Research Article
BibTex RIS Cite

Investigation of the Effect of Surface Protective Resin on the Capillary Water Absorption Properties of Ignimbrites: A Case Study of Nevşehir Ignimbrite

Year 2025, Volume: 30 Issue: 1, 123 - 140, 28.04.2025
https://doi.org/10.17482/uumfd.1529009

Abstract

In this study, three different colors and textures of ignimbrite, namely yellow (SR), beige (BJ), and pinkish-grey (GK), were utilized in Nevşehir province. Initially, the capillary water absorption coefficients of the samples were determined in water and MgSO4 solution. Subsequently, a surface coating material was applied to the ignimbrites, and under the same conditions, the capillary water absorption coefficients were reassessed. Chemical, mineralogical-petrographic analyses, and physico-mechanical experiments were conducted to determine the material properties of the ignimbrites. As a result of the study, the capillary water absorption capacity of SR ignimbrite was determined to be 114.03 g/m2s0,5 in water and 101 g/m2s0,5 in magnesium sulfate solution. While the capillary water absorption potential of BJ ignimbrites in water was determined as 115.71 g/m2s0,5, it was found to be 112.16 g/m2s0,5 in the solution containing MgSO4. After the application of surface coating resin to the ignimbrites, the capillary water absorption capacity of SR ignimbrite was determined as 6.54 g/m2s0,5 in water and 0.07 g/m2s0,5 in MgSO4 solution. The capillary water absorption capacity for BJ ignimbrite was determined as 0.08 g/m2s0,5 in water and 1.27g/m2s0,5 in MgSO4 solution. Similarly, for GK ignimbrite, the capillary water absorption capacity was measured as 0.08 g/m2s0,5 in water and 0.79 g/m2s0,5 in MgSO4 solution. It was observed that the capillary water absorption properties were significantly reduced in the ignimbrite samples coated with the protective chemical.

References

  • Akın, M., Dinçer, İ., Özvan, A., Oyan, V., & Tapan, M. (2016). İgnimbiritlerdeki kılcal su emme özelliğinin Ahlat Selçuklu mezar taşlarının bozunmasındaki rolü. Jeoloji Mühendisliği Dergisi, 40(2), 149-166.
  • Akin, M., Topal, T., Dinçer, İ., Akin, M. K., Özvan, A., Orhan, A., & Orhan, A. (2023). A new quantitative welding degree classification for ignimbrites. Environmental Earth Sciences, 82(13), 345. https://doi.org/10.1007/s12665-023-11026-7
  • Arnold, A. (1990). Salt weathering on monuments. The conservation of monuments in the Mediterranean Basin, 31-58.
  • Atabey, E. (1989). 1:100,000 Scale Geological Maps of Turkey, Kayseri H19 (K33) Sheet.
  • Aydan, Ö., & Ulusay, R. (2013). Geomechanical Evaluation of Derinkuyu Antique Underground City and its Implications in Geoengineering. Rock Mechanics and Rock Engineering, 46(4), 731-754. https://doi.org/10.1007/s00603-012-0301-7
  • Aydar, E., Schmitt, A. K., Çubukçu, H. E., Akin, L., Ersoy, O., Sen, E., Duncan, R. A., & Atici, G. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research, 213, 83-97.
  • Benavente, D., Lock, P., Ángeles García Del Cura, M., & Ordóñez, S. (2002). Predicting the Capillary Imbibition of Porous Rocks from Microstructure. Transport in Porous Media, 49(1), 59-76. https://doi.org/10.1023/A:1016047122877
  • Colangiuli, D., Calia, A., & Bianco, N. (2015). Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Construction and Building Materials, 93, 189-196. https://doi.org/10.1016/j.conbuildmat.2015.05.100
  • Coussy, O. (2006). Deformation and stress from in-pore drying-induced crystallization of salt. Journal of the Mechanics and Physics of Solids, 54(8), 1517-1547. https://doi.org/10.1016/j.jmps.2006.03.002
  • Cueto, N., Benavente, D., Martínez-Martínez, J., & García-del-Cura, M. A. (2009). Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones. Engineering Geology, 107(1), 1-15. https://doi.org/10.1016/j.enggeo.2009.03.009
  • Çelik, M. Y., & Kaçmaz, A. U. (2016). The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environmental Earth Sciences, 75(4), 307. https://doi.org/10.1007/s12665-015-5132-x Çelik, M. Y., Murat, S., & Arsoy, Z. (2019). Yüzey Koruyucu Reçinenin Döğer Tüfü Ve İscehisar Andezitinin Kılcal Su Emme Potansiyeli Üzerine Etkisinin İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 319-338.
  • Çelik, M. Y., Murat, S., & Arsoy, Z. (2019). Yüzey Koruyucu Reçinenin Döğer Tüfü Ve İscehisar Andezitinin Kılcal Su Emme Potansiyeli Üzerine Etkisinin İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 319-338.
  • Çelik, M. Y., & Yılmaz, S. (2018). Statik, tuzlu ve asidik sulu ortamların poroziteli yapıtaşlarının kapiler su emme potansiyeline etkisi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2018(2018). https://doi.org/10.17341/gazimmfd.416369
  • David, C., Darot, M., & Jeannette, D. (1993). Pore structures and transport properties of sandstone. Transport in Porous Media, 11(2), 161-177. https://doi.org/10.1007/BF01059632
  • Deere, D. U., & Miller, R. (1966). Engineering classification and index properties for intact rock. Illinois Univ At Urbana Dept Of Civil Engineering.
  • Derluyn, H., Moonen, P., & Carmeliet, J. (2014). Deformation and damage due to drying-induced salt crystallization in porous limestone. Journal of the Mechanics and Physics of Solids, 63, 242-255. https://doi.org/10.1016/j.jmps.2013.09.005
  • Dinçer, İ., & Bostancı, M. (2019). Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration. Environmental Earth Sciences, 78(1), 7. https://doi.org/10.1007/s12665-018-7993-2
  • Dinçer, İ., Özvan, A., Akin, M., Tapan, M., & Oyan, V. (2012). İgnimbiritlerin Kapiler Su Emme Potansiyellerinin Değerlendirilmesi: Ahlat Taşı Örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), Article 2.
  • Erguler, Z. A. (2009). Field-based experimental determination of the weathering rates of the Cappadocian tuffs. Engineering Geology, 105(3-4), 186-199.
  • Gomes, V., Dionísio, A., & Pozo-Antonio, J. S. (2017). Conservation strategies against graffiti vandalism on Cultural Heritage stones: Protective coatings and cleaning methods. Progress in Organic Coatings, 113, 90-109. https://doi.org/10.1016/j.porgcoat.2017.08.010
  • ISRM, E. (1981). Rock characterization, testing and monitoring—ISRM suggested methods. İçinde Suggested methods for the quantitative description of discontinuities in rock masses (ss. 3-52). Pergamon Oxford.
  • Karagiannis, N., Karoglou, M., Bakolas, A., & Moropoulou, A. (2016). Effect of temperature on water capillary rise coefficient of building materials. Building and Environment, 106, 402-408. https://doi.org/10.1016/j.buildenv.2016.07.008
  • Kasmer, Ö., & Ulusay, R. (2013). Effects of geo-engineering characteristics of the soft tuffs and environmental conditions on the rock-hewn historical structures at Zelve open air museum, Cappadocia, Turkey. Environmental & Engineering Geoscience, 19(2), 149-171.
  • Kılıç, İ., & Gültekin, A. (2009). Effects of surface protection resin on water absorption and strenght of sandstone. 2196, 2199.
  • Korkanç, M. (2007). İgnimbiritlerin jeomekanik özelliklerinin yapı taşı olarak kullanımına etkisi: Nevşehir taşı. Jeoloji Mühendisliği Dergisi, 31(1), 49-60.
  • Korkanç, M. (2013). Deterioration of different stones used in historical buildings within Nigde province, Cappadocia. Construction and Building materials, 48, 789-803.
  • Korkanç, M., İnce, İ., Hatır, M. E., & Tosunlar, M. B. (2021). Atmospheric and anthropogenic deterioration of the İvriz rock monument: Ereğli-Konya, Central Anatolia, Turkey. Bulletin of Engineering Geology and the Environment, 80, 3053-3063.
  • Le Bas, M. J., Le Maitre, R. W., & Woolley, A. R. (1992). The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and petrology, 46(1), 1-22.
  • Le Pennec, J.-L., Bourdier, J.-L., Froger, J.-L., Temel, A., Camus, G., & Gourgaud, A. (1994). Neogene ignimbrites of the Nevsehir plateau (Central Turkey): Stratigraphy, distribution and source constraints. Journal of Volcanology and Geothermal Research,63(1-2), 59-87.
  • Leventis, A., Verganelakis, D. A., Halse, M. R., Webber, J. B., & Strange, J. H. (2000). Capillary Imbibition and Pore Characterisation in Cement Pastes. Transport in Porous Media, 39(2), 143-157. https://doi.org/10.1023/A:1006687114424
  • Mosquera, M. J., Rivas, T., Prieto, B., & Silva, B. (2000). Capillary Rise in Granitic Rocks: Interpretation of Kinetics on the Basis of Pore Structure. Journal of Colloid and Interface Science, 222(1), 41-45. https://doi.org/10.1006/jcis.1999.6612
  • Nesbitt, Hw., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. nature, 299(5885), 715-717.
  • NGB. (1985). Norwegian group of rock mechanics: Handbook in engineering geology—Rock. Norwegian rock mechanics group (s. 140).
  • Nicholson, D. T. (2001). Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms, 26(8), 819-838. https://doi.org/10.1002/esp.228
  • Özdemir, A. (2002). Capillary water absorption potential of some building materials. Geological Engineering, 26(1), 19-32.
  • Özvan, A., Dinçer, İ., Akın, M., Oyan, V., & Tapan, M. (2015). Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Engineering geology, 185, 81-95.
  • Ruedrich, J., & Siegesmund, S. (2007). Salt and ice crystallisation in porous sandstones. Environmental geology, 52, 225-249.
  • Sbardella, F., Bracciale, M., Santarelli, M., & Asua, J. M. (2020). Waterborne modified-silica/acrylates hybrid nanocomposites as surface protective coatings for stone monuments. Progress in Organic Coatings, 149, 105897.
  • Sengün, N., Demirdag, S., Akbay, D., Ugur, I., & Altindag, R. (2015). The effect of rock properties on the capillary water absorption coefficients of the different natural stone types. ISRM Regional Symposium-EUROCK 2015.
  • Shao, J., Yang, S., & Li, C. (2012). Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: İnferences from analysis of fluvial sediments. Sedimentary Geology, 265, 110-120.
  • Thaulow, N., & Sahu, S. (2004). Mechanism of concrete deterioration due to salt crystallization. Materials Characterization, 53(2), 123-127. https://doi.org/10.1016/j.matchar.2004.08.013
  • Topal, T., & Doyuran, V. (1997). Engineering geological properties and durability assessment of the Cappadocian tuff. Engineering Geology, 47(1-2), 175-187.
  • Topal, T., & Sözmen, B. (2003). Deterioration mechanisms of tuffs in Midas monument. Engineering Geology, 68(3-4), 201-223.
  • Tosunlar, M. B., Hatır, M. E., İnce, İ., Bozdağ, A., & Korkanç, M. (2018). The Determination of Deteriorations on the Mısırlıoğlu Bridge (Konya, Turkey) by Non-Destructive Techniques (NDT). ICONARP International Journal of Architecture and Planning, 6(2), Article 2. https://doi.org/10.15320/ICONARP.2018.60
  • TS EN 1925. (2000). Doğal Taşlar- Deney metotları-Kılcal Etkiye Bağlı Su Emme Katsayısının Tayini. Türk Standartları Enstitüsü.
  • TS EN 1926. (2013). Doğal Taşlar-Deney Yöntemleri-Tek Eksenli Basınç Dayanımı Tayini. Türk Standartları Enstitüsü.
  • TS EN 1936. (2010). Doğal Taşlar-Deney Yöntemleri-Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Porozitelilik Tayini. Türk Standartları Enstitüsü.
  • TS EN 12370. (2001). Doğal Taşlar-Deney Metotları-Tuz Kristallenmesine Direncin Tayini. Türk Standartları Enstitüsü.
  • TS EN 13755. (2014). Doğal Taşlar-Deney Yöntemleri-Atmosfer Basıncında Su Emme Tayini. Türk Standartları Enstitüsü.
  • TS EN 14579. (2006). Doğal Taşlar-Deney Yöntemleri-Ses Hızı İlerlemesinin Tayini. Türk Standartları Enstitüsü.
  • Tulliani, J.-M., Serra, C. L., & Sangermano, M. (2014). A visible and long-wavelength photocured epoxy coating for stone protection. Journal of cultural heritage, 15(3), 250-257.
  • Tuncay, E. (2009). Rock rupture phenomenon and pillar failure in tuffs in the Cappadocia region (Turkey). International Journal of Rock Mechanics and Mining Sciences, 46(8), 1253-1266.
  • Ulusay, R., & Aydan, Ö. (2018). The 2016 Hans Cloos lecture: Geo-engineering aspects on the structural stability and protection of historical man-made rock structures: An overview of Cappadocia Region (Turkey) in the UNESCO’s World Heritage List. Bulletin of Engineering Geology and the Environment, 77(2), 457-488. https://doi.org/10.1007/s10064-017-1190-5
  • Ulusay, R., Aydan, Ö., Geniş, M., & Tano, H. (2013). Stability Assessment of Avanos Underground Congress Centre (Cappadocia, Turkey) in Soft Tuffs Through an Integrated Scheme of Rock Engineering Methods. Rock Mechanics and Rock Engineering, 46(6), 1303-1321. https://doi.org/10.1007/s00603-012-0363-6
  • Ulusay, R., Gokceoglu, C., Topal, T., Sonmez, H., Tuncay, E., Erguler, Z. A., & Kasmer, O. (2006). Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgüp (Cappadocia), Turkey. Environmental Geology, 50(4), 473-494.

YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ

Year 2025, Volume: 30 Issue: 1, 123 - 140, 28.04.2025
https://doi.org/10.17482/uumfd.1529009

Abstract

Doğal taşların su emme özelliklerinin yanı sıra kılcal su emme özellikleri de bozunma üzerinde oldukça etkilidir. Kılcal su emme derecesi, doğal taşların gözenek boyutu ve gözeneklerin birbirleriyle bağlantısıyla doğrudan ilişkilidir. Bu çalışmada, Nevşehir ilinde bulunan sarı (SR), bej (BJ) ve gülkurusu (GK) olmak üzere üç farklı renk ve dokuya sahip ignimbirit kullanılmıştır. İlk olarak, örneklerin kapiler su emme katsayıları su ve MgSO4 çözeltisi içerisinde belirlenmiştir. Daha sonra, ignimbiritlere yüzey kaplama malzemesi uygulanmış ve aynı koşullarda kapiler su emme katsayıları tekrar belirlenmiştir. İgnimbiritlerin malzeme özelliklerini belirlemek için kimyasal, mineralojik-petrografik analizler ve fizikomekanik deneyler yapılmıştır. Çalışma neticesinde SR ignimbiritinin su içerisinde kılcal su emme kapasitesi 114,03 g/m2s0,5, magnezyum sülfat çözeltisi içerisinde 101 g/m2s0,5 olarak tespit edilmiştir. BJ ignimbiritlerinin su içindeki kılcal su emme potansiyeli 115,71 g/m2s0,5 olarak belirlenirken, MgSO4 içeren çözeltide 112,16g/m2s0,5 olarak belirlenmiştir. İgnimbiritlere yüzey kaplama reçinesi uygulandıktan sonra, SR ignimbiritinin su içerisinde kılcal su emme kapasitesi 6,54 g/m2s0,5 ve MgSO4 çözeltisi içerisinde 0,07 g/m2s0,5 olarak belirlenmiştir. BJ ignimbiriti için su içinde kılcal su emme kapasitesi 0,08 g/m2s0,5 ve MgSO4 çözeltisi içerisinde 1,27 g/m2s0,5 olarak tespit edilmiştir. Benzer şekilde, GK ignimbiriti için su içinde kılcal su emme kapasitesi 0,08 g/m2s0,5 ve MgSO4 çözeltisi içerisinde 0,79 g/m2s0,5 olarak ölçülmüştür. Yüzeyleri koruyucu kimyasal ile kaplanan ignimbirit örneklerinde kılcal su emme özelliklerinin önemli ölçüde azaldığı tespit edilmiştir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Thanks

Bu çalışma Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiştir (Proje no: FHD-2022-10257).

References

  • Akın, M., Dinçer, İ., Özvan, A., Oyan, V., & Tapan, M. (2016). İgnimbiritlerdeki kılcal su emme özelliğinin Ahlat Selçuklu mezar taşlarının bozunmasındaki rolü. Jeoloji Mühendisliği Dergisi, 40(2), 149-166.
  • Akin, M., Topal, T., Dinçer, İ., Akin, M. K., Özvan, A., Orhan, A., & Orhan, A. (2023). A new quantitative welding degree classification for ignimbrites. Environmental Earth Sciences, 82(13), 345. https://doi.org/10.1007/s12665-023-11026-7
  • Arnold, A. (1990). Salt weathering on monuments. The conservation of monuments in the Mediterranean Basin, 31-58.
  • Atabey, E. (1989). 1:100,000 Scale Geological Maps of Turkey, Kayseri H19 (K33) Sheet.
  • Aydan, Ö., & Ulusay, R. (2013). Geomechanical Evaluation of Derinkuyu Antique Underground City and its Implications in Geoengineering. Rock Mechanics and Rock Engineering, 46(4), 731-754. https://doi.org/10.1007/s00603-012-0301-7
  • Aydar, E., Schmitt, A. K., Çubukçu, H. E., Akin, L., Ersoy, O., Sen, E., Duncan, R. A., & Atici, G. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research, 213, 83-97.
  • Benavente, D., Lock, P., Ángeles García Del Cura, M., & Ordóñez, S. (2002). Predicting the Capillary Imbibition of Porous Rocks from Microstructure. Transport in Porous Media, 49(1), 59-76. https://doi.org/10.1023/A:1016047122877
  • Colangiuli, D., Calia, A., & Bianco, N. (2015). Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Construction and Building Materials, 93, 189-196. https://doi.org/10.1016/j.conbuildmat.2015.05.100
  • Coussy, O. (2006). Deformation and stress from in-pore drying-induced crystallization of salt. Journal of the Mechanics and Physics of Solids, 54(8), 1517-1547. https://doi.org/10.1016/j.jmps.2006.03.002
  • Cueto, N., Benavente, D., Martínez-Martínez, J., & García-del-Cura, M. A. (2009). Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones. Engineering Geology, 107(1), 1-15. https://doi.org/10.1016/j.enggeo.2009.03.009
  • Çelik, M. Y., & Kaçmaz, A. U. (2016). The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environmental Earth Sciences, 75(4), 307. https://doi.org/10.1007/s12665-015-5132-x Çelik, M. Y., Murat, S., & Arsoy, Z. (2019). Yüzey Koruyucu Reçinenin Döğer Tüfü Ve İscehisar Andezitinin Kılcal Su Emme Potansiyeli Üzerine Etkisinin İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 319-338.
  • Çelik, M. Y., Murat, S., & Arsoy, Z. (2019). Yüzey Koruyucu Reçinenin Döğer Tüfü Ve İscehisar Andezitinin Kılcal Su Emme Potansiyeli Üzerine Etkisinin İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 319-338.
  • Çelik, M. Y., & Yılmaz, S. (2018). Statik, tuzlu ve asidik sulu ortamların poroziteli yapıtaşlarının kapiler su emme potansiyeline etkisi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2018(2018). https://doi.org/10.17341/gazimmfd.416369
  • David, C., Darot, M., & Jeannette, D. (1993). Pore structures and transport properties of sandstone. Transport in Porous Media, 11(2), 161-177. https://doi.org/10.1007/BF01059632
  • Deere, D. U., & Miller, R. (1966). Engineering classification and index properties for intact rock. Illinois Univ At Urbana Dept Of Civil Engineering.
  • Derluyn, H., Moonen, P., & Carmeliet, J. (2014). Deformation and damage due to drying-induced salt crystallization in porous limestone. Journal of the Mechanics and Physics of Solids, 63, 242-255. https://doi.org/10.1016/j.jmps.2013.09.005
  • Dinçer, İ., & Bostancı, M. (2019). Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration. Environmental Earth Sciences, 78(1), 7. https://doi.org/10.1007/s12665-018-7993-2
  • Dinçer, İ., Özvan, A., Akin, M., Tapan, M., & Oyan, V. (2012). İgnimbiritlerin Kapiler Su Emme Potansiyellerinin Değerlendirilmesi: Ahlat Taşı Örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), Article 2.
  • Erguler, Z. A. (2009). Field-based experimental determination of the weathering rates of the Cappadocian tuffs. Engineering Geology, 105(3-4), 186-199.
  • Gomes, V., Dionísio, A., & Pozo-Antonio, J. S. (2017). Conservation strategies against graffiti vandalism on Cultural Heritage stones: Protective coatings and cleaning methods. Progress in Organic Coatings, 113, 90-109. https://doi.org/10.1016/j.porgcoat.2017.08.010
  • ISRM, E. (1981). Rock characterization, testing and monitoring—ISRM suggested methods. İçinde Suggested methods for the quantitative description of discontinuities in rock masses (ss. 3-52). Pergamon Oxford.
  • Karagiannis, N., Karoglou, M., Bakolas, A., & Moropoulou, A. (2016). Effect of temperature on water capillary rise coefficient of building materials. Building and Environment, 106, 402-408. https://doi.org/10.1016/j.buildenv.2016.07.008
  • Kasmer, Ö., & Ulusay, R. (2013). Effects of geo-engineering characteristics of the soft tuffs and environmental conditions on the rock-hewn historical structures at Zelve open air museum, Cappadocia, Turkey. Environmental & Engineering Geoscience, 19(2), 149-171.
  • Kılıç, İ., & Gültekin, A. (2009). Effects of surface protection resin on water absorption and strenght of sandstone. 2196, 2199.
  • Korkanç, M. (2007). İgnimbiritlerin jeomekanik özelliklerinin yapı taşı olarak kullanımına etkisi: Nevşehir taşı. Jeoloji Mühendisliği Dergisi, 31(1), 49-60.
  • Korkanç, M. (2013). Deterioration of different stones used in historical buildings within Nigde province, Cappadocia. Construction and Building materials, 48, 789-803.
  • Korkanç, M., İnce, İ., Hatır, M. E., & Tosunlar, M. B. (2021). Atmospheric and anthropogenic deterioration of the İvriz rock monument: Ereğli-Konya, Central Anatolia, Turkey. Bulletin of Engineering Geology and the Environment, 80, 3053-3063.
  • Le Bas, M. J., Le Maitre, R. W., & Woolley, A. R. (1992). The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and petrology, 46(1), 1-22.
  • Le Pennec, J.-L., Bourdier, J.-L., Froger, J.-L., Temel, A., Camus, G., & Gourgaud, A. (1994). Neogene ignimbrites of the Nevsehir plateau (Central Turkey): Stratigraphy, distribution and source constraints. Journal of Volcanology and Geothermal Research,63(1-2), 59-87.
  • Leventis, A., Verganelakis, D. A., Halse, M. R., Webber, J. B., & Strange, J. H. (2000). Capillary Imbibition and Pore Characterisation in Cement Pastes. Transport in Porous Media, 39(2), 143-157. https://doi.org/10.1023/A:1006687114424
  • Mosquera, M. J., Rivas, T., Prieto, B., & Silva, B. (2000). Capillary Rise in Granitic Rocks: Interpretation of Kinetics on the Basis of Pore Structure. Journal of Colloid and Interface Science, 222(1), 41-45. https://doi.org/10.1006/jcis.1999.6612
  • Nesbitt, Hw., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. nature, 299(5885), 715-717.
  • NGB. (1985). Norwegian group of rock mechanics: Handbook in engineering geology—Rock. Norwegian rock mechanics group (s. 140).
  • Nicholson, D. T. (2001). Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms, 26(8), 819-838. https://doi.org/10.1002/esp.228
  • Özdemir, A. (2002). Capillary water absorption potential of some building materials. Geological Engineering, 26(1), 19-32.
  • Özvan, A., Dinçer, İ., Akın, M., Oyan, V., & Tapan, M. (2015). Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Engineering geology, 185, 81-95.
  • Ruedrich, J., & Siegesmund, S. (2007). Salt and ice crystallisation in porous sandstones. Environmental geology, 52, 225-249.
  • Sbardella, F., Bracciale, M., Santarelli, M., & Asua, J. M. (2020). Waterborne modified-silica/acrylates hybrid nanocomposites as surface protective coatings for stone monuments. Progress in Organic Coatings, 149, 105897.
  • Sengün, N., Demirdag, S., Akbay, D., Ugur, I., & Altindag, R. (2015). The effect of rock properties on the capillary water absorption coefficients of the different natural stone types. ISRM Regional Symposium-EUROCK 2015.
  • Shao, J., Yang, S., & Li, C. (2012). Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: İnferences from analysis of fluvial sediments. Sedimentary Geology, 265, 110-120.
  • Thaulow, N., & Sahu, S. (2004). Mechanism of concrete deterioration due to salt crystallization. Materials Characterization, 53(2), 123-127. https://doi.org/10.1016/j.matchar.2004.08.013
  • Topal, T., & Doyuran, V. (1997). Engineering geological properties and durability assessment of the Cappadocian tuff. Engineering Geology, 47(1-2), 175-187.
  • Topal, T., & Sözmen, B. (2003). Deterioration mechanisms of tuffs in Midas monument. Engineering Geology, 68(3-4), 201-223.
  • Tosunlar, M. B., Hatır, M. E., İnce, İ., Bozdağ, A., & Korkanç, M. (2018). The Determination of Deteriorations on the Mısırlıoğlu Bridge (Konya, Turkey) by Non-Destructive Techniques (NDT). ICONARP International Journal of Architecture and Planning, 6(2), Article 2. https://doi.org/10.15320/ICONARP.2018.60
  • TS EN 1925. (2000). Doğal Taşlar- Deney metotları-Kılcal Etkiye Bağlı Su Emme Katsayısının Tayini. Türk Standartları Enstitüsü.
  • TS EN 1926. (2013). Doğal Taşlar-Deney Yöntemleri-Tek Eksenli Basınç Dayanımı Tayini. Türk Standartları Enstitüsü.
  • TS EN 1936. (2010). Doğal Taşlar-Deney Yöntemleri-Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Porozitelilik Tayini. Türk Standartları Enstitüsü.
  • TS EN 12370. (2001). Doğal Taşlar-Deney Metotları-Tuz Kristallenmesine Direncin Tayini. Türk Standartları Enstitüsü.
  • TS EN 13755. (2014). Doğal Taşlar-Deney Yöntemleri-Atmosfer Basıncında Su Emme Tayini. Türk Standartları Enstitüsü.
  • TS EN 14579. (2006). Doğal Taşlar-Deney Yöntemleri-Ses Hızı İlerlemesinin Tayini. Türk Standartları Enstitüsü.
  • Tulliani, J.-M., Serra, C. L., & Sangermano, M. (2014). A visible and long-wavelength photocured epoxy coating for stone protection. Journal of cultural heritage, 15(3), 250-257.
  • Tuncay, E. (2009). Rock rupture phenomenon and pillar failure in tuffs in the Cappadocia region (Turkey). International Journal of Rock Mechanics and Mining Sciences, 46(8), 1253-1266.
  • Ulusay, R., & Aydan, Ö. (2018). The 2016 Hans Cloos lecture: Geo-engineering aspects on the structural stability and protection of historical man-made rock structures: An overview of Cappadocia Region (Turkey) in the UNESCO’s World Heritage List. Bulletin of Engineering Geology and the Environment, 77(2), 457-488. https://doi.org/10.1007/s10064-017-1190-5
  • Ulusay, R., Aydan, Ö., Geniş, M., & Tano, H. (2013). Stability Assessment of Avanos Underground Congress Centre (Cappadocia, Turkey) in Soft Tuffs Through an Integrated Scheme of Rock Engineering Methods. Rock Mechanics and Rock Engineering, 46(6), 1303-1321. https://doi.org/10.1007/s00603-012-0363-6
  • Ulusay, R., Gokceoglu, C., Topal, T., Sonmez, H., Tuncay, E., Erguler, Z. A., & Kasmer, O. (2006). Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgüp (Cappadocia), Turkey. Environmental Geology, 50(4), 473-494.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Research Articles
Authors

Ogün Ozan Varol 0000-0002-3546-3086

Early Pub Date April 11, 2025
Publication Date April 28, 2025
Submission Date August 6, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Varol, O. O. (2025). YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(1), 123-140. https://doi.org/10.17482/uumfd.1529009
AMA Varol OO. YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ. UUJFE. April 2025;30(1):123-140. doi:10.17482/uumfd.1529009
Chicago Varol, Ogün Ozan. “YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, no. 1 (April 2025): 123-40. https://doi.org/10.17482/uumfd.1529009.
EndNote Varol OO (April 1, 2025) YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 1 123–140.
IEEE O. O. Varol, “YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ”, UUJFE, vol. 30, no. 1, pp. 123–140, 2025, doi: 10.17482/uumfd.1529009.
ISNAD Varol, Ogün Ozan. “YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/1 (April 2025), 123-140. https://doi.org/10.17482/uumfd.1529009.
JAMA Varol OO. YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ. UUJFE. 2025;30:123–140.
MLA Varol, Ogün Ozan. “YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 30, no. 1, 2025, pp. 123-40, doi:10.17482/uumfd.1529009.
Vancouver Varol OO. YÜZEY KORUYUCU REÇİNENİN KAPİLER SU EMME ÖZELLİĞİ ÜZERİNE ETKİSİ : NEVŞEHİR İGNİMBİRİTİ ÖRNEĞİ. UUJFE. 2025;30(1):123-40.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.