP and 0.25 mg/L NAA were added to the medium. On the other hand, there were significant decreases in shoot and root formation when BAP and NAA were added to the nutrient media above these amounts. Similarly, the use of 0.1 mg/L NAA with BAP also decreased shoot and root formation. These results showed that the establishment of a good auxin-cytokinin balance in ginger plants is extremely important for in vitro micropropagation. The in vitro plantlets regenerated were 100% adapted to external conditions.

References

  • Aleem, M., Khan, M.I., Shakshaz, F.A., Akbari, N. ve Anwar, D. 2020. Botany, phytochemistry and antimicrobial activity of ginger (Zingiber officinale): A review. Int J Herb Med, 8(6): 36-49.
  • Asghar, S., Ghori, N., Hyat, F., Li, Y. ve Chen, C. 2023. Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion. Plant Growth Regulation, 99 (3): 413-428.
  • Bhattacharya, M. ve Sen, A. 2006. Rapid in vitro multiplication of disease-free Zingiber officinale Rosc. Indian journal of plant physiology, 11(4): 379-384.
  • Chakraborty, A., Santra, I., Haque, S. M. ve Ghosh, B. 2023. In vitro conservation of commercial and threatened members of Zingiberaceae: an Indian scenario. Biodiversity and Conservation, 32 (7): 2155-2195.
  • Çakmak, D., Karaoğlu, C., Aasim, M., Sancak, C. ve Özcan, S. 2016. Advancement in protocol for in vitro seed germination, regeneration, bulblet maturation, and acclimatization of Fritillaria persica. Turkish Journal of Biology, 40 (4): 878-888.
  • Das, A., Kesari, V. ve Rangan, L. 2010. Plant regeneration in Curcuma species and assessment of genetic stability of regenerated plants. Biologia Plantarum, 54: 423-429.
  • de Oliveira, L.S., Brondani, G.E., Molinari, L.V., Dias, R.Z., Teixeira, G.L., Gonçalves, A.N. ve de Almeida, M. 2022. Optimal cytokinin/auxin balance for indirect shoot organogenesis of Eucalyptus cloeziana and production of ex vitro rooted micro-cuttings. Journal of Forestry Research, 33 (5): 1573-1584.
  • Ibrahim, M. 2022. Role of endogenous and exogenous hormones in bioactive compounds production in medicinal plants via in vitro culture technique. Plant Hormones-Recent Advances, New Perspectives and Applications.
  • Kambaska, K.B. ve Santilata, S. 2009. Effect of plant growth regulator on micropropagation of ginger (Zingiber officinale Rosc.) cv-Suprava and Suruchi. Journal of Agricultural Technology, 5(2): 271-280.
  • Kumari, M., Kumar, M. ve Solankey, S.S. 2020. Zingiber officinale Roscoe: ginger. Medicinal, Aromatic and Stimulant Plants, 605-621.
  • Kunene, E.N., Oseni, T.O., Wahome, P.K., Masarirambi, M.T., McCubbin, M.J., Dlamini, P.S. ve Zwane, M.G. 2018. Effects of plant growth regulators and explant type on the in vitro micro-propagation of wild ginger (Siphonochilus aethiopicus (Schweif.) BL Burt.). Advancement in Medicinal Plant Research, 6: 54-63.
  • Miri, S.M. (2020). Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open agriculture, 5(1): 75-84.
  • Mosie, T. 2019. A Review on Influence of Growth Regulator and Culture Condition on Micro-Propagation of Ginger (Zingiber officinale). International Journal of Food Science and Agriculture, 3 (3): 200-204.
  • Murashige, T. ve Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15 (3): 473-497.
  • Nazir, U., Gul, Z., Shah, G.M. ve Khan, N.I. 2022. Interaction effect of auxin and cytokinin on in vitro shoot regeneration and rooting of endangered medicinal plant Valeriana jatamansi Jones through tissue culture. American Journal of Plant Sciences, 13 (2): 223-240.
  • Özcan, E., Atar, H.H., Ali, S.A. ve Aasim, M. 2023. Artificial neural network and decision tree–based models for prediction and validation of in vitro organogenesis of two hydrophytes—Hemianthus callitrichoides and Riccia fluitans. In Vitro Cellular & Developmental Biology-Plant, 59 (5): 547-562.
  • Özcan, E., Ali, S. A., Aasim, M. ve Atar, H. H. 2025. Precision in vitro propagation by integrating response surface methodology and machine learning for Glossostigma elatinoides (Benth) Hook. F. In Vitro Cellular & Developmental Biology-Plant, 1-15.
  • Shaaban, A., Elnfishy, N., Aween, Z., Abdelah, E. ve Abughni, E. 2023. In vitro Micropropagation of Ginger plant (Zingiber officinale). Scientific Journal for Faculty of Science-Sirte University, 3 (2): 154-161.
  • Shaik, J. ve Rajani Kanth G. 2018. In vitro propagation of Zingiber officinale through rhizome and effect of plant growth regulators. Journal of Pharmacognosy and Phytochemistry, 7 (5): 2012-2014.
  • Tasheva, K. ve Kosturkova, G. 2013. Role of biotechnology for protection of endangered medicinal plants. Environmental biotechnology-New approaches and prospective applications, 235-238.
  • Trolinder, N. L. 2020. Use of plant bioregulators in tissue culture. Alınmıştır In Plant Biochemical Regulators, (ed) Gausman, H.W., CRC Press, 99-112.
  • Udounang, P.I., Ekwere, O.J. ve Akata, O.R. 2022. Effect of Different Tillage Practices on the Growth and Yield of Ginger (Zingiber officinale Rosc.) in Obio Akpa - Akwa Ibom State, South Eastern Nigeria. AKSU Journal of Agriculture and Food Science 6 (1): 36-45.
  • Zahid, N.A., Jaafar, H.Z. ve Hakiman, M. 2021. Micropropagation of ginger (Zingiber officinale Roscoe)‘Bentong’and evaluation of its secondary metabolites and antioxidant activities compared with the conventionally propagated plant. Plants, 10 (4): 630 (2-17)
  • Zuraida A.R., Mohd Shukri, M.A., Erny Sabrina M.N., Ayu Nazreena O., Che Radziah C.Z., Pavallekoodi G. ve Sreeramanan S. 2016. Micropropagation of ginger (Zingiber officinale var. rubrum) using buds from microshoots. Pak. J. Bot, 48 (3), 1153-1158.

Zencefil (Zingiber officinale rosc.)’in Hızlı ve Etkili In Vitro Mikroüretimi

Year 2025, Volume: 12 Issue: 2, 297 - 303, 16.04.2025
https://doi.org/10.30910/turkjans.1578266

Abstract

Zingiberaceae familyasından olan Zencefil (Zingiber officinale Rosc.) tıp, gıda ve kozmetik gibi birçok kullanım alanına sahip olması nedeniyle ticari açıdan oldukça önemli bir tıbbi ve aromatik bitkidir. Çiçeklenme ile tohum tutumunun zayıf olması nedeniyle tohumdan çoğaltılması oldukça zor olan zencefilin rizom yoluyla uzun süreli vejetatif çoğaltımı da rizomların zayıflamasına neden olmaktadır. Bundan dolayı zencefil tarımının geliştirilmesi için kısa sürede ve çok sayıda hastalıksız bitki üretiminin yapılması gerekmektedir. Bu çalışmada da Murashige and Skoog (MS) besin ortamına ilave edilen 6-benzil amino pürin (BAP) ve -naftalen asetik asit (NAA)’in 20 farklı kombinasyonunun zencefilin in vitro mikroüretimine etkisi araştırılmıştır. En yüksek oranda sürgün (9.25 adet/eksplant) ve kök oluşumu (11.41 adet/eksplant) besin ortamına 0.5 mg/L BAP ve 0.25 mg/L NAA ilave edildiğinde elde edilmiştir. Öte yandan, besin ortamlarına ilave edilen BAP ve NAA oranları bu miktarların üzerinde kullanıldığında sürgün ve kök oluşumunda çok önemli düşüşler olmuştur. Aynı şekilde BAP ile birlikte 0.1 mg/L NAA kullanımı da sürgün ve kök oluşumunu düşürmüştür. Bu sonuçlar, zencefil bitkisinde iyi bir oksin-sitokinin dengesinin kurulmasının in vitro mikroüretim için son derece önemli olduğunu göstermiştir. Elde edilen in vitro bitkicikler de %100 oranında dış şartlara adaptasyon sağlamıştır.

References

  • Aleem, M., Khan, M.I., Shakshaz, F.A., Akbari, N. ve Anwar, D. 2020. Botany, phytochemistry and antimicrobial activity of ginger (Zingiber officinale): A review. Int J Herb Med, 8(6): 36-49.
  • Asghar, S., Ghori, N., Hyat, F., Li, Y. ve Chen, C. 2023. Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion. Plant Growth Regulation, 99 (3): 413-428.
  • Bhattacharya, M. ve Sen, A. 2006. Rapid in vitro multiplication of disease-free Zingiber officinale Rosc. Indian journal of plant physiology, 11(4): 379-384.
  • Chakraborty, A., Santra, I., Haque, S. M. ve Ghosh, B. 2023. In vitro conservation of commercial and threatened members of Zingiberaceae: an Indian scenario. Biodiversity and Conservation, 32 (7): 2155-2195.
  • Çakmak, D., Karaoğlu, C., Aasim, M., Sancak, C. ve Özcan, S. 2016. Advancement in protocol for in vitro seed germination, regeneration, bulblet maturation, and acclimatization of Fritillaria persica. Turkish Journal of Biology, 40 (4): 878-888.
  • Das, A., Kesari, V. ve Rangan, L. 2010. Plant regeneration in Curcuma species and assessment of genetic stability of regenerated plants. Biologia Plantarum, 54: 423-429.
  • de Oliveira, L.S., Brondani, G.E., Molinari, L.V., Dias, R.Z., Teixeira, G.L., Gonçalves, A.N. ve de Almeida, M. 2022. Optimal cytokinin/auxin balance for indirect shoot organogenesis of Eucalyptus cloeziana and production of ex vitro rooted micro-cuttings. Journal of Forestry Research, 33 (5): 1573-1584.
  • Ibrahim, M. 2022. Role of endogenous and exogenous hormones in bioactive compounds production in medicinal plants via in vitro culture technique. Plant Hormones-Recent Advances, New Perspectives and Applications.
  • Kambaska, K.B. ve Santilata, S. 2009. Effect of plant growth regulator on micropropagation of ginger (Zingiber officinale Rosc.) cv-Suprava and Suruchi. Journal of Agricultural Technology, 5(2): 271-280.
  • Kumari, M., Kumar, M. ve Solankey, S.S. 2020. Zingiber officinale Roscoe: ginger. Medicinal, Aromatic and Stimulant Plants, 605-621.
  • Kunene, E.N., Oseni, T.O., Wahome, P.K., Masarirambi, M.T., McCubbin, M.J., Dlamini, P.S. ve Zwane, M.G. 2018. Effects of plant growth regulators and explant type on the in vitro micro-propagation of wild ginger (Siphonochilus aethiopicus (Schweif.) BL Burt.). Advancement in Medicinal Plant Research, 6: 54-63.
  • Miri, S.M. (2020). Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open agriculture, 5(1): 75-84.
  • Mosie, T. 2019. A Review on Influence of Growth Regulator and Culture Condition on Micro-Propagation of Ginger (Zingiber officinale). International Journal of Food Science and Agriculture, 3 (3): 200-204.
  • Murashige, T. ve Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15 (3): 473-497.
  • Nazir, U., Gul, Z., Shah, G.M. ve Khan, N.I. 2022. Interaction effect of auxin and cytokinin on in vitro shoot regeneration and rooting of endangered medicinal plant Valeriana jatamansi Jones through tissue culture. American Journal of Plant Sciences, 13 (2): 223-240.
  • Özcan, E., Atar, H.H., Ali, S.A. ve Aasim, M. 2023. Artificial neural network and decision tree–based models for prediction and validation of in vitro organogenesis of two hydrophytes—Hemianthus callitrichoides and Riccia fluitans. In Vitro Cellular & Developmental Biology-Plant, 59 (5): 547-562.
  • Özcan, E., Ali, S. A., Aasim, M. ve Atar, H. H. 2025. Precision in vitro propagation by integrating response surface methodology and machine learning for Glossostigma elatinoides (Benth) Hook. F. In Vitro Cellular & Developmental Biology-Plant, 1-15.
  • Shaaban, A., Elnfishy, N., Aween, Z., Abdelah, E. ve Abughni, E. 2023. In vitro Micropropagation of Ginger plant (Zingiber officinale). Scientific Journal for Faculty of Science-Sirte University, 3 (2): 154-161.
  • Shaik, J. ve Rajani Kanth G. 2018. In vitro propagation of Zingiber officinale through rhizome and effect of plant growth regulators. Journal of Pharmacognosy and Phytochemistry, 7 (5): 2012-2014.
  • Tasheva, K. ve Kosturkova, G. 2013. Role of biotechnology for protection of endangered medicinal plants. Environmental biotechnology-New approaches and prospective applications, 235-238.
  • Trolinder, N. L. 2020. Use of plant bioregulators in tissue culture. Alınmıştır In Plant Biochemical Regulators, (ed) Gausman, H.W., CRC Press, 99-112.
  • Udounang, P.I., Ekwere, O.J. ve Akata, O.R. 2022. Effect of Different Tillage Practices on the Growth and Yield of Ginger (Zingiber officinale Rosc.) in Obio Akpa - Akwa Ibom State, South Eastern Nigeria. AKSU Journal of Agriculture and Food Science 6 (1): 36-45.
  • Zahid, N.A., Jaafar, H.Z. ve Hakiman, M. 2021. Micropropagation of ginger (Zingiber officinale Roscoe)‘Bentong’and evaluation of its secondary metabolites and antioxidant activities compared with the conventionally propagated plant. Plants, 10 (4): 630 (2-17)
  • Zuraida A.R., Mohd Shukri, M.A., Erny Sabrina M.N., Ayu Nazreena O., Che Radziah C.Z., Pavallekoodi G. ve Sreeramanan S. 2016. Micropropagation of ginger (Zingiber officinale var. rubrum) using buds from microshoots. Pak. J. Bot, 48 (3), 1153-1158.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Plant Biotechnology in Agriculture
Journal Section Research Article
Authors

Sebahattin Özcan 0000-0001-5127-1482

Müge Arkadaş 0000-0002-7375-6058

Publication Date April 16, 2025
Submission Date November 3, 2024
Acceptance Date January 22, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Özcan, S., & Arkadaş, M. (2025). Zencefil (Zingiber officinale rosc.)’in Hızlı ve Etkili In Vitro Mikroüretimi. Turkish Journal of Agricultural and Natural Sciences, 12(2), 297-303. https://doi.org/10.30910/turkjans.1578266