Review
BibTex RIS Cite

Proline and Its Importance in Stress Tolerance

Year 2025, Volume: 12 Issue: 2, 231 - 238, 30.06.2025
https://doi.org/10.19159/tutad.1699873

Abstract

Abiotic stress is the main cause of yield loss in plants, reducing crop yields by over 50%. To protect against damage caused by abiotic stress factors, plants respond by accumulating compatible osmolytes such as proline, glycine betaine, proline betaine, glycerol, mannitol, and sorbitol. It has been reported that proline accumulation in plants plays a significant role in the development of stress tolerance capacity under adverse or stressful conditions and acts as an osmoregulatory compound. In addition to its osmolyte function, proline has three roles within the plant: it acts as a metal chelator, an antioxidant defense, and a signaling molecule. Various researchers have reported that proline accumulation increases under conditions of drought, salinity, and heavy metal stress. In this review, the current literature on the biosynthesis of proline is summarized, the mechanisms contributing to proline's tolerance to abiotic stress conditions such as drought, salinity, and heavy metal stress are discussed, and future perspectives on the significance of managing proline in the fields of genetic engineering and biotechnology for the development of plant species resistant to environmental stresses are presented.

References

  • Akçin, A., Yalçın, E., Akçin, T.A., 2017. Spergularia marina (L.) Griseb. (Caryophyllaceae)’ da tuzluluğun prolin ve klorofil pigmentleri üzerine etkisi. Sinop Üniversitesi Fen Bilimleri Dergisi, 2(1): 80-92.
  • Akgün, İ., Kara, B., Altındal, D., 2011. Effect of salinity (NaCl) on germination, seedling growth and nutrient uptake of different triticale genotypes. Turkish Journal of Field Crops, 16(2): 225-232.
  • Ashraf, M., Foolad, M.R., 2007. roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216.
  • Baran, A., 2011. Bitkilerin tuz stresine toleransında salisilik asit ve prolin’in fizyolojik rolünün araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Bayat, R.A., Kuşvuran, Ş., Ellialtıoğlu, Ş., Üstün, A.S., 2014. Tuz stresi altindaki genç kabak (Cucurbita pepo L. ve C. moschata Poir.) bitkilerine uygulanan prolin’in, antioksidatif enzim aktiviteleri üzerine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 1(1): 25-33.
  • Berni, R., Luyckx, M., Xu, X., Legayd, S., Sergeant, K., Hausman, J.-F., Lutts, S., Cai, G., Guerriero, G., 2019. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161: 98-106.
  • Beyazyüz, F., Kulaç, Ş., 2023. Kuraklık stresinin kestane (Castanea sativa Mill.) fidanlarında yaprak gaz değişkenlerine ve prolin miktarlarına etkisi. Journal of Agriculture-Food Science and Technology, 11(7): 1231-1237.
  • Burritt, D.J., 2012. Proline and the cryopreservation of plant tissues: Functions and practical applications. In: I.I. Katkov (Ed.), Current Frontiers Cryopreservation, IntechOpen, pp. 415-430.
  • Chen, J.B., Yang, J.W., Zhang, Z.Y., Feng, X.F., Wang, S.M., 2013. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. Journal of Genetics, 92: 461-469.
  • Dar, M.I., Naikoo, M.I., Rehman, F., Naushin, F., Khan, F.A., 2016. Proline accumulation in plants: Roles in stress tolerance and plant development. In: N. Iqbal, R. Nazar, A.N. Khan (Eds.), Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies, Springer, India, pp. 155-166.
  • Delauney, A.J., Verma, D.P., 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4: 215-223.
  • Demiralay, M., 2021. Yerel (Artvin-Şavşat) ve tescilli domates çeşitlerinde kuraklık stresine karşı tolerans seviyelerinin araştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(4): 1474-1485.
  • Elthon, T.E., Stewart, C.R., 1981. Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiology, 67: 780-784.
  • Ergün, N., 2005. Buğday (Triticum aestivum L. cv. Gün 91) fidelerinde bazı ağır metallerin ve ağır metal-hormon etkileşimlerinin fizyolojik ve biyokimyasal etkileri. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Genç, O.T., 2021. Effect of different concentration of exogenous proline applications on cadmium accumulation and mineral nutrition (K, Mg, Na, and Ca) of common wheat (Triticum aestivum). Biotech Studies, 30(2): 86-91.
  • Hancı, F., Cebeci, E., 2015. Tuzluluk ve kuraklığın soğan yetiştiriciliğine etkisi. Bahçe, 44(1): 23-29.
  • Hare, P.D., Cress, W.A., 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21: 79-102.
  • Hare, P.D., Cress, W.A., Van Staden, J., 1998. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment, 21: 535-553.
  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A., 2012. Role of proline under changing environments: A review. Plant Signaling & Behavior, 7(11): 1456-1466.
  • Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., Jaoua, S., 2005. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169: 746-752.
  • Hossain, M.A., Hogue, Md.A., Burritt, D.J., Fujita, M., 2014. Proline protects plants against abiotic oxidative stress: Biochemical and molecular mechanisms. In: P. Ahmad (Ed.), Oxidatif Damage to Plants, Elsevier, pp. 477-522.
  • Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., Garnczarska, M., 2022. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences, 23(9): 5186.
  • Hussein, M.A.A., Alqahtani, M.M., Alwutayd, K.M., Aloufi, A.S., Osama, O., Azab, E.S., Abdelsattar, M., Hassanin, A.A., Okasha, S.A., 2023. Exploring salinity tolerance mechanisms in diverse wheat genotypes using physiological, anatomical, agronomic and gene expression analyses. Plants, 12: 3330.
  • Jorjani, S., Karakaş, F.P., 2024. Physiological and biochemical responses to heavy metals stress in plants. International Journal of Secondary Metabolite, 11(1): 169-190.
  • Kaya, A., İnan, M., 2018. Kuraklık ve tuz streslerine maruz kalan tütün (Nicotiana tabacum L.) bitkisinde bazı fizyolojik ve biyokimyasal parametreler üzerine melatoninin etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(4): 559-564.
  • Kayabaşı, S., 2011. Kuraklık stresinde yetiştirilen Soya'da (Glycine max L.) bazı fizyolojik parametreler ile prolin birikiminin araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Kishor, P.B.K., Kumari, P.H., Sunita, M.S.L., Sreenivasulu, N., 2015. Role or proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers Plant Science, 6: 544.
  • Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan P., Sreenivasulu, N., 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 88(3): 424-438.
  • Kocsy, G., Laurie, R., Szalai, G., Szilagyi, V., 2005. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiologia Plantarum, 124: 227-235.
  • Korkmaz, H., Durmaz, A., 2017. Bitkilerin abiyotik stres faktörlerine verdikleri cevaplar. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7(2): 192-207.
  • Lehmann, S., Funck, D., Szabados, L., Rentsch, D., 2010. Proline metabolism and transport in plant development. Amino Acids, 39: 949-962.
  • Liang, X., Zhang, L., Natarajan, S.K., Becker, D.F., 2013. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9): 998-1011.
  • Liu, J., Wang, Y.S., 2020. Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology, 29: 698-706.
  • Lum, M.S., Hanafi, M.M., Rafii, Y.M., Akmar, A.S.N., 2014. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. The Journal of Animal and Plant Sciences, 24(5): 1487-1493.
  • Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G.M., Panneerselvam, R., 2007. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2): 141-149.
  • Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., Upadhyay, R., 2019. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5: e02952.
  • Molinari, H.C., Marur, C.J., Filho, J.B., Kobayashi, A.K., Pileggi, M., Júnior, R.L., Vieira, L.E., 2004. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Science, 167: 1375-1381.
  • Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Ribarits, A., Abdullaev, A., Tashpulatov, A., Richter, A., Heberle-Bors, E., Touraev, A., 2007. Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta, 225: 1313-1324.
  • Roosens, N.H., Thu, T.T., Iskandar, H.M., Jacobs, M., 1998. Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiology, 117(2): 263-271.
  • Sarwar, M.B., Sadique, S., Hassan, S., Riaz, S., Rashid, B., Mohamed, B.B., Husnain, T., 2017. Physio-biochemical and molecular responses in transgenic cotton under drought stress. Journal of Agricultural Science, 23(2): 157-166.
  • Schertl, P., Cabassa, C., Saadallah, K., Bordenave, M., Savouré, A., Braun, H.P., 2014. Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria. The FEBS Journal, 281(12): 2794-2804.
  • Shannon, M.C., 1998. Adaptation of plants to salinity. Advances in Agronomy, 60: 75-120.
  • Singh, M., Kumar, J., Singh, S., Singh, V.P., Prasad, S.M., 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews Environmental Science and Bio/Technology, 14: 407-426.
  • Singh, S., Singh, A., Bashri, G., Prasad, S.M., 2016. Impact of Cd stress on cellular functioning and its amelioration by phytohormones: An overview on regulatory network. Plant Growth Regulation, 80: 253-263.
  • Szabados, L., Savouré, A., 2010. Proline: A multifunctional amino acid. Trends in Plant Science, 15(2): 89-97.
  • Szepesi, Á., Szöllösi, R., 2018. Mechanism of proline biosynthesis and role of proline metabolism enzymes under environmental stress in plants. In: P. Ahmad, M.A. Ahanger, V.P. Singh, D.K. Tripathi, P. Alam and M.N. Alyemeni (Eds.) Plant Metabolites and Regulation under Environmental Stress, Amsterdam, The Netherlands, Elsevier, pp. 337-353.
  • Tuteja, N., Gill, S.S., Tuteja, R., 2011. Plant responses to abiotic stresses: shedding light on salt, drought, cold and heavy metal stress. In: N. Tuteja, S.S. Gill and R. Tuteja (Eds.), Omics and Plant Abiotic Stress Tolerance, Sharjah: Bentham Science Publisher, pp. 39-64.
  • Ural, M., Bahar, B., Baltacı, C., 2024. Physiological and biochemical responses of some bread wheat cultivars to drought stress during the seedling stage. 15. International Conference on Agriculture, Animal Science & Rural Development, July 12-14, Aydın, Türkiye, pp. 378-391.
  • Verbruggen, N., Hermans, C., 2008. Proline accumulation in plants: A review. Amino Acids, 35: 753-759.
  • Wang, S., Sun, X., Hoshino, Y., Yu, Y., Jia, B., Sun, Z., Sun, M., Duan, X., Zhu, Y., 2014. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One, 9: e91357.
  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A., 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5): 244-252.
  • Yalçın, V., Torun, H., Eroğlu, E., Usta, E.Ü., 2022. Şeker otu (Stevia rebaudiana Bertoni) bitkisinde kuraklık stresinin fizyolojik ve biyokimyasal etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(3): 1165-1176.
  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y., 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56(417): 1975-1981.
  • Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N., 1982. Living with water stress: Evolution of osmolyte systems. Science, 217: 1214-1222.
  • Yılmaz, E., Tuna, A.L., Bürün, B., 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 7(1): 47-66.
  • Zarei, S., Ehsanpour, A.A., Abbaspour, J., 2012. The role of overexpression of P5CS gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. Journal of Cell and Molecular Research, 4: 43-49.
  • Zouari, M., Ahmed, C.B., Elloumi, N., Bellassoued, K., Delmail, D., Labrousse, P., Abdallah, F.B., Rouina, B.B., 2016. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicology and Environmental Safety, 128: 195-205.

Prolin ve Stres Toleransındaki Önemi

Year 2025, Volume: 12 Issue: 2, 231 - 238, 30.06.2025
https://doi.org/10.19159/tutad.1699873

Abstract

Abiyotik stres bitkideki verim kaybının birinci nedenidir ve kültür bitkilerinde verimi % 50’den fazla azaltmaktadır. Bitkiler, abiyotik stres faktörlerinin neden olduğu hasara karşı korunmak amacıyla prolin, glisin betain, prolin betain, gliserol, mannitol ve sorbitol gibi uyumlu osmolitleri biriktirerek tepki gösterirler. Bitkilerde prolin birikiminin, olumsuz koşullar veya stres koşulları altında stres tolerans kapasitenin geliştirilmesinde önemli rol oynadığı ve osmoregülatör bir bileşik olarak görev yaptığı bildirilmiştir. Osmolit işlevinin yanında prolin bitkinin iç kısmında metal şelatörü, antioksidan savunma ve sinyal molekülü gibi üç fonksiyona sahiptir. Kuraklık, tuzluluk ve ağır metal stresi koşullarında bitkilerde prolin birikiminin arttığı çeşitli araştırıcılar tarafından rapor edilmiştir. Bu derlemede, prolinin biyosentezi hakkındaki mevcut literatür bilgileri özetlenmekte, prolinin kuraklık, tuzluluk ve ağır metal stresi gibi abiyotik stres koşullarına toleransa katkı mekanizmaları tartışılmakta ve prolinin genetik mühendislik ve biyoteknoloji alanlarındaki yönetiminin çevresel streslere dayanıklı bitki türlerinin geliştirilmesindeki önemine ilişkin gelecek perspektifleri sunulmaktadır.

References

  • Akçin, A., Yalçın, E., Akçin, T.A., 2017. Spergularia marina (L.) Griseb. (Caryophyllaceae)’ da tuzluluğun prolin ve klorofil pigmentleri üzerine etkisi. Sinop Üniversitesi Fen Bilimleri Dergisi, 2(1): 80-92.
  • Akgün, İ., Kara, B., Altındal, D., 2011. Effect of salinity (NaCl) on germination, seedling growth and nutrient uptake of different triticale genotypes. Turkish Journal of Field Crops, 16(2): 225-232.
  • Ashraf, M., Foolad, M.R., 2007. roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216.
  • Baran, A., 2011. Bitkilerin tuz stresine toleransında salisilik asit ve prolin’in fizyolojik rolünün araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Bayat, R.A., Kuşvuran, Ş., Ellialtıoğlu, Ş., Üstün, A.S., 2014. Tuz stresi altindaki genç kabak (Cucurbita pepo L. ve C. moschata Poir.) bitkilerine uygulanan prolin’in, antioksidatif enzim aktiviteleri üzerine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 1(1): 25-33.
  • Berni, R., Luyckx, M., Xu, X., Legayd, S., Sergeant, K., Hausman, J.-F., Lutts, S., Cai, G., Guerriero, G., 2019. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161: 98-106.
  • Beyazyüz, F., Kulaç, Ş., 2023. Kuraklık stresinin kestane (Castanea sativa Mill.) fidanlarında yaprak gaz değişkenlerine ve prolin miktarlarına etkisi. Journal of Agriculture-Food Science and Technology, 11(7): 1231-1237.
  • Burritt, D.J., 2012. Proline and the cryopreservation of plant tissues: Functions and practical applications. In: I.I. Katkov (Ed.), Current Frontiers Cryopreservation, IntechOpen, pp. 415-430.
  • Chen, J.B., Yang, J.W., Zhang, Z.Y., Feng, X.F., Wang, S.M., 2013. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. Journal of Genetics, 92: 461-469.
  • Dar, M.I., Naikoo, M.I., Rehman, F., Naushin, F., Khan, F.A., 2016. Proline accumulation in plants: Roles in stress tolerance and plant development. In: N. Iqbal, R. Nazar, A.N. Khan (Eds.), Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies, Springer, India, pp. 155-166.
  • Delauney, A.J., Verma, D.P., 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4: 215-223.
  • Demiralay, M., 2021. Yerel (Artvin-Şavşat) ve tescilli domates çeşitlerinde kuraklık stresine karşı tolerans seviyelerinin araştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(4): 1474-1485.
  • Elthon, T.E., Stewart, C.R., 1981. Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiology, 67: 780-784.
  • Ergün, N., 2005. Buğday (Triticum aestivum L. cv. Gün 91) fidelerinde bazı ağır metallerin ve ağır metal-hormon etkileşimlerinin fizyolojik ve biyokimyasal etkileri. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Genç, O.T., 2021. Effect of different concentration of exogenous proline applications on cadmium accumulation and mineral nutrition (K, Mg, Na, and Ca) of common wheat (Triticum aestivum). Biotech Studies, 30(2): 86-91.
  • Hancı, F., Cebeci, E., 2015. Tuzluluk ve kuraklığın soğan yetiştiriciliğine etkisi. Bahçe, 44(1): 23-29.
  • Hare, P.D., Cress, W.A., 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21: 79-102.
  • Hare, P.D., Cress, W.A., Van Staden, J., 1998. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment, 21: 535-553.
  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A., 2012. Role of proline under changing environments: A review. Plant Signaling & Behavior, 7(11): 1456-1466.
  • Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., Jaoua, S., 2005. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169: 746-752.
  • Hossain, M.A., Hogue, Md.A., Burritt, D.J., Fujita, M., 2014. Proline protects plants against abiotic oxidative stress: Biochemical and molecular mechanisms. In: P. Ahmad (Ed.), Oxidatif Damage to Plants, Elsevier, pp. 477-522.
  • Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., Garnczarska, M., 2022. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences, 23(9): 5186.
  • Hussein, M.A.A., Alqahtani, M.M., Alwutayd, K.M., Aloufi, A.S., Osama, O., Azab, E.S., Abdelsattar, M., Hassanin, A.A., Okasha, S.A., 2023. Exploring salinity tolerance mechanisms in diverse wheat genotypes using physiological, anatomical, agronomic and gene expression analyses. Plants, 12: 3330.
  • Jorjani, S., Karakaş, F.P., 2024. Physiological and biochemical responses to heavy metals stress in plants. International Journal of Secondary Metabolite, 11(1): 169-190.
  • Kaya, A., İnan, M., 2018. Kuraklık ve tuz streslerine maruz kalan tütün (Nicotiana tabacum L.) bitkisinde bazı fizyolojik ve biyokimyasal parametreler üzerine melatoninin etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(4): 559-564.
  • Kayabaşı, S., 2011. Kuraklık stresinde yetiştirilen Soya'da (Glycine max L.) bazı fizyolojik parametreler ile prolin birikiminin araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Kishor, P.B.K., Kumari, P.H., Sunita, M.S.L., Sreenivasulu, N., 2015. Role or proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers Plant Science, 6: 544.
  • Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan P., Sreenivasulu, N., 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 88(3): 424-438.
  • Kocsy, G., Laurie, R., Szalai, G., Szilagyi, V., 2005. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiologia Plantarum, 124: 227-235.
  • Korkmaz, H., Durmaz, A., 2017. Bitkilerin abiyotik stres faktörlerine verdikleri cevaplar. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7(2): 192-207.
  • Lehmann, S., Funck, D., Szabados, L., Rentsch, D., 2010. Proline metabolism and transport in plant development. Amino Acids, 39: 949-962.
  • Liang, X., Zhang, L., Natarajan, S.K., Becker, D.F., 2013. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9): 998-1011.
  • Liu, J., Wang, Y.S., 2020. Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology, 29: 698-706.
  • Lum, M.S., Hanafi, M.M., Rafii, Y.M., Akmar, A.S.N., 2014. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. The Journal of Animal and Plant Sciences, 24(5): 1487-1493.
  • Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G.M., Panneerselvam, R., 2007. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2): 141-149.
  • Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., Upadhyay, R., 2019. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5: e02952.
  • Molinari, H.C., Marur, C.J., Filho, J.B., Kobayashi, A.K., Pileggi, M., Júnior, R.L., Vieira, L.E., 2004. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Science, 167: 1375-1381.
  • Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Ribarits, A., Abdullaev, A., Tashpulatov, A., Richter, A., Heberle-Bors, E., Touraev, A., 2007. Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta, 225: 1313-1324.
  • Roosens, N.H., Thu, T.T., Iskandar, H.M., Jacobs, M., 1998. Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiology, 117(2): 263-271.
  • Sarwar, M.B., Sadique, S., Hassan, S., Riaz, S., Rashid, B., Mohamed, B.B., Husnain, T., 2017. Physio-biochemical and molecular responses in transgenic cotton under drought stress. Journal of Agricultural Science, 23(2): 157-166.
  • Schertl, P., Cabassa, C., Saadallah, K., Bordenave, M., Savouré, A., Braun, H.P., 2014. Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria. The FEBS Journal, 281(12): 2794-2804.
  • Shannon, M.C., 1998. Adaptation of plants to salinity. Advances in Agronomy, 60: 75-120.
  • Singh, M., Kumar, J., Singh, S., Singh, V.P., Prasad, S.M., 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews Environmental Science and Bio/Technology, 14: 407-426.
  • Singh, S., Singh, A., Bashri, G., Prasad, S.M., 2016. Impact of Cd stress on cellular functioning and its amelioration by phytohormones: An overview on regulatory network. Plant Growth Regulation, 80: 253-263.
  • Szabados, L., Savouré, A., 2010. Proline: A multifunctional amino acid. Trends in Plant Science, 15(2): 89-97.
  • Szepesi, Á., Szöllösi, R., 2018. Mechanism of proline biosynthesis and role of proline metabolism enzymes under environmental stress in plants. In: P. Ahmad, M.A. Ahanger, V.P. Singh, D.K. Tripathi, P. Alam and M.N. Alyemeni (Eds.) Plant Metabolites and Regulation under Environmental Stress, Amsterdam, The Netherlands, Elsevier, pp. 337-353.
  • Tuteja, N., Gill, S.S., Tuteja, R., 2011. Plant responses to abiotic stresses: shedding light on salt, drought, cold and heavy metal stress. In: N. Tuteja, S.S. Gill and R. Tuteja (Eds.), Omics and Plant Abiotic Stress Tolerance, Sharjah: Bentham Science Publisher, pp. 39-64.
  • Ural, M., Bahar, B., Baltacı, C., 2024. Physiological and biochemical responses of some bread wheat cultivars to drought stress during the seedling stage. 15. International Conference on Agriculture, Animal Science & Rural Development, July 12-14, Aydın, Türkiye, pp. 378-391.
  • Verbruggen, N., Hermans, C., 2008. Proline accumulation in plants: A review. Amino Acids, 35: 753-759.
  • Wang, S., Sun, X., Hoshino, Y., Yu, Y., Jia, B., Sun, Z., Sun, M., Duan, X., Zhu, Y., 2014. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One, 9: e91357.
  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A., 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5): 244-252.
  • Yalçın, V., Torun, H., Eroğlu, E., Usta, E.Ü., 2022. Şeker otu (Stevia rebaudiana Bertoni) bitkisinde kuraklık stresinin fizyolojik ve biyokimyasal etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(3): 1165-1176.
  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y., 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56(417): 1975-1981.
  • Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N., 1982. Living with water stress: Evolution of osmolyte systems. Science, 217: 1214-1222.
  • Yılmaz, E., Tuna, A.L., Bürün, B., 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 7(1): 47-66.
  • Zarei, S., Ehsanpour, A.A., Abbaspour, J., 2012. The role of overexpression of P5CS gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. Journal of Cell and Molecular Research, 4: 43-49.
  • Zouari, M., Ahmed, C.B., Elloumi, N., Bellassoued, K., Delmail, D., Labrousse, P., Abdallah, F.B., Rouina, B.B., 2016. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicology and Environmental Safety, 128: 195-205.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Crop and Pasture Biochemistry and Physiology
Journal Section Review
Authors

Ali Erkul 0000-0001-9211-7369

Publication Date June 30, 2025
Submission Date May 15, 2025
Acceptance Date June 26, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Erkul, A. (2025). Prolin ve Stres Toleransındaki Önemi. Türkiye Tarımsal Araştırmalar Dergisi, 12(2), 231-238. https://doi.org/10.19159/tutad.1699873
AMA Erkul A. Prolin ve Stres Toleransındaki Önemi. TÜTAD. June 2025;12(2):231-238. doi:10.19159/tutad.1699873
Chicago Erkul, Ali. “Prolin Ve Stres Toleransındaki Önemi”. Türkiye Tarımsal Araştırmalar Dergisi 12, no. 2 (June 2025): 231-38. https://doi.org/10.19159/tutad.1699873.
EndNote Erkul A (June 1, 2025) Prolin ve Stres Toleransındaki Önemi. Türkiye Tarımsal Araştırmalar Dergisi 12 2 231–238.
IEEE A. Erkul, “Prolin ve Stres Toleransındaki Önemi”, TÜTAD, vol. 12, no. 2, pp. 231–238, 2025, doi: 10.19159/tutad.1699873.
ISNAD Erkul, Ali. “Prolin Ve Stres Toleransındaki Önemi”. Türkiye Tarımsal Araştırmalar Dergisi 12/2 (June 2025), 231-238. https://doi.org/10.19159/tutad.1699873.
JAMA Erkul A. Prolin ve Stres Toleransındaki Önemi. TÜTAD. 2025;12:231–238.
MLA Erkul, Ali. “Prolin Ve Stres Toleransındaki Önemi”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 12, no. 2, 2025, pp. 231-8, doi:10.19159/tutad.1699873.
Vancouver Erkul A. Prolin ve Stres Toleransındaki Önemi. TÜTAD. 2025;12(2):231-8.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667