Research Article
BibTex RIS Cite

IEEE 802.1BA Ses Görüntü Köprüleme Ağlarının Gecikme Analizi: Son Gelişmeler ve Gerçekçi Endüstriyel Haberleşme Kullanım Senaryolarının Değerlendirilmesi

Year 2025, Volume: 17 Issue: 2, 383 - 402, 15.07.2025
https://doi.org/10.29137/ijerad.1598954

Abstract

Otomotiv, havacılık ve endüstriyel otomasyon gibi gerçek zamanlı sistemlerin etkin kontrolü, düşük ve sınırlı gecikme sürelerine sahip yüksek bant genişlikli ve düşük maliyetli gerçek zamanlı iletişim gerektirir. Bu bağlamda, IEEE 802.3 Ethernet'in gerçek zamanlı varyantlarının, gelecekteki endüstriyel platformlarda zaman hassas trafiğe zamanlama garantileri sağlamak için kilit bir çözüm olması beklenmektedir. IEEE 802.1 Zaman-Hassas Haberleşme (ZHH) görev grubu, Ses Görüntü Köprüleme (SGK) teknolojisi üzerine inşa edilen Ethernet tabanlı deterministik iletişim teknolojilerini standartlaştırmayı amaçlayan önde gelen kuruluştur. Benzetim ve teorik analiz, ZHH’nin zamansal analizi için önemli araçlardır ve uygulamaların zamanlama gereksinimlerinin karşılandığından emin olmak için kullanılır. Bu makalede, ZHH'nin gecikme analizi üzerine yapılan son çalışmalar kapsamlı bir şekilde incelenmektedir. SGK akışlarını ileten gerçekçi araç içi ve endüstriyel otomasyon kullanım senaryolarının zamansal performansını analiz etmek için bir Omnet++ simülasyonu geliştirilmiştir. Ayrıca, ağın en kötü durum performansı, SGK Gecikme Matematiği kullanılarak yapılan teorik analizle de değerlendirilmiştir. Çalışmamız, Türkiye Cumhuriyeti'nin 12. Kalkınma Planı'nda öncelikli araştırma hedefleri olarak vurgulanan otomotiv, havacılık ve imalat sanayi gibi bilgisayar tabanlı gerçek zamanlı kontrol sistemlerine ihtiyaç duyan sektörlere ilişkin, toplumun ulusal hedeflerini desteklemeye yönelik önemli bir araştırma çabasıdır.

References

  • Anjum, A., Agbaje, P., Hounsinou, S., Guizani, N., & Olufowobi, H. (2024). D-NDNoT: Deterministic Named Data Networking for Time-Sensitive IoT Applications. IEEE Internet of Things Journal, 11(14), 24872-24885. doi: 10.1109/JIOT.2024.3385317
  • Arestova, A., Hielscher, K.-S. J., & German, R. (2021). Simulative evaluation of the TSN mechanisms time-aware shaper and frame preemption and their suitability for industrial use cases. In 2021 IFIP Networking Conference (IFIP Networking) (pp. 1–6). IEEE. doi: 10.23919/IFIPNetworking52078.2021.9472830
  • Ashjaei, M., Patti, G., Behnam, M., Nolte, T., Alderisi, G., & Lo Bello, L. (2017). Schedulability analysis of Ethernet Audio Video Bridging networks with scheduled traffic support. Real-Time Systems, 53(4), 526–577. doi: 10.1007/s11241-017-9268-5 Avnu Alliance. (2025). AUTOMOTIVE SEGMENT. Retrieved May 2, 2025, from https://avnu.org/automotive/
  • Axer, P., Thiele, D., Ernst, R., & Diemer, J. (2014). Exploiting shaper context to improve performance bounds of Ethernet AVB networks. 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 1-6.
  • Bordoloi, U. D., Aminifar, A., Eles, P., & Peng, Z. (2014). Schedulability analysis of Ethernet AVB switches. In 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications (pp. 1–10). IEEE. doi: 10.1109/RTCSA.2014.6910530
  • Boyer, M., & Daigmorte, H. (2019). Impact on credit freeze before gate closing in CBS and GCL integration into TSN. Proceedings of the 27th International Conference on Real-Time Networks and Systems. pp. 80–89.
  • Cao, J., Cuijpers, P. J. L., Bril, R. J., & Lukkien, J. J. (2018). Independent WCRT analysis for individual priority classes in Ethernet AVB. Real-Time Systems, 54(4), 861–911. doi: 10.1007/s11241-018-9321-z
  • Cao, J., Cuijpers, P.J., Bril, R.J., & Lukkien, J.J. (2016). Tight worst-case response-time analysis for ethernet AVB using eligible intervals. 2016 IEEE World Conference on Factory Communication Systems (WFCS), 1-8.
  • Craciunas, S.S., Oliver, R.S., Chmelík, M., & Steiner, W. (2016). Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks. Proceedings of the 24th International Conference on Real-Time Networks and Systems.
  • Daigmorte, H., Boyer, M., & Zhao, L. (2018). Modelling in network calculus a TSN architecture mixing Time-Triggered, Credit Based Shaper and Best-Effort queues.
  • De Azua, J. A. R., & Boyer, M. (2014). Complete modelling of AVB in network calculus framework. In Proceedings of the 22nd International Conference on Real-Time Networks and Systems (RTNS '14) (pp. 55–64). Association for Computing Machinery. doi: 10.1145/2659787.2659810
  • Demir, Ö. K., & Cevher, S. (2023). Multi-topology routing based traffic optimization for IEEE 802.1 time sensitive networking. Real-Time Systems, 59, 123–159. doi: 10.1007/s11241-023-09394-1
  • Diemer, J., Thiele, D., & Ernst, R. (2012). Formal worst-case timing analysis of Ethernet topologies with strict-priority and AVB switching. 7th IEEE International Symposium on Industrial Embedded Systems (SIES'12), 1-10.
  • Falk, J., Hellmanns, D., Carabelli, B., Nayak, N., Dürr, F., Kehrer, S., & Rothermel, K. (2019). NeSTiNg: Simulating IEEE time-sensitive networking (TSN) in OMNeT++. In 2019 International Conference on Networked Systems (NetSys) (pp. 1–8). IEEE. doi: 10.1109/NetSys.2019.8854500
  • Fang, B., Li, Q., Gong, Z., & Xiong, H. (2020). Simulative Assessments of Credit-Based Shaping and Asynchronous Traffic Shaping in Time-Sensitive Networking. 2020 12th International Conference on Advanced Infocomm Technology (ICAIT), 111-118.
  • Finzi, A., & Mifdaoui, A. (2020). Worst-case timing analysis of AFDX networks with multiple TSN/BLS shapers. IEEE Access, 8, 106765–106784. doi: 10.1109/ACCESS.2020.3000326
  • Fortune Business Insights. (2025). Time-Sensitive Networking Market Size, Share & Industry Analysis, By Component (Hardware and Solution & Services (By Platform (IEEE 802.1AS/IEEE 1588, IEEE 802.1Qbv, IEEE 802.1Qcc)), By End-User Industry (Healthcare, Manufacturing, Agriculture, Government/Defense, Transportation, IT & Telecom, Others), and Regional Forecast, 2025–2032. Retrieved May 2, 2025, from https://www.fortunebusinessinsights.com/time-sensitive-networking-market-109627
  • Hellmanns, D., Falk, J., Glavackij, A., Hummen, R., Kehrer, S., & Dürr, F. (2020). On the performance of stream-based, class-based time-aware shaping and frame preemption in TSN. In 2020 IEEE International Conference on Industrial Technology (ICIT) (pp. 298–303). IEEE. doi: 10.1109/ICIT45562.2020.9067122
  • INET Framework. (2024). Retrieved from https://inet.omnetpp.org/
  • Kim, H., Yoo, W., Ha, S., & Chung, J.-M. (2023). In-vehicle network average response time analysis for CAN-FD and automotive Ethernet. IEEE Transactions on Vehicular Technology, 72(6), 6916–6932. doi: 10.1109/TVT.2023.3236593
  • Laursen, S. M., Pop, P., & Steiner, W. (2016). Routing optimization of AVB streams in TSN networks. SIGBED Review, 13(4), 43–48. doi: 10.1145/3015037.3015044
  • Li, X., & George, L. (2017). Deterministic delay analysis of AVB switched Ethernet networks using an extended trajectory approach. Real-Time Systems, 53(1), 121–186. doi: 10.1007/s11241-016-9260-5
  • Liu, H., Senk, S., Ulbricht, M., Nazari, H.K., Scheinert, T., Reisslein, M., Nguyen, G.T., & Fitzek, F.H.P. (2024). Improving TSN Simulation Accuracy in OMNeT++: A Hardware-Aligned Approach. IEEE Access, 12, 79937-79956. doi: 10.1109/ACCESS.2024.3410109
  • Lo Bello, L., Ashjaei, M., Patti, G., & Behnam, M. (2020). Schedulability analysis of Time-Sensitive Networks with scheduled traffic and preemption support. Journal of Parallel and Distributed Computing, 144, 153–171. doi: 10.1016/j.jpdc.2020.06.001
  • Luo, F., Wang, B., Yang, Z., Zhang, P., Ma, Y., Fang, Z., Wu, M., & Sun, Z. (2022). Design Methodology of Automotive Time-Sensitive Network System Based on OMNeT++ Simulation System. Sensors, 22(12), 4580. https://doi.org/10.3390/s22124580
  • Luo, F., Wang, Z., Ren, Y., Wu, M., & et al. (2024). Simulative assessments of cyclic queuing and forwarding with preemption in in-vehicle time-sensitive networking. SAE Technical Paper, 2024-01-1986. doi: 10.4271/2024-01-1986
  • Lv, J., Zhao, Y., Wu, X., Li, Y., & Wang, Q. (2020). Formal analysis of TSN scheduler for real-time communications. IEEE Transactions on Reliability, 70(3), 1286–1294. doi: 10.1109/TR.2020.3026689
  • Mai, T. L., & Navet, N. (2021). Deep learning to predict the feasibility of priority-based Ethernet network configurations. ACM Transactions on Cyber-Physical Systems, 5(4), Article 45, 1–26. doi: 10.1145/3468890
  • Mai, T. L., Navet, N., & Migge, J. (2019a). A hybrid machine learning and schedulability analysis method for the verification of TSN networks. In 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS) (pp. 1–8). IEEE. doi: 10.1109/WFCS.2019.8757948
  • Mai, T. L., Navet, N., & Migge, J. (2019b). On the use of supervised machine learning for assessing schedulability: Application to Ethernet TSN. In Proceedings of the 27th International Conference on Real-Time Networks and Systems (RTNS '19) (pp. 143–153). Association for Computing Machinery. doi: 10.1145/3356401.3356409
  • Maile, L., Hielscher, K.J., & German, R. (2022). Delay-Guaranteeing Admission Control for Time-Sensitive Networking Using the Credit-Based Shaper. IEEE Open Journal of the Communications Society, 3, 1834-1852.
  • Martin, S., & Minet, P. (2006). Schedulability analysis of flows scheduled with FIFO: application to the expedited forwarding class. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, 8 pp.-.
  • Maxim, D., & Song, Y.-Q. (2017). Delay analysis of AVB traffic in time-sensitive networks (TSN). In Proceedings of the 25th International Conference on Real-Time Networks and Systems (RTNS '17) (pp. 18–27). Association for Computing Machinery. doi: 10.1145/3139258.3139283
  • Mohammadpour, E., Stai, E., & Le Boudec, J.-Y. (2023). Improved network-calculus nodal delay-bounds in time-sensitive networks. IEEE/ACM Transactions on Networking, 31(6), 2902–2917. doi: 10.1109/TNET.2023.3275910
  • Navet, N., Mai, T.L., & Migge, J. (2019). Using Machine Learning to Speed Up the Design Space Exploration of Ethernet TSN networks. [Online]. Available: http://hdl.handle.net/10993/38604
  • Ojewale, M.A., Yomsi, P.M., & Nikolic, B. (2021). Worst-case traversal time analysis of TSN with multi-level preemption. J. Syst. Archit., 116, 102079.
  • Pannell, D. (2010). AVB latency math. Retrieved November 21, 2024, from https://www.ieee802.org/1/files/public/docs2010/BA-pannell-latency-math-1110-v5.pdf
  • Peng, Y., Shi, B., Jiang, T., Tu, X., Xu, D., & Hua, K. (2023). A Survey on In-Vehicle Time-Sensitive Networking. IEEE Internet of Things Journal, 10(16), 14375-14396. doi: 10.1109/JIOT.2023.3264909
  • Pop, P., Raagaard, M. L., Craciunas, S. S., & Steiner, W. (2016). Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks. IET Cyber-Physical Systems: Theory & Applications, 1(1), 86–94. doi: 10.1049/iet-cps.2016.0021
  • Presidency of Strategy and Budget, Republic of Türkiye. (2023). 12th Development Plan of Republic of Türkiye (2024–2028). Retrieved November 30, 2024, from https://www.sbb.gov.tr/wp-content/uploads/2023/12/On-Ikinci-Kalkinma-Plani_2024-2028_11122023.pdf
  • Queck, R. (2012). Analysis of Ethernet AVB for automotive networks using network calculus. In 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012) (pp. 61–67). IEEE. doi: 10.1109/ICVES.2012.6294261
  • Reimann, F., Graf, S., Streit, F., Glaß, M., & Teich, J. (2013). Timing analysis of Ethernet AVB-based automotive E/E architectures. In 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA) (pp. 1–8). IEEE. doi: 10.1109/ETFA.2013.6648024
  • Ren, J., Yang, D., Cui, E., & Gong, K. (2020). An analytical latency model for AVB traffic in TSN considering time-triggered traffic. 2020 IEEE 20th International Conference on Communication Technology (ICCT) (pp. 938–943). IEEE. doi: 10.1109/ICCT50939.2020.9295841
  • Reusch, N., Zhao, L., Craciunas, S.S., & Pop, P. (2020). Window-Based Schedule Synthesis for Industrial IEEE 802.1Qbv TSN Networks. 2020 16th IEEE International Conference on Factory Communication Systems (WFCS), 1-4.
  • Seliem, M., Zahran, A., & Pesch, D. (2023). Delay analysis of TSN-based industrial networks with preemptive traffic using network calculus. 2023 IFIP Networking Conference (IFIP Networking) (pp. 1–9). IEEE. Doi: 10.23919/IFIPNetworking57963.2023.10186400
  • Seol, Y., Hyeon, D., Min, J., Kim, M., & Paek, J. (2021). Timely Survey of Time-Sensitive Networking: Past and Future Directions. IEEE Access, 9, 142506-142527. doi: 10.1109/ACCESS.2021.3120769
  • Shalghum, K. M., Noordin, N. K., Sali, A., & Hashim, F. (2022). Worst-case latency analysis for AVB traffic under overlapping based time-triggered windows in time-sensitive networks. IEEE Access, 10, 43187–43208. doi: 10.1109/ACCESS.2022.3168136
  • Silva, R.M., Santos, A.C.T., Fonseca, I.E., & Nigam, V. (2025). Fault Injection and Reliability Analysis on Time-Sensitive Networking. IEEE Internet of Things Journal, 12(2), 1153-1164. doi: 10.1109/JIOT.2024.3492134
  • Smirnov, F., Glaß, M., Reimann, F., & Teich, J. (2017). Formal timing analysis of non-scheduled traffic in automotive scheduled TSN networks. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 (pp. 1643–1646). IEEE. doi: 10.23919/DATE.2017.7927256
  • Stüber, T., Osswald, L., Lindner, S., & Menth, M. (2023). A Survey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive Networking (TSN). IEEE Access, 11, 61192-61233. doi: 10.1109/ACCESS.2023.3286370
  • Tabatabaee, S.M., Bouillard, A., & Le Boudec, J. (2022). Worst-Case Delay Analysis of Time-Sensitive Networks With Deficit Round-Robin. IEEE/ACM Transactions on Networking, 32, 1967-1982. doi: 10.1109/TNET.2023.3332247
  • Thiele, D., Ernst, R., & Diemer, J. (2015). Formal worst-case timing analysis of Ethernet TSN's time-aware and peristaltic shapers. 2015 IEEE Vehicular Networking Conference (VNC), 251-258. doi: 10.1109/VNC.2015.7385584
  • Thomas, L., Mifdaoui, A., & Le Boudec, J.-Y. (2022). Worst-case delay bounds in time-sensitive networks with packet replication and elimination. IEEE/ACM Transactions on Networking, 30(6), 2701–2715. doi: 10.1109/TNET.2022.3180763
  • Torres-Macias, A.G, Ramirez-Trevino, A., Briz, J.L., Segarra, J., & Blanco-Alcaine, H. (2024). Modeling Time-Sensitive Networking Using Timed Continuous Petri Nets. 17th IFAC Workshop on discrete Event Systems WODES 2024, 300-305. doi: 10.1016/j.ifacol.2024.07.051
  • Wang, C., Chen, L., Tang, C., Wang, Y., Xian, Y., Zhao, Y., Xue, H., & Huan, Z. (2024). Enhanced time-sensitive networking configuration detection using optimized BPNN with feature selection for industry 4.0. Cluster Computing, 27, 9795–9810. doi: 10.1007/s10586-024-04493-5
  • Xu, Y., & Kong, Z. (2025). Joint Frame Preemption and Credit-Based Shaping Scheduling for Real-Time Transmission. IEEE Transactions on Network and Service Management, 22(2), 1070-1082. doi: 10.1109/TNSM.2024.3507181
  • Yan, R., Li, Q., & Xiong, H. (2025). Optimizing Traffic Management in Airborne Power Line Communication Networks: A Credit-Based Shaping Approach Using Network Calculus. IEEE Transactions on Network and Service Management, 22(2), 1437-1449. doi: 10.1109/TNSM.2025.3529871
  • Yuan, Y., Cao, X., Liu, Z., Chen, C., & Guan, X. (2022). Adaptive priority adjustment scheduling approach with response-time analysis in time-sensitive networks. IEEE Transactions on Industrial Informatics, 18(12), 8714–8723. doi: 10.1109/TII.2022.3150044
  • Zhang, P., Liu, Y., Shi, J., Huang, Y., & Zhao, Y. (2019). A Feasibility Analysis Framework of Time-Sensitive Networking Using Real-Time Calculus. IEEE Access, 7, 90069-90081. doi: 10.1109/ACCESS.2019.2927516
  • Zhao, L., He, F., & Lu, J. (2017). Comparison of AFDX and audio video bridging forwarding methods using network calculus approach. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC) (pp. 1–7). IEEE. doi: 10.1109/DASC.2017.8102084
  • Zhao, L., He, F., Li, E., & Xiong, H. (2018a). Improving Worst-Case Delay Analysis for Traffic of Additional Stream Reservation Class in Ethernet-AVB Network. Sensors, 18(11), 3849. Doi: 10.3390/s18113849
  • Zhao, L., Pop, P., & Craciunas, S.S. (2018c). Worst-case latency analysis for IEEE 802.1Qbv time sensitive networks using network calculus. IEEE Access, PP, 1–1. doi: 10.1109/ACCESS.2018.2858767
  • Zhao, L., Pop, P., & Steinhorst, S. (2022). Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking. IEEE Transactions on Network and Service Management, 19, 2899-2928.
  • Zhao, L., Pop, P., Gong, Z., & Fang, B. (2020b). Improving latency analysis for flexible window-based GCL scheduling in TSN networks by integration of consecutive nodes offsets. IEEE Internet of Things Journal, 8(7), 5574–5584. doi: 10.1109/JIOT.2020.3031932
  • Zhao, L., Pop, P., Zheng, Z., & Li, Q. (2018b). Timing Analysis of AVB Traffic in TSN Networks Using Network Calculus. 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 25-36.
  • Zhao, L., Pop, P., Zheng, Z., Daigmorte, H., & Boyer, M. (2020a). Latency Analysis of Multiple Classes of AVB Traffic in TSN With Standard Credit Behavior Using Network Calculus. IEEE Transactions on Industrial Electronics, 68, 10291-10302. doi: 10.1109/TIE.2020.3021638
  • Zhao, L., Yan, Y., & Zhou, X. (2024). Minimum bandwidth reservation for CBS in TSN with real-time QoS guarantees. IEEE Transactions on Industrial Informatics, 20(4), 6187–6198. doi: 10.1109/TII.2023.3342466
  • Zhou, Z., Yan, Y., Berger, M., & Ruepp, S. (2018). Analysis and modeling of asynchronous traffic shaping in time sensitive networks. In 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS) (pp. 1–4). IEEE. doi: 10.1109/WFCS.2018.8402376

Delay Analysis of IEEE 802.1BA Audio Video Bridging Networks: Recent Advances and Evaluation of Realistic Industrial Communication Use Cases

Year 2025, Volume: 17 Issue: 2, 383 - 402, 15.07.2025
https://doi.org/10.29137/ijerad.1598954

Abstract

Effective control of real-time systems such as automotive, avionics, and industrial automation necessitates a high-bandwidth and low-cost real-time communication with low and bounded latency. In this context, real-time variants of IEEE 802.3 Ethernet are anticipated to be a key solution to provide timing guarantees to time-sensitive traffic in future industrial platforms. IEEE 802.1 Time-Sensitive Networking (TSN) task group is the leading organization that aims to standardize Ethernet-based deterministic communication technologies, which build upon Audio Video Bridging (AVB) technology. Simulation and theoretical analysis are important means for temporal analysis of TSN to ensure that timing requirements of applications are satisfied. In this paper, an in-depth review of the recent work on delay analysis of TSN is provided. An Omnet++ simulation is developed to analyze the temporal performance of realistic in-vehicle and industrial automation use cases transmitting AVB streams. Furthermore, the worst-case network performance is also evaluated via theoretical analysis using AVB Latency Math. Our work is an important research effort to support the national goals of the society regarding automotive, aerospace, and manufacturing industries, which require computer-based real-time control systems, taking into account that these industries are highlighted as the priority research targets by the 12th Development Plan of Republic of Türkiye.

References

  • Anjum, A., Agbaje, P., Hounsinou, S., Guizani, N., & Olufowobi, H. (2024). D-NDNoT: Deterministic Named Data Networking for Time-Sensitive IoT Applications. IEEE Internet of Things Journal, 11(14), 24872-24885. doi: 10.1109/JIOT.2024.3385317
  • Arestova, A., Hielscher, K.-S. J., & German, R. (2021). Simulative evaluation of the TSN mechanisms time-aware shaper and frame preemption and their suitability for industrial use cases. In 2021 IFIP Networking Conference (IFIP Networking) (pp. 1–6). IEEE. doi: 10.23919/IFIPNetworking52078.2021.9472830
  • Ashjaei, M., Patti, G., Behnam, M., Nolte, T., Alderisi, G., & Lo Bello, L. (2017). Schedulability analysis of Ethernet Audio Video Bridging networks with scheduled traffic support. Real-Time Systems, 53(4), 526–577. doi: 10.1007/s11241-017-9268-5 Avnu Alliance. (2025). AUTOMOTIVE SEGMENT. Retrieved May 2, 2025, from https://avnu.org/automotive/
  • Axer, P., Thiele, D., Ernst, R., & Diemer, J. (2014). Exploiting shaper context to improve performance bounds of Ethernet AVB networks. 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 1-6.
  • Bordoloi, U. D., Aminifar, A., Eles, P., & Peng, Z. (2014). Schedulability analysis of Ethernet AVB switches. In 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications (pp. 1–10). IEEE. doi: 10.1109/RTCSA.2014.6910530
  • Boyer, M., & Daigmorte, H. (2019). Impact on credit freeze before gate closing in CBS and GCL integration into TSN. Proceedings of the 27th International Conference on Real-Time Networks and Systems. pp. 80–89.
  • Cao, J., Cuijpers, P. J. L., Bril, R. J., & Lukkien, J. J. (2018). Independent WCRT analysis for individual priority classes in Ethernet AVB. Real-Time Systems, 54(4), 861–911. doi: 10.1007/s11241-018-9321-z
  • Cao, J., Cuijpers, P.J., Bril, R.J., & Lukkien, J.J. (2016). Tight worst-case response-time analysis for ethernet AVB using eligible intervals. 2016 IEEE World Conference on Factory Communication Systems (WFCS), 1-8.
  • Craciunas, S.S., Oliver, R.S., Chmelík, M., & Steiner, W. (2016). Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks. Proceedings of the 24th International Conference on Real-Time Networks and Systems.
  • Daigmorte, H., Boyer, M., & Zhao, L. (2018). Modelling in network calculus a TSN architecture mixing Time-Triggered, Credit Based Shaper and Best-Effort queues.
  • De Azua, J. A. R., & Boyer, M. (2014). Complete modelling of AVB in network calculus framework. In Proceedings of the 22nd International Conference on Real-Time Networks and Systems (RTNS '14) (pp. 55–64). Association for Computing Machinery. doi: 10.1145/2659787.2659810
  • Demir, Ö. K., & Cevher, S. (2023). Multi-topology routing based traffic optimization for IEEE 802.1 time sensitive networking. Real-Time Systems, 59, 123–159. doi: 10.1007/s11241-023-09394-1
  • Diemer, J., Thiele, D., & Ernst, R. (2012). Formal worst-case timing analysis of Ethernet topologies with strict-priority and AVB switching. 7th IEEE International Symposium on Industrial Embedded Systems (SIES'12), 1-10.
  • Falk, J., Hellmanns, D., Carabelli, B., Nayak, N., Dürr, F., Kehrer, S., & Rothermel, K. (2019). NeSTiNg: Simulating IEEE time-sensitive networking (TSN) in OMNeT++. In 2019 International Conference on Networked Systems (NetSys) (pp. 1–8). IEEE. doi: 10.1109/NetSys.2019.8854500
  • Fang, B., Li, Q., Gong, Z., & Xiong, H. (2020). Simulative Assessments of Credit-Based Shaping and Asynchronous Traffic Shaping in Time-Sensitive Networking. 2020 12th International Conference on Advanced Infocomm Technology (ICAIT), 111-118.
  • Finzi, A., & Mifdaoui, A. (2020). Worst-case timing analysis of AFDX networks with multiple TSN/BLS shapers. IEEE Access, 8, 106765–106784. doi: 10.1109/ACCESS.2020.3000326
  • Fortune Business Insights. (2025). Time-Sensitive Networking Market Size, Share & Industry Analysis, By Component (Hardware and Solution & Services (By Platform (IEEE 802.1AS/IEEE 1588, IEEE 802.1Qbv, IEEE 802.1Qcc)), By End-User Industry (Healthcare, Manufacturing, Agriculture, Government/Defense, Transportation, IT & Telecom, Others), and Regional Forecast, 2025–2032. Retrieved May 2, 2025, from https://www.fortunebusinessinsights.com/time-sensitive-networking-market-109627
  • Hellmanns, D., Falk, J., Glavackij, A., Hummen, R., Kehrer, S., & Dürr, F. (2020). On the performance of stream-based, class-based time-aware shaping and frame preemption in TSN. In 2020 IEEE International Conference on Industrial Technology (ICIT) (pp. 298–303). IEEE. doi: 10.1109/ICIT45562.2020.9067122
  • INET Framework. (2024). Retrieved from https://inet.omnetpp.org/
  • Kim, H., Yoo, W., Ha, S., & Chung, J.-M. (2023). In-vehicle network average response time analysis for CAN-FD and automotive Ethernet. IEEE Transactions on Vehicular Technology, 72(6), 6916–6932. doi: 10.1109/TVT.2023.3236593
  • Laursen, S. M., Pop, P., & Steiner, W. (2016). Routing optimization of AVB streams in TSN networks. SIGBED Review, 13(4), 43–48. doi: 10.1145/3015037.3015044
  • Li, X., & George, L. (2017). Deterministic delay analysis of AVB switched Ethernet networks using an extended trajectory approach. Real-Time Systems, 53(1), 121–186. doi: 10.1007/s11241-016-9260-5
  • Liu, H., Senk, S., Ulbricht, M., Nazari, H.K., Scheinert, T., Reisslein, M., Nguyen, G.T., & Fitzek, F.H.P. (2024). Improving TSN Simulation Accuracy in OMNeT++: A Hardware-Aligned Approach. IEEE Access, 12, 79937-79956. doi: 10.1109/ACCESS.2024.3410109
  • Lo Bello, L., Ashjaei, M., Patti, G., & Behnam, M. (2020). Schedulability analysis of Time-Sensitive Networks with scheduled traffic and preemption support. Journal of Parallel and Distributed Computing, 144, 153–171. doi: 10.1016/j.jpdc.2020.06.001
  • Luo, F., Wang, B., Yang, Z., Zhang, P., Ma, Y., Fang, Z., Wu, M., & Sun, Z. (2022). Design Methodology of Automotive Time-Sensitive Network System Based on OMNeT++ Simulation System. Sensors, 22(12), 4580. https://doi.org/10.3390/s22124580
  • Luo, F., Wang, Z., Ren, Y., Wu, M., & et al. (2024). Simulative assessments of cyclic queuing and forwarding with preemption in in-vehicle time-sensitive networking. SAE Technical Paper, 2024-01-1986. doi: 10.4271/2024-01-1986
  • Lv, J., Zhao, Y., Wu, X., Li, Y., & Wang, Q. (2020). Formal analysis of TSN scheduler for real-time communications. IEEE Transactions on Reliability, 70(3), 1286–1294. doi: 10.1109/TR.2020.3026689
  • Mai, T. L., & Navet, N. (2021). Deep learning to predict the feasibility of priority-based Ethernet network configurations. ACM Transactions on Cyber-Physical Systems, 5(4), Article 45, 1–26. doi: 10.1145/3468890
  • Mai, T. L., Navet, N., & Migge, J. (2019a). A hybrid machine learning and schedulability analysis method for the verification of TSN networks. In 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS) (pp. 1–8). IEEE. doi: 10.1109/WFCS.2019.8757948
  • Mai, T. L., Navet, N., & Migge, J. (2019b). On the use of supervised machine learning for assessing schedulability: Application to Ethernet TSN. In Proceedings of the 27th International Conference on Real-Time Networks and Systems (RTNS '19) (pp. 143–153). Association for Computing Machinery. doi: 10.1145/3356401.3356409
  • Maile, L., Hielscher, K.J., & German, R. (2022). Delay-Guaranteeing Admission Control for Time-Sensitive Networking Using the Credit-Based Shaper. IEEE Open Journal of the Communications Society, 3, 1834-1852.
  • Martin, S., & Minet, P. (2006). Schedulability analysis of flows scheduled with FIFO: application to the expedited forwarding class. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, 8 pp.-.
  • Maxim, D., & Song, Y.-Q. (2017). Delay analysis of AVB traffic in time-sensitive networks (TSN). In Proceedings of the 25th International Conference on Real-Time Networks and Systems (RTNS '17) (pp. 18–27). Association for Computing Machinery. doi: 10.1145/3139258.3139283
  • Mohammadpour, E., Stai, E., & Le Boudec, J.-Y. (2023). Improved network-calculus nodal delay-bounds in time-sensitive networks. IEEE/ACM Transactions on Networking, 31(6), 2902–2917. doi: 10.1109/TNET.2023.3275910
  • Navet, N., Mai, T.L., & Migge, J. (2019). Using Machine Learning to Speed Up the Design Space Exploration of Ethernet TSN networks. [Online]. Available: http://hdl.handle.net/10993/38604
  • Ojewale, M.A., Yomsi, P.M., & Nikolic, B. (2021). Worst-case traversal time analysis of TSN with multi-level preemption. J. Syst. Archit., 116, 102079.
  • Pannell, D. (2010). AVB latency math. Retrieved November 21, 2024, from https://www.ieee802.org/1/files/public/docs2010/BA-pannell-latency-math-1110-v5.pdf
  • Peng, Y., Shi, B., Jiang, T., Tu, X., Xu, D., & Hua, K. (2023). A Survey on In-Vehicle Time-Sensitive Networking. IEEE Internet of Things Journal, 10(16), 14375-14396. doi: 10.1109/JIOT.2023.3264909
  • Pop, P., Raagaard, M. L., Craciunas, S. S., & Steiner, W. (2016). Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks. IET Cyber-Physical Systems: Theory & Applications, 1(1), 86–94. doi: 10.1049/iet-cps.2016.0021
  • Presidency of Strategy and Budget, Republic of Türkiye. (2023). 12th Development Plan of Republic of Türkiye (2024–2028). Retrieved November 30, 2024, from https://www.sbb.gov.tr/wp-content/uploads/2023/12/On-Ikinci-Kalkinma-Plani_2024-2028_11122023.pdf
  • Queck, R. (2012). Analysis of Ethernet AVB for automotive networks using network calculus. In 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012) (pp. 61–67). IEEE. doi: 10.1109/ICVES.2012.6294261
  • Reimann, F., Graf, S., Streit, F., Glaß, M., & Teich, J. (2013). Timing analysis of Ethernet AVB-based automotive E/E architectures. In 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA) (pp. 1–8). IEEE. doi: 10.1109/ETFA.2013.6648024
  • Ren, J., Yang, D., Cui, E., & Gong, K. (2020). An analytical latency model for AVB traffic in TSN considering time-triggered traffic. 2020 IEEE 20th International Conference on Communication Technology (ICCT) (pp. 938–943). IEEE. doi: 10.1109/ICCT50939.2020.9295841
  • Reusch, N., Zhao, L., Craciunas, S.S., & Pop, P. (2020). Window-Based Schedule Synthesis for Industrial IEEE 802.1Qbv TSN Networks. 2020 16th IEEE International Conference on Factory Communication Systems (WFCS), 1-4.
  • Seliem, M., Zahran, A., & Pesch, D. (2023). Delay analysis of TSN-based industrial networks with preemptive traffic using network calculus. 2023 IFIP Networking Conference (IFIP Networking) (pp. 1–9). IEEE. Doi: 10.23919/IFIPNetworking57963.2023.10186400
  • Seol, Y., Hyeon, D., Min, J., Kim, M., & Paek, J. (2021). Timely Survey of Time-Sensitive Networking: Past and Future Directions. IEEE Access, 9, 142506-142527. doi: 10.1109/ACCESS.2021.3120769
  • Shalghum, K. M., Noordin, N. K., Sali, A., & Hashim, F. (2022). Worst-case latency analysis for AVB traffic under overlapping based time-triggered windows in time-sensitive networks. IEEE Access, 10, 43187–43208. doi: 10.1109/ACCESS.2022.3168136
  • Silva, R.M., Santos, A.C.T., Fonseca, I.E., & Nigam, V. (2025). Fault Injection and Reliability Analysis on Time-Sensitive Networking. IEEE Internet of Things Journal, 12(2), 1153-1164. doi: 10.1109/JIOT.2024.3492134
  • Smirnov, F., Glaß, M., Reimann, F., & Teich, J. (2017). Formal timing analysis of non-scheduled traffic in automotive scheduled TSN networks. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 (pp. 1643–1646). IEEE. doi: 10.23919/DATE.2017.7927256
  • Stüber, T., Osswald, L., Lindner, S., & Menth, M. (2023). A Survey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive Networking (TSN). IEEE Access, 11, 61192-61233. doi: 10.1109/ACCESS.2023.3286370
  • Tabatabaee, S.M., Bouillard, A., & Le Boudec, J. (2022). Worst-Case Delay Analysis of Time-Sensitive Networks With Deficit Round-Robin. IEEE/ACM Transactions on Networking, 32, 1967-1982. doi: 10.1109/TNET.2023.3332247
  • Thiele, D., Ernst, R., & Diemer, J. (2015). Formal worst-case timing analysis of Ethernet TSN's time-aware and peristaltic shapers. 2015 IEEE Vehicular Networking Conference (VNC), 251-258. doi: 10.1109/VNC.2015.7385584
  • Thomas, L., Mifdaoui, A., & Le Boudec, J.-Y. (2022). Worst-case delay bounds in time-sensitive networks with packet replication and elimination. IEEE/ACM Transactions on Networking, 30(6), 2701–2715. doi: 10.1109/TNET.2022.3180763
  • Torres-Macias, A.G, Ramirez-Trevino, A., Briz, J.L., Segarra, J., & Blanco-Alcaine, H. (2024). Modeling Time-Sensitive Networking Using Timed Continuous Petri Nets. 17th IFAC Workshop on discrete Event Systems WODES 2024, 300-305. doi: 10.1016/j.ifacol.2024.07.051
  • Wang, C., Chen, L., Tang, C., Wang, Y., Xian, Y., Zhao, Y., Xue, H., & Huan, Z. (2024). Enhanced time-sensitive networking configuration detection using optimized BPNN with feature selection for industry 4.0. Cluster Computing, 27, 9795–9810. doi: 10.1007/s10586-024-04493-5
  • Xu, Y., & Kong, Z. (2025). Joint Frame Preemption and Credit-Based Shaping Scheduling for Real-Time Transmission. IEEE Transactions on Network and Service Management, 22(2), 1070-1082. doi: 10.1109/TNSM.2024.3507181
  • Yan, R., Li, Q., & Xiong, H. (2025). Optimizing Traffic Management in Airborne Power Line Communication Networks: A Credit-Based Shaping Approach Using Network Calculus. IEEE Transactions on Network and Service Management, 22(2), 1437-1449. doi: 10.1109/TNSM.2025.3529871
  • Yuan, Y., Cao, X., Liu, Z., Chen, C., & Guan, X. (2022). Adaptive priority adjustment scheduling approach with response-time analysis in time-sensitive networks. IEEE Transactions on Industrial Informatics, 18(12), 8714–8723. doi: 10.1109/TII.2022.3150044
  • Zhang, P., Liu, Y., Shi, J., Huang, Y., & Zhao, Y. (2019). A Feasibility Analysis Framework of Time-Sensitive Networking Using Real-Time Calculus. IEEE Access, 7, 90069-90081. doi: 10.1109/ACCESS.2019.2927516
  • Zhao, L., He, F., & Lu, J. (2017). Comparison of AFDX and audio video bridging forwarding methods using network calculus approach. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC) (pp. 1–7). IEEE. doi: 10.1109/DASC.2017.8102084
  • Zhao, L., He, F., Li, E., & Xiong, H. (2018a). Improving Worst-Case Delay Analysis for Traffic of Additional Stream Reservation Class in Ethernet-AVB Network. Sensors, 18(11), 3849. Doi: 10.3390/s18113849
  • Zhao, L., Pop, P., & Craciunas, S.S. (2018c). Worst-case latency analysis for IEEE 802.1Qbv time sensitive networks using network calculus. IEEE Access, PP, 1–1. doi: 10.1109/ACCESS.2018.2858767
  • Zhao, L., Pop, P., & Steinhorst, S. (2022). Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking. IEEE Transactions on Network and Service Management, 19, 2899-2928.
  • Zhao, L., Pop, P., Gong, Z., & Fang, B. (2020b). Improving latency analysis for flexible window-based GCL scheduling in TSN networks by integration of consecutive nodes offsets. IEEE Internet of Things Journal, 8(7), 5574–5584. doi: 10.1109/JIOT.2020.3031932
  • Zhao, L., Pop, P., Zheng, Z., & Li, Q. (2018b). Timing Analysis of AVB Traffic in TSN Networks Using Network Calculus. 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 25-36.
  • Zhao, L., Pop, P., Zheng, Z., Daigmorte, H., & Boyer, M. (2020a). Latency Analysis of Multiple Classes of AVB Traffic in TSN With Standard Credit Behavior Using Network Calculus. IEEE Transactions on Industrial Electronics, 68, 10291-10302. doi: 10.1109/TIE.2020.3021638
  • Zhao, L., Yan, Y., & Zhou, X. (2024). Minimum bandwidth reservation for CBS in TSN with real-time QoS guarantees. IEEE Transactions on Industrial Informatics, 20(4), 6187–6198. doi: 10.1109/TII.2023.3342466
  • Zhou, Z., Yan, Y., Berger, M., & Ruepp, S. (2018). Analysis and modeling of asynchronous traffic shaping in time sensitive networks. In 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS) (pp. 1–4). IEEE. doi: 10.1109/WFCS.2018.8402376
There are 68 citations in total.

Details

Primary Language English
Subjects Information Systems (Other)
Journal Section Articles
Authors

Selçuk Cevher 0000-0002-5314-5399

Mustafa Topsakal 0000-0003-2910-5888

Ömer Kağan Demir 0000-0002-5719-6644

Early Pub Date July 4, 2025
Publication Date July 15, 2025
Submission Date December 10, 2024
Acceptance Date May 12, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Cevher, S., Topsakal, M., & Demir, Ö. K. (2025). Delay Analysis of IEEE 802.1BA Audio Video Bridging Networks: Recent Advances and Evaluation of Realistic Industrial Communication Use Cases. International Journal of Engineering Research and Development, 17(2), 383-402. https://doi.org/10.29137/ijerad.1598954

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.