Research Article
BibTex RIS Cite

Determination of the Effect of Water Stress on Plant Characteristics of Cotton Seedlings Grown in Hydroponics

Year 2025, Volume: 12 Issue: 2, 119 - 131, 30.06.2025
https://doi.org/10.19159/tutad.1647131

Abstract

The aim of this study was to determine the effects of artificially induced water stress on root and green development and chlorophyll content of cotton plants grown in hydroponics. The experiment was carried out with 10 different cotton varieties in hydroponic environment containing 2 different water stresses (control 0% and 1.6%) created with polyethylene glycol (PEG) 6000 according to a randomized plot design with two factors and 4 replications. Plants were grown in a plant growth chamber under 16/8-hour photoperiod, 30/22 oC (day/night) temperature and 50±2% humidity conditions and observations and measurements were taken on the plants at the end of 21 days. In the research, it was determined that water stress negatively affected root length, stem length, root/stem ratio, root weight, stem weight, root dry weight, stem dry weight, root surface area and leaf area, while stress conditions only increased the chlorophyll content value in the plant. Among the varieties, SJU-86 and Edessa varieties were determined to be prominent in terms of the examined characteristics, while Solmaz variety showed high value in terms of chlorophyll content. With this research, it was concluded that SJU-86 and Edessa varieties showed superior performance in terms of water stress conditions and were more tolerant than other varieties.

References

  • Agee, E., He, L., Bisht, G., Couvreur, V., Shahbaz, P., Meunier, F., Ivanov, V., 2021. Root lateral interactions drive water uptake patterns under water limitation. Advances in Water Resources, 151: 103896.
  • Aime, R., Rhodes, G., Jones, M., Campbell, B.T., Narayanan, S., 2021. Evaluation of root traits and water use efficiency of different cotton genotypes in the presence or absence of a soil-hardpan. The Crop Journal, 9(4): 945-953.
  • Ali, M.A., Hassan, M., Mehmood, M., Kazmi, D.H., Chishtie, F.A., Shahid, I., 2022. The potential impact of climate extremes on cotton and wheat crops in Southern Punjab, Pakistan. Sustainability, 14(3): 1609.
  • Anonymous, 2023. World Cotton Day 2023 Final Report. United Nations Industrial Development Organization, (https://www.unido.org/sites/default/ files/unido-publications/2024-03/World%20Cotton %20Day%202023_Final%20Report_EN.pdf), (Erişim Tarihi: 14.02.2025).
  • Anonymous, 2024. Materials Market Report, Textile Exchange, September, 2024. (https://textileex change.org/knowledge-center/reports/materials-mar ket-report-2024/), (Erişim Tarihi: 30.05.2025).
  • Arif, T., Chaudhary, M.T., Majeed, S., Rana, I.A., Ali, Z., Elansary, H.O., Moussa, I.M., Sun, S., Azhar, M.T., 2023. Exploitation of various physio-morphological and biochemical traits for the identification of drought tolerant genotypes in cotton. BMC Plant Biology, 23(1): 508.
  • Asif, M., Kamran, A., 2011. Plant breeding for water-limited environments. Crop Science, 51(6): 2911-2912.
  • Asif, M., Khan, A.A., Cheema, H.M.N., Khan, S.H., Iqbal, Z., 2022. Genetic variability in diverse cotton germplasm for drought tolerance. Pakistan Journal of Agricultural Science, 59(1): 63-74.
  • Atasoy, D., 2013. Pamukta (Gossypium spp.) kuraklık ve sıcaklık stresinin bazı agronomik, fizyolojik ve biyokimyasal özelliklere etkisinin incelenmesi. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Başal, H., Ünay, A., 2006. Water stress in cotton (Gossypium hirsutum L.). Journal of Agriculture Faculty of Ege University, 43(3): 101-111.
  • Begg, J.E., Turner, N.C., 1976. Crop water deficits. Advances in Agronomy, 28: 161-217.
  • Borrell, A.K., Mullet, J.E., George-Jaeggli, B., Oosterom, E.J., Hammer, G.L., Klein, P.E., Jordan, D.R., 2014. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 65(21): 6251-6263.
  • Chloupek, O., Dostal, V., Streda, T., Psota, V., Dvorackova, O., 2010. Drought tolerance of barley varieties in relation to their root system size. Plant Breeding, 129(6): 630-636.
  • Comas, L.H., Becker, S.R., Cruz, V.V., Byrne, P.F., Dierig, D.A., 2013. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4: 442.
  • Elçi, E., Hançer, T., 2016. Pamuk (Gossypium hirsutum L.) genotiplerinin kısıntılı sulama koşullarında çimlenme analizleri ve moleküler karakterizasyonu. Türkiye Tarımsal Araştırmalar Dergisi, 3(2): 122-129.
  • Epstein, E., 2004. Plant biologists need to get back to their roots. Nature, 430: 829.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185-212.
  • Gholami, R., Hoveizeh, N.F., Zahedi, S.M., Gholami, H., Carillo, P., 2022. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC Plant Biology, 22(1): 1-18.
  • Gondal, M.R., Saleem, M.Y., Rizvi, S.A., Riaz, A., Naseem, W., Muhammad, G., Hayat, S., Iqbal, M., 2021. Assessment of drought tolerance in various cotton genotypes under simulated osmotic settings. Asian Journal of Agriculture and Biology, 2: 202008437.
  • Guo, C., Bao, X., Sun, H., Zhu, L., Zhang, Y., Zhang, K., Bai, Z., Zhu, J., Liu, X., Li, A., Dong, H., Zhan, L, Liu, L., Li, C., 2024. Optimizing root system architecture to improve cotton drought tolerance and minimize yield loss during mild drought stress. Field Crops Research, 308: 109305. Guo, X., Wang, Y., Hou, Y., Zhou, Z., Sun, R., Qin, T., Wang, K., Liu, F., Wang, Y., Huang, Z., Xu, Y., Cai, X., 2022. Genome-wide dissection of the genetic basis for drought tolerance in Gossypium hirsutum L. Races. Frontiers in Plant Science, 13: 876095. Gusain, S., Kumari, K., Joshi, R., 2024. Physiological, hormonal and molecular dynamics of root system architectural response to drought stress signaling in crops. Rhizosphere, 31: 100922.
  • Harris, D., Tripathi, R.S., Joshi, A., 2002. On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: S. Pandey, M. Mortimer, L. Wade, T.P. Tuong, K. Lopes and B. Hardy (Eds.), Direct Seeding: Research Strategies and Opportunities, International Research Institute, Manila, Philippines, pp. 231-240.
  • Herder, D., Isterdael, G.V., Beeckman, T., Smet, I., 2010. The roots of a new green revolution. Trends in Plant Science, 15(11): 600-607.
  • Hussain, S., Ahmad, A., Wajid, A., Khaliq, T., Hussain, N., Mubeen, M., Farid, H.U., Imran, M., Hammad, H.M., Awais, M., Ali, A., Aslam, M., Amin, A., Akram, R., Amanet, K., Nasim, W., 2020. Cotton production and uses. In: S. Ahmad and M. Hasanuzzaman (Eds.), Irrigation Scheduling for Cotton Cultivation, Springer, Singapur, 5: 59-80.
  • Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., Saqib, M., Rafiq, M., 2019. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4): 389-402.
  • Jaafar, K.S., Mohammed, M.A., Mohammed, S.M., 2021. Screening for drought tolerance in cotton (Gossypium hirsutum L.) using in vitro technique. Journal of Dryland Agriculture, 7(4): 52-59.
  • Kalra, A., Goel, S., Elias, A.A., 2023. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. The Plant Genome, 17(1): 1-31.
  • Karademir, E., Karademir, Ç., Gencer, O., 2012. Effect of heat stress on leaf area in cotton (Gossypium hirsutum L.). 11th Meeting of Inter-Regional Cooperative Research Network on Cotton for the Mediterranean and Middle East Regions, 5-7 November, Antalya, pp. 141-149.
  • Kaya, M.D., Okçu, G., Atak, M., Çıkılı, Y., Kolsarıcı, Ö., 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24(4): 291-295.
  • Khan, A., Pan, X., Najeeb, U., Tan, D.K.Y., Fahad, S., Zahoor, R., Luo, H., 2018. Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51: 47.
  • Kou, X., Han, W., Kang, J., 2022. Responses of root system architecture to water stress at multiple levels: A meta analysis of trials under controlled conditions. Frontiers in Plant Science, 13: 1085409.
  • Loka, D.M., Derrick, M., Oosterhuis, D.M., Ritchie, G.L., 2011. Water‐deficit stress in cotton. In: D.M. Oosterhuis (Ed.), Stress Physiology in Cotton, Number Seven The Cotton Foundation Book Series, National Cotton Council of America, pp. 37-72.
  • Luo, H.H., Zhang, Y.L., Zhang, W.F., 2016. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54: 65-73.
  • Luo, Y., Wang, F., Huang, Y., Zhou, M., Gao, J., Yan, T., Sheng, H., An, L., 2019. Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Frontiers in Microbiology, 10: 1221.
  • Lynch, J.P., 2007. Roots of the second green revolution. Australian Journal of Botany, 55: 493-512.
  • Lynch, J.P., 2013. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2): 347-357.
  • Lynch, J.P., 2019. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 223: 548-564.
  • Lynch, J.P., Brown, K.M., 2001. Topsoil foraging-an architectural adaptation of plants to low phosphorus availability. Plant Soil, 237: 225-237.
  • Lynch, J.P., Brown, K.M., 2012. New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society Biological Sciences, 367: 1598-1604.
  • Mahmood, T., Iqbal, M.S., Li, H., Nazir, M.F., Khalid, S., Sarfraz, Z., Hu, D., Baojun, C., Geng, X., Tajo, S.M., Dev, W., Iqbal, Z., Zhao, P., Hu, P., Du, X., 2022. Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology, 22: 331.
  • Mahmood, T., Wang, X., Ahmar, S., Abdullah, M., Iqbal, M.S., Rana, R.M, Yasir, M., Khalid, S., Javed, T., Mora-Poblete, F., Chen, J., Shah, M.K.N., Du, X., 2021. Genetic potential and inheritance pattern of phenological growth and drought tolerance in cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 12: 705392.
  • Monteoliva, M.I., Guzzo, M.C., Posada, G.A., 2021. Breeding for drought tolerance by monitoring chlorophyll content. Gene Technology, 10: 165.
  • Naseer, M.A., Nengyan, Z., Ejaz, I., Hussain, S., Asghar, M.A., Farooq, M., Xiaolong, R., 2023. Physiological mechanisms of grain yield loss under combined drought and shading stress at the post-silking stage in maize. Journal of Soil Science and Plant Nutrition, 23(1): 1125-1137.
  • Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., Zhao, X., 2018. The compensation effects of physiology and yield in cotton after drought stress, Journal of Plant Physiology, 224-225: 30-48.
  • Ödemiş, B., Candemir, D., 2023. The effects of water stress on cotton leaf area and leaf morphology. Kahramanmaras Sutcu Imam University Journal of Agriculture and Nature, 26(1): 140-149.
  • Pace, P.F., Cralle, H.T., El-Halawany, S.H.M., Cothren, J.T., Sensemen, S.A., 1999. Drought-induced changes in shoot and root growth of young cotton plants. The Journal of Cotton Science, 3(4): 183-187.
  • Pawar, K.N., Akbar, S.M., Rao, H.C., 2021. Assessment of genotypic variability for morpho physiological, biochemical parameters, yield and yield attributing characters under drought stress in cotton. International Journal of Current Microbiology and Applied Science, 10(02): 2347-2356.
  • Pawar, K.N., Veena, V.B., 2020. Evaluation of cotton genotypes for drought tolerance using PEG-6000 water stress by slanting glass plate technique. International Journal of Current Microbiology and Applied Sciences, 9(11): 3203-3212.
  • Pettigrew, W.T., 2004. Physiological consequences of moisture deficit stress in cotton. Crop Science, 44(4): 1265-1272.
  • Ramzan, T., Shahbaz, M., Maqsood, M.F., Zulfiqar, U., Saman, R.U., Lili, N., Irshad, M., Maqsood, S., Haider, A., Shahzad, B., Gaafar, A.Z., Haider, F.U., 2023. Phenylalanine supply alleviates the drought stress in mustard (Brassica campestris) by modulating plant growth, photosynthesis, and antioxidant defense system. Plant Physiology and Biochemistry, 201: 107828.
  • Rehman, T., Tabassum, B., Yousaf, S., Sarwar, G., Qaisar, U., 2022. Consequences of drought stress encountered during seedling stage on physiology and yield of cultivated cotton. Frontiers in Plant Science, 13: 906444.
  • Riaz, M., Farooq, J., Sakhawat, G., Mahmood, A., Sadiq, M.A., Yaseen, M., 2013. Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genetics and Molecular Research, 12(1): 552-561.
  • Salisbury, F.B., Ross, C.W., 1992. Plant Physiology. 4rd Edition, Wadsworth Publishing Company, California.
  • Samantha, S., Seth, C.S., Roychoudhury, A., 2024. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. Plant Physiology and Biochemistry, 206: 108259.
  • Středa, T., Dostál, V., Horáková, V., Chloupek, O., 2012. Effective use of water by wheat varieties with different root system sizes in rain-fed experiments in Central Europe. Agricultural Water Management, 104: 203-209.
  • Sugden, A., Stone, R., Ash, C., 2004. Ecology in the underworld. Science, 304(5677): 1613-1613.
  • Taiz, L., Zeiger, E., 2006. Plant Physiology. 4th Edition, Sinauer Associates Inc. Publishers, Massachusetts. Trumbore, S.E., Gaudinski, J.B., 2003. The secret lives of roots. Science, 302(5649): 1344-1345.
  • Ullah, A., Sun, H., Yang, X., Zhang, X., 2017. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnology Journal, 15(3): 271-284.
  • Veesar, N.F., Jatoi, W.A., Memon, S., Gandahi, N., Aisha, G., Solangi, A.H., 2020. Evaluation of cotton genotypes for drought tolerance and their correlation study at seedling stage. Biomedical Journal Scientific & Technical Research, 29(1): 22090-22099.
  • Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., Zhou, Z., 2016. Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3): 1265-1276.
  • Wery, J., Silim, S.N., Knights, E.J., Malhotra, R.S., Cousin, R., 1994. Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica, 73: 73-83.
  • Yar, M.M., Iqbal, M., Mehmood, A., Naeem, M., 2020. Estimation of heritability and genetic advance to develop drought Tolerance in cotton (Gossypium hirsutum L.). Applied Ecology and Environmental Research, 18(3): 4309-4323.
  • Yurtsever, N., 1984. Deneysel İstatistik Metotları. Tarım Orman ve Köyişleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Genel Yayın No: 121, Teknik Yayın No: 56, Ankara.
  • Zafar, S., Afzal, H., Ijaz, A., Mahmood, A., Ayub, A., Nayab, A., Hussain, S., UL-Hussan, M., Sabir, M.A., Zulfiqar, U., Zulfiqar, F., Moosa, A., 2023. Cotton and drought stress: An updated overview for improving stress tolerance. South African Journal of Botany, 161: 258-268.
  • Zahra, N., Hafees, M.B., Kausar, A., Zeidi, M.A., Asekova, A., Siddique, K.H.M., Farooq, M., 2023. Plant photosynthetic responses under drought stress: Effects and management. Journal of Agronomy and Crop Science, 209(5): 651-672.
  • Zhou, G., Zhou, X., Nie, Y., Bai, S.H., Zhou, L., Shao, J., Cheng, W., Wang, J., Hu, F., Fu, Y., 2018. Drought induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environment, 41(11): 2589-2599.
  • Zonta, J.H., Brandao, Z.N., Rodrigues, J.I.S., Sofiatti, V., 2017. Cotton response to water deficits at different growth stages. Revista Caatinga, 30(4): 980-990.

Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi

Year 2025, Volume: 12 Issue: 2, 119 - 131, 30.06.2025
https://doi.org/10.19159/tutad.1647131

Abstract

Bu çalışmanın amacı, yapay olarak oluşturulan su stresinin hidroponik ortamda yetiştirilen pamuk bitkisinin kök ve yeşil aksam gelişimi ile klorofil içeriğine etkilerini belirlemektir. Deneme polietilen glikol (PEG) 6000 ile oluşturulmuş 2 farklı su stresi (kontrol % 0 ve % 1.6) içeren hidroponik ortamda 10 farklı pamuk çeşidi ile tesadüf parselleri deneme desenine göre iki faktörlü ve 4 tekrarlamalı olarak yürütülmüştür. Bitkiler bitki büyütme kabininde 16/8 saat fotoperiyot, 30/22 oC (gündüz/gece) sıcaklık ve % 50±2 nem koşullarında yetiştirilmiş ve 21 gün sonunda bitkilerde gözlem ve ölçümler alınarak tamamlanmıştır. Araştırmada su stresinin bitkide kök uzunluğu, gövde uzunluğu, kök/gövde oranı, kök yaş ağırlığı, gövde yaş ağırlığı, kök kuru ağırlığı, gövde kuru ağırlığı, kök yüzey alanı ve yaprak alanını olumsuz yönde etkilediği, stres koşullarının bitkide sadece klorofil içeriği değerini arttırdığı tespit edilmiştir. Çeşitler arasında SJU-86 ve Edessa çeşitlerinin incelenen özellikler bakımından öne çıktığı, klorofil içeriği bakımından ise Solmaz çeşidinin yüksek değer gösterdiği belirlenmiştir. Bu araştırma ile SJU-86 ve Edessa çeşitlerinin su stresi koşullarında üstün performans gösterdikleri ve diğer çeşitlere göre daha tolerant oldukları sonucuna varılmıştır.

References

  • Agee, E., He, L., Bisht, G., Couvreur, V., Shahbaz, P., Meunier, F., Ivanov, V., 2021. Root lateral interactions drive water uptake patterns under water limitation. Advances in Water Resources, 151: 103896.
  • Aime, R., Rhodes, G., Jones, M., Campbell, B.T., Narayanan, S., 2021. Evaluation of root traits and water use efficiency of different cotton genotypes in the presence or absence of a soil-hardpan. The Crop Journal, 9(4): 945-953.
  • Ali, M.A., Hassan, M., Mehmood, M., Kazmi, D.H., Chishtie, F.A., Shahid, I., 2022. The potential impact of climate extremes on cotton and wheat crops in Southern Punjab, Pakistan. Sustainability, 14(3): 1609.
  • Anonymous, 2023. World Cotton Day 2023 Final Report. United Nations Industrial Development Organization, (https://www.unido.org/sites/default/ files/unido-publications/2024-03/World%20Cotton %20Day%202023_Final%20Report_EN.pdf), (Erişim Tarihi: 14.02.2025).
  • Anonymous, 2024. Materials Market Report, Textile Exchange, September, 2024. (https://textileex change.org/knowledge-center/reports/materials-mar ket-report-2024/), (Erişim Tarihi: 30.05.2025).
  • Arif, T., Chaudhary, M.T., Majeed, S., Rana, I.A., Ali, Z., Elansary, H.O., Moussa, I.M., Sun, S., Azhar, M.T., 2023. Exploitation of various physio-morphological and biochemical traits for the identification of drought tolerant genotypes in cotton. BMC Plant Biology, 23(1): 508.
  • Asif, M., Kamran, A., 2011. Plant breeding for water-limited environments. Crop Science, 51(6): 2911-2912.
  • Asif, M., Khan, A.A., Cheema, H.M.N., Khan, S.H., Iqbal, Z., 2022. Genetic variability in diverse cotton germplasm for drought tolerance. Pakistan Journal of Agricultural Science, 59(1): 63-74.
  • Atasoy, D., 2013. Pamukta (Gossypium spp.) kuraklık ve sıcaklık stresinin bazı agronomik, fizyolojik ve biyokimyasal özelliklere etkisinin incelenmesi. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Başal, H., Ünay, A., 2006. Water stress in cotton (Gossypium hirsutum L.). Journal of Agriculture Faculty of Ege University, 43(3): 101-111.
  • Begg, J.E., Turner, N.C., 1976. Crop water deficits. Advances in Agronomy, 28: 161-217.
  • Borrell, A.K., Mullet, J.E., George-Jaeggli, B., Oosterom, E.J., Hammer, G.L., Klein, P.E., Jordan, D.R., 2014. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 65(21): 6251-6263.
  • Chloupek, O., Dostal, V., Streda, T., Psota, V., Dvorackova, O., 2010. Drought tolerance of barley varieties in relation to their root system size. Plant Breeding, 129(6): 630-636.
  • Comas, L.H., Becker, S.R., Cruz, V.V., Byrne, P.F., Dierig, D.A., 2013. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4: 442.
  • Elçi, E., Hançer, T., 2016. Pamuk (Gossypium hirsutum L.) genotiplerinin kısıntılı sulama koşullarında çimlenme analizleri ve moleküler karakterizasyonu. Türkiye Tarımsal Araştırmalar Dergisi, 3(2): 122-129.
  • Epstein, E., 2004. Plant biologists need to get back to their roots. Nature, 430: 829.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185-212.
  • Gholami, R., Hoveizeh, N.F., Zahedi, S.M., Gholami, H., Carillo, P., 2022. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC Plant Biology, 22(1): 1-18.
  • Gondal, M.R., Saleem, M.Y., Rizvi, S.A., Riaz, A., Naseem, W., Muhammad, G., Hayat, S., Iqbal, M., 2021. Assessment of drought tolerance in various cotton genotypes under simulated osmotic settings. Asian Journal of Agriculture and Biology, 2: 202008437.
  • Guo, C., Bao, X., Sun, H., Zhu, L., Zhang, Y., Zhang, K., Bai, Z., Zhu, J., Liu, X., Li, A., Dong, H., Zhan, L, Liu, L., Li, C., 2024. Optimizing root system architecture to improve cotton drought tolerance and minimize yield loss during mild drought stress. Field Crops Research, 308: 109305. Guo, X., Wang, Y., Hou, Y., Zhou, Z., Sun, R., Qin, T., Wang, K., Liu, F., Wang, Y., Huang, Z., Xu, Y., Cai, X., 2022. Genome-wide dissection of the genetic basis for drought tolerance in Gossypium hirsutum L. Races. Frontiers in Plant Science, 13: 876095. Gusain, S., Kumari, K., Joshi, R., 2024. Physiological, hormonal and molecular dynamics of root system architectural response to drought stress signaling in crops. Rhizosphere, 31: 100922.
  • Harris, D., Tripathi, R.S., Joshi, A., 2002. On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: S. Pandey, M. Mortimer, L. Wade, T.P. Tuong, K. Lopes and B. Hardy (Eds.), Direct Seeding: Research Strategies and Opportunities, International Research Institute, Manila, Philippines, pp. 231-240.
  • Herder, D., Isterdael, G.V., Beeckman, T., Smet, I., 2010. The roots of a new green revolution. Trends in Plant Science, 15(11): 600-607.
  • Hussain, S., Ahmad, A., Wajid, A., Khaliq, T., Hussain, N., Mubeen, M., Farid, H.U., Imran, M., Hammad, H.M., Awais, M., Ali, A., Aslam, M., Amin, A., Akram, R., Amanet, K., Nasim, W., 2020. Cotton production and uses. In: S. Ahmad and M. Hasanuzzaman (Eds.), Irrigation Scheduling for Cotton Cultivation, Springer, Singapur, 5: 59-80.
  • Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., Saqib, M., Rafiq, M., 2019. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4): 389-402.
  • Jaafar, K.S., Mohammed, M.A., Mohammed, S.M., 2021. Screening for drought tolerance in cotton (Gossypium hirsutum L.) using in vitro technique. Journal of Dryland Agriculture, 7(4): 52-59.
  • Kalra, A., Goel, S., Elias, A.A., 2023. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. The Plant Genome, 17(1): 1-31.
  • Karademir, E., Karademir, Ç., Gencer, O., 2012. Effect of heat stress on leaf area in cotton (Gossypium hirsutum L.). 11th Meeting of Inter-Regional Cooperative Research Network on Cotton for the Mediterranean and Middle East Regions, 5-7 November, Antalya, pp. 141-149.
  • Kaya, M.D., Okçu, G., Atak, M., Çıkılı, Y., Kolsarıcı, Ö., 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24(4): 291-295.
  • Khan, A., Pan, X., Najeeb, U., Tan, D.K.Y., Fahad, S., Zahoor, R., Luo, H., 2018. Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51: 47.
  • Kou, X., Han, W., Kang, J., 2022. Responses of root system architecture to water stress at multiple levels: A meta analysis of trials under controlled conditions. Frontiers in Plant Science, 13: 1085409.
  • Loka, D.M., Derrick, M., Oosterhuis, D.M., Ritchie, G.L., 2011. Water‐deficit stress in cotton. In: D.M. Oosterhuis (Ed.), Stress Physiology in Cotton, Number Seven The Cotton Foundation Book Series, National Cotton Council of America, pp. 37-72.
  • Luo, H.H., Zhang, Y.L., Zhang, W.F., 2016. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54: 65-73.
  • Luo, Y., Wang, F., Huang, Y., Zhou, M., Gao, J., Yan, T., Sheng, H., An, L., 2019. Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Frontiers in Microbiology, 10: 1221.
  • Lynch, J.P., 2007. Roots of the second green revolution. Australian Journal of Botany, 55: 493-512.
  • Lynch, J.P., 2013. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2): 347-357.
  • Lynch, J.P., 2019. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 223: 548-564.
  • Lynch, J.P., Brown, K.M., 2001. Topsoil foraging-an architectural adaptation of plants to low phosphorus availability. Plant Soil, 237: 225-237.
  • Lynch, J.P., Brown, K.M., 2012. New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society Biological Sciences, 367: 1598-1604.
  • Mahmood, T., Iqbal, M.S., Li, H., Nazir, M.F., Khalid, S., Sarfraz, Z., Hu, D., Baojun, C., Geng, X., Tajo, S.M., Dev, W., Iqbal, Z., Zhao, P., Hu, P., Du, X., 2022. Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology, 22: 331.
  • Mahmood, T., Wang, X., Ahmar, S., Abdullah, M., Iqbal, M.S., Rana, R.M, Yasir, M., Khalid, S., Javed, T., Mora-Poblete, F., Chen, J., Shah, M.K.N., Du, X., 2021. Genetic potential and inheritance pattern of phenological growth and drought tolerance in cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 12: 705392.
  • Monteoliva, M.I., Guzzo, M.C., Posada, G.A., 2021. Breeding for drought tolerance by monitoring chlorophyll content. Gene Technology, 10: 165.
  • Naseer, M.A., Nengyan, Z., Ejaz, I., Hussain, S., Asghar, M.A., Farooq, M., Xiaolong, R., 2023. Physiological mechanisms of grain yield loss under combined drought and shading stress at the post-silking stage in maize. Journal of Soil Science and Plant Nutrition, 23(1): 1125-1137.
  • Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., Zhao, X., 2018. The compensation effects of physiology and yield in cotton after drought stress, Journal of Plant Physiology, 224-225: 30-48.
  • Ödemiş, B., Candemir, D., 2023. The effects of water stress on cotton leaf area and leaf morphology. Kahramanmaras Sutcu Imam University Journal of Agriculture and Nature, 26(1): 140-149.
  • Pace, P.F., Cralle, H.T., El-Halawany, S.H.M., Cothren, J.T., Sensemen, S.A., 1999. Drought-induced changes in shoot and root growth of young cotton plants. The Journal of Cotton Science, 3(4): 183-187.
  • Pawar, K.N., Akbar, S.M., Rao, H.C., 2021. Assessment of genotypic variability for morpho physiological, biochemical parameters, yield and yield attributing characters under drought stress in cotton. International Journal of Current Microbiology and Applied Science, 10(02): 2347-2356.
  • Pawar, K.N., Veena, V.B., 2020. Evaluation of cotton genotypes for drought tolerance using PEG-6000 water stress by slanting glass plate technique. International Journal of Current Microbiology and Applied Sciences, 9(11): 3203-3212.
  • Pettigrew, W.T., 2004. Physiological consequences of moisture deficit stress in cotton. Crop Science, 44(4): 1265-1272.
  • Ramzan, T., Shahbaz, M., Maqsood, M.F., Zulfiqar, U., Saman, R.U., Lili, N., Irshad, M., Maqsood, S., Haider, A., Shahzad, B., Gaafar, A.Z., Haider, F.U., 2023. Phenylalanine supply alleviates the drought stress in mustard (Brassica campestris) by modulating plant growth, photosynthesis, and antioxidant defense system. Plant Physiology and Biochemistry, 201: 107828.
  • Rehman, T., Tabassum, B., Yousaf, S., Sarwar, G., Qaisar, U., 2022. Consequences of drought stress encountered during seedling stage on physiology and yield of cultivated cotton. Frontiers in Plant Science, 13: 906444.
  • Riaz, M., Farooq, J., Sakhawat, G., Mahmood, A., Sadiq, M.A., Yaseen, M., 2013. Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genetics and Molecular Research, 12(1): 552-561.
  • Salisbury, F.B., Ross, C.W., 1992. Plant Physiology. 4rd Edition, Wadsworth Publishing Company, California.
  • Samantha, S., Seth, C.S., Roychoudhury, A., 2024. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. Plant Physiology and Biochemistry, 206: 108259.
  • Středa, T., Dostál, V., Horáková, V., Chloupek, O., 2012. Effective use of water by wheat varieties with different root system sizes in rain-fed experiments in Central Europe. Agricultural Water Management, 104: 203-209.
  • Sugden, A., Stone, R., Ash, C., 2004. Ecology in the underworld. Science, 304(5677): 1613-1613.
  • Taiz, L., Zeiger, E., 2006. Plant Physiology. 4th Edition, Sinauer Associates Inc. Publishers, Massachusetts. Trumbore, S.E., Gaudinski, J.B., 2003. The secret lives of roots. Science, 302(5649): 1344-1345.
  • Ullah, A., Sun, H., Yang, X., Zhang, X., 2017. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnology Journal, 15(3): 271-284.
  • Veesar, N.F., Jatoi, W.A., Memon, S., Gandahi, N., Aisha, G., Solangi, A.H., 2020. Evaluation of cotton genotypes for drought tolerance and their correlation study at seedling stage. Biomedical Journal Scientific & Technical Research, 29(1): 22090-22099.
  • Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., Zhou, Z., 2016. Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3): 1265-1276.
  • Wery, J., Silim, S.N., Knights, E.J., Malhotra, R.S., Cousin, R., 1994. Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica, 73: 73-83.
  • Yar, M.M., Iqbal, M., Mehmood, A., Naeem, M., 2020. Estimation of heritability and genetic advance to develop drought Tolerance in cotton (Gossypium hirsutum L.). Applied Ecology and Environmental Research, 18(3): 4309-4323.
  • Yurtsever, N., 1984. Deneysel İstatistik Metotları. Tarım Orman ve Köyişleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Genel Yayın No: 121, Teknik Yayın No: 56, Ankara.
  • Zafar, S., Afzal, H., Ijaz, A., Mahmood, A., Ayub, A., Nayab, A., Hussain, S., UL-Hussan, M., Sabir, M.A., Zulfiqar, U., Zulfiqar, F., Moosa, A., 2023. Cotton and drought stress: An updated overview for improving stress tolerance. South African Journal of Botany, 161: 258-268.
  • Zahra, N., Hafees, M.B., Kausar, A., Zeidi, M.A., Asekova, A., Siddique, K.H.M., Farooq, M., 2023. Plant photosynthetic responses under drought stress: Effects and management. Journal of Agronomy and Crop Science, 209(5): 651-672.
  • Zhou, G., Zhou, X., Nie, Y., Bai, S.H., Zhou, L., Shao, J., Cheng, W., Wang, J., Hu, F., Fu, Y., 2018. Drought induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environment, 41(11): 2589-2599.
  • Zonta, J.H., Brandao, Z.N., Rodrigues, J.I.S., Sofiatti, V., 2017. Cotton response to water deficits at different growth stages. Revista Caatinga, 30(4): 980-990.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Industrial Crops
Journal Section Research Article
Authors

Rukiye Kılıç 0000-0003-1515-9287

Çetin Karademir 0000-0002-6370-2427

Emine Karademir 0000-0001-6369-1572

Publication Date June 30, 2025
Submission Date February 26, 2025
Acceptance Date June 24, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Kılıç, R., Karademir, Ç., & Karademir, E. (2025). Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 12(2), 119-131. https://doi.org/10.19159/tutad.1647131
AMA Kılıç R, Karademir Ç, Karademir E. Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi. TÜTAD. June 2025;12(2):119-131. doi:10.19159/tutad.1647131
Chicago Kılıç, Rukiye, Çetin Karademir, and Emine Karademir. “Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi”. Türkiye Tarımsal Araştırmalar Dergisi 12, no. 2 (June 2025): 119-31. https://doi.org/10.19159/tutad.1647131.
EndNote Kılıç R, Karademir Ç, Karademir E (June 1, 2025) Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi 12 2 119–131.
IEEE R. Kılıç, Ç. Karademir, and E. Karademir, “Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi”, TÜTAD, vol. 12, no. 2, pp. 119–131, 2025, doi: 10.19159/tutad.1647131.
ISNAD Kılıç, Rukiye et al. “Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi”. Türkiye Tarımsal Araştırmalar Dergisi 12/2 (June 2025), 119-131. https://doi.org/10.19159/tutad.1647131.
JAMA Kılıç R, Karademir Ç, Karademir E. Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi. TÜTAD. 2025;12:119–131.
MLA Kılıç, Rukiye et al. “Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 12, no. 2, 2025, pp. 119-31, doi:10.19159/tutad.1647131.
Vancouver Kılıç R, Karademir Ç, Karademir E. Su Stresinin Hidroponik Ortamda Yetiştirilen Pamuk Fidelerinin Bitkisel Özelliklerine Etkisinin Belirlenmesi. TÜTAD. 2025;12(2):119-31.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667