Review
BibTex RIS Cite

Multipl Skleroz ve Kolesterol Metabolizması

Year 2025, Volume: 51 Issue: 1, 139 - 144, 27.05.2025
https://doi.org/10.32708/uutfd.1589812

Abstract

Yetişkin lipid metabolizması plazma lipidlerinden oluşur. Trigliseridler enerji rezervlerinin en önemli kaynağı iken fosfolipidler ve kolesterol organellerin ve hücre zarlarının bileşenleridir. Lipidler, özellikle de kolesterol, birçok hücresel fonksiyonda rol oynar. Metabolizma bozukluklarında çeşitli nörodejeneratif hücresel süreçler gelişebilir. Nöronlar, diğer biyolojik membranlara kıyasla önemli ölçüde farklı lipid bileşimine sahiptir. Bu farklılıklar ve bu lipidlerin nöronal patolojilerdeki rolü hala tam olarak anlaşılamamıştır. Multipl Skleroz'da lipid molekülleri üzerine yapılan çalışmalar kırk yıl öncesine dayanmaktadır. Apolipoprotein değişiklikleri, plazma lipoproteinleri ve oksisteroller üzerine yapılan çalışmalar dikkat çekmiştir. Bozulmuş kolesterol metabolizmasının hastalığın hem inflamatuar hem de nörodejeneratif patogenezinde rol oynayabileceği ve düzeltilmesinin tedavi için hala en kısıtlı nokta olan Multipl Skleroz'un klinik seyrindeki ilerleme basamaklarını olumlu yönde etkileyebileceği düşünülmektedir. Bu derlemede, Multipl Skleroz'un immünopatogenezi ve klinik belirtileri ile kolesterol metabolizmasındaki değişiklikler sunulmuştur.

References

  • 1. Kırnap Nazlı, G., Lipit Biyokimyası ve Metabolizması in Geçmişten Geleceğe Endokrinoloji. 2019, Turkish Endocrinology and Metabolism Society. p. 613-619.
  • 2. Fahy, E., et al., A comprehensive classification system for lipids. J Lipid Res, 2005. 46(5): p. 839-61.
  • 3. Fahy, E., et al., Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res, 2009. 50 Suppl(Suppl): p. S9-14.
  • 4. Calderon, R.O., B. Attema, and G.H. DeVries, Lipid composition of neuronal cell bodies and neurites from cultured dorsal root ganglia. J Neurochem, 1995. 64(1): p. 424-9.
  • 5. Vance, J.E., R.B. Campenot, and D.E. Vance, The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta, 2000. 1486(1): p. 84-96.
  • 6. Simons, M. and J. Trotter, Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol, 2007. 17(5): p. 533-40.
  • 7. O'Brien, J.S., Stability of the Myelin Membrane. Science, 1965. 147(3662): p. 1099-107.
  • 8. Reed, B., et al., Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol, 2014. 71(2): p. 195-200.
  • 9. Kivipelto, M. and A. Solomon, Cholesterol as a risk factor for Alzheimer's disease - epidemiological evidence. Acta Neurol Scand Suppl, 2006. 185: p. 50-7.
  • 10. Popp, J., et al., Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer's disease. Biochem Pharmacol, 2013. 86(1): p. 37-42.
  • 11. Solomon, A., et al., Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology, 2007. 68(10): p. 751-6.
  • 12. Kivipelto, M., et al., Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol, 2005. 62(10): p. 1556-60.
  • 13. Kuo, Y.M., et al., Elevated low-density lipoprotein in Alzheimer's disease correlates with brain abeta 1-42 levels. Biochem Biophys Res Commun, 1998. 252(3): p. 711-5.
  • 14. An, Y., et al., Longitudinal and nonlinear relations of dietary and Serum cholesterol in midlife with cognitive decline: results from EMCOA study. Mol Neurodegener, 2019. 14(1): p. 51.
  • 15. Anstey, K.J., K. Ashby-Mitchell, and R. Peters, Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J Alzheimers Dis, 2017. 56(1): p. 215-228.
  • 16. de Lau, L.M., et al., Serum cholesterol levels and the risk of Parkinson's disease. Am J Epidemiol, 2006. 164(10): p. 998-1002.
  • 17. Jeong, S.M., W. Jang, and D.W. Shin, Association of statin use with Parkinson's disease: Dose-response relationship. Mov Disord, 2019. 34(7): p. 1014-1021.
  • 18. Emamzadeh, F.N. and D. Allsop, alpha-Synuclein Interacts with Lipoproteins in Plasma. J Mol Neurosci, 2017. 63(2): p. 165-172.
  • 19. de Oliveira, J., et al., Diphenyl diselenide prevents cortico-cerebral mitochondrial dysfunction and oxidative stress induced by hypercholesterolemia in LDL receptor knockout mice. Neurochem Res, 2013. 38(10): p. 2028-36.
  • 20. Morris, J.K., et al., Neurodegeneration in an animal model of Parkinson's disease is exacerbated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol, 2010. 299(4): p. R1082-90.
  • 21. Lutjohann, D., et al., Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A, 1996. 93(18): p. 9799-804.
  • 22. Wang, Y., E. Yutuc, and W.J. Griffiths, Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol, 2021. 178(16): p. 3176-3193.
  • 23. Saeed, A.A., et al., Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain. J Biol Chem, 2014. 289(34): p. 23712-22.
  • 24. Minagar, A. and J.S. Alexander, Blood-brain barrier disruption in multiple sclerosis. Mult Scler, 2003. 9(6): p. 540-9.
  • 25. Lorincz, B., et al., The role of cholesterol metabolism in multiple sclerosis: From molecular pathophysiology to radiological and clinical disease activity. Autoimmun Rev, 2022. 21(6): p. 103088.
  • 26. Glaria, E., N.A. Letelier, and A.F. Valledor, Integrating the roles of liver X receptors in inflammation and infection: mechanisms and outcomes. Curr Opin Pharmacol, 2020. 53: p. 55-65.
  • 27. Wang, Z., et al., Nuclear Receptor NR1H3 in Familial Multiple Sclerosis. Neuron, 2016. 90(5): p. 948-54.
  • 28. Berghoff, S.A., et al., Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci, 2021. 24(1): p. 47-60.
  • 29. Fukumoto, H., et al., Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J Biol Chem, 2002. 277(50): p. 48508-13.
  • 30. McComb, M., et al., Apolipoproteins AI and E are associated with neuroaxonal injury to gray matter in multiple sclerosis. Mult Scler Relat Disord, 2020. 45: p. 102389.
  • 31. Murali, N., et al., Cholesterol and neurodegeneration: longitudinal changes in serum cholesterol biomarkers are associated with new lesions and gray matter atrophy in multiple sclerosis over 5 years of follow-up. Eur J Neurol, 2020. 27(1): p. 188-e4.
  • 32. Jakimovski, D., et al., High density lipoprotein cholesterol and apolipoprotein A-I are associated with greater cerebral perfusion in multiple sclerosis. J Neurol Sci, 2020. 418: p. 117120.
  • 33. Tettey, P., et al., Adverse lipid profile is not associated with relapse risk in MS: results from an observational cohort study. J Neurol Sci, 2014. 340(1-2): p. 230-2.
  • 34. Tettey, P., et al., An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J Neurol Neurosurg Psychiatry, 2017. 88(5): p. 395-401.
  • 35. Weinstock-Guttman, B., et al., Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation, 2011. 8: p. 127.
  • 36. Palavra, F., et al., New markers of early cardiovascular risk in multiple sclerosis patients: oxidized-LDL correlates with clinical staging. Dis Markers, 2013. 34(5): p. 341-8.
  • 37. Gafson, A.R., et al., Lipoprotein markers associated with disability from multiple sclerosis. Sci Rep, 2018. 8(1): p. 17026.
  • 38. Weinstock-Guttman, B., et al., Lipid profiles are associated with lesion formation over 24 months in interferon-beta treated patients following the first demyelinating event. J Neurol Neurosurg Psychiatry, 2013. 84(11): p. 1186-91.
  • 39. Fellows, K., et al., Protective associations of HDL with blood-brain barrier injury in multiple sclerosis patients. J Lipid Res, 2015. 56(10): p. 2010-8.
  • 40. Jende, J.M.E., et al., Peripheral nerve involvement in multiple sclerosis: Demonstration by magnetic resonance neurography. Ann Neurol, 2017. 82(5): p. 676-685.
  • 41. van de Kraats, C., et al., Oxysterols and cholesterol precursors correlate to magnetic resonance imaging measures of neurodegeneration in multiple sclerosis. Mult Scler, 2014. 20(4): p. 412-7.
  • 42. Lorincz, B., et al., Lipid measures are associated with cognitive functioning in multiple sclerosis patients. Mult Scler Relat Disord, 2024. 91: p. 105879.
  • 43. Damiza-Detmer, A., M. Pawelczyk, and A. Glabinski, Protective Role of High-Density Lipoprotein in Multiple Sclerosis. Antioxidants (Basel), 2024. 13(11).
  • 44. Greenwood, J., L. Steinman, and S.S. Zamvil, Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol, 2006. 6(5): p. 358-70.
  • 45. Greenwood, J., et al., Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J, 2003. 17(8): p. 905-7.
  • 46. Weber, M.S., et al., Statins in the treatment of central nervous system autoimmune disease. J Neuroimmunol, 2006. 178(1-2): p. 140-8.
  • 47. Zamvil, S.S. and L. Steinman, Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology, 2002. 59(7): p. 970-1.
  • 48. van der Most, P.J., et al., Statins: mechanisms of neuroprotection. Prog Neurobiol, 2009. 88(1): p. 64-75.
  • 49. Giannopoulos, S., et al., Statins and cerebral hemodynamics. J Cereb Blood Flow Metab, 2012. 32(11): p. 1973-6.
  • 50. Greenwood, J. and J.C. Mason, Statins and the vascular endothelial inflammatory response. Trends Immunol, 2007. 28(2): p. 88-98.
  • 51. Waubant, E., et al., Randomized controlled trial of atorvastatin in clinically isolated syndrome: the STAyCIS study. Neurology, 2012. 78(15): p. 1171-8.
  • 52. Sorensen, P.S., et al., Simvastatin as add-on therapy to interferon beta-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol, 2011. 10(8): p. 691-701.
  • 53. Tsakiri, A., et al., Simvastatin improves final visual outcome in acute optic neuritis: a randomized study. Mult Scler, 2012. 18(1): p. 72-81.
  • 54. Chataway, J., et al., Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet, 2014. 383(9936): p. 2213-21.
  • 55. Blackstone, J., et al., Evaluating the effectiveness of simvastatin in slowing the progression of disability in secondary progressive multiple sclerosis (MS-STAT2): protocol for a multicentre, randomised controlled, double-blind, phase 3 clinical trial in the UK. BMJ Open, 2024. 14(9): p. e086414.
  • 56. Zielinska, M. and I. Michonska, Effectiveness of various diet patterns among patients with multiple sclerosis. Postep Psychiatr Neurol, 2023. 32(1): p. 49-58.

Multiple Sclerosis and Cholesterol Metabolism

Year 2025, Volume: 51 Issue: 1, 139 - 144, 27.05.2025
https://doi.org/10.32708/uutfd.1589812

Abstract

Adult lipid metabolism consists of plasma lipids. Triglycerides are the most important sources of energy reserves, while phospholipids and cholesterol are key components of organelles and cell membranes. Lipids, especially cholesterol, are involved in many cellular functions. Various neurodegenerative cellular processes can develop in metabolism disorders. Neurons have significantly different lipid composition compared to other biological membranes. These differences and the role of these lipids in neuronal pathologies are still poorly understood. Studies on lipid molecules in MS date back four decades. Studies on apolipoprotein alterations, plasma lipoproteins and oxysterols have attracted attention. It is thought that impaired cholesterol metabolism may play a role in both the inflammatory and neurodegenerative pathogenesis of the disease and its correction may favorably affect the progression steps in the clinical course of MS, which is still the most limited point for treatment. In this review, the immunopathogenesis and clinical manifestations of Multiple Sclerosis and alterations in cholesterol metabolism are presented.

References

  • 1. Kırnap Nazlı, G., Lipit Biyokimyası ve Metabolizması in Geçmişten Geleceğe Endokrinoloji. 2019, Turkish Endocrinology and Metabolism Society. p. 613-619.
  • 2. Fahy, E., et al., A comprehensive classification system for lipids. J Lipid Res, 2005. 46(5): p. 839-61.
  • 3. Fahy, E., et al., Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res, 2009. 50 Suppl(Suppl): p. S9-14.
  • 4. Calderon, R.O., B. Attema, and G.H. DeVries, Lipid composition of neuronal cell bodies and neurites from cultured dorsal root ganglia. J Neurochem, 1995. 64(1): p. 424-9.
  • 5. Vance, J.E., R.B. Campenot, and D.E. Vance, The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta, 2000. 1486(1): p. 84-96.
  • 6. Simons, M. and J. Trotter, Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol, 2007. 17(5): p. 533-40.
  • 7. O'Brien, J.S., Stability of the Myelin Membrane. Science, 1965. 147(3662): p. 1099-107.
  • 8. Reed, B., et al., Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol, 2014. 71(2): p. 195-200.
  • 9. Kivipelto, M. and A. Solomon, Cholesterol as a risk factor for Alzheimer's disease - epidemiological evidence. Acta Neurol Scand Suppl, 2006. 185: p. 50-7.
  • 10. Popp, J., et al., Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer's disease. Biochem Pharmacol, 2013. 86(1): p. 37-42.
  • 11. Solomon, A., et al., Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology, 2007. 68(10): p. 751-6.
  • 12. Kivipelto, M., et al., Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol, 2005. 62(10): p. 1556-60.
  • 13. Kuo, Y.M., et al., Elevated low-density lipoprotein in Alzheimer's disease correlates with brain abeta 1-42 levels. Biochem Biophys Res Commun, 1998. 252(3): p. 711-5.
  • 14. An, Y., et al., Longitudinal and nonlinear relations of dietary and Serum cholesterol in midlife with cognitive decline: results from EMCOA study. Mol Neurodegener, 2019. 14(1): p. 51.
  • 15. Anstey, K.J., K. Ashby-Mitchell, and R. Peters, Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J Alzheimers Dis, 2017. 56(1): p. 215-228.
  • 16. de Lau, L.M., et al., Serum cholesterol levels and the risk of Parkinson's disease. Am J Epidemiol, 2006. 164(10): p. 998-1002.
  • 17. Jeong, S.M., W. Jang, and D.W. Shin, Association of statin use with Parkinson's disease: Dose-response relationship. Mov Disord, 2019. 34(7): p. 1014-1021.
  • 18. Emamzadeh, F.N. and D. Allsop, alpha-Synuclein Interacts with Lipoproteins in Plasma. J Mol Neurosci, 2017. 63(2): p. 165-172.
  • 19. de Oliveira, J., et al., Diphenyl diselenide prevents cortico-cerebral mitochondrial dysfunction and oxidative stress induced by hypercholesterolemia in LDL receptor knockout mice. Neurochem Res, 2013. 38(10): p. 2028-36.
  • 20. Morris, J.K., et al., Neurodegeneration in an animal model of Parkinson's disease is exacerbated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol, 2010. 299(4): p. R1082-90.
  • 21. Lutjohann, D., et al., Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A, 1996. 93(18): p. 9799-804.
  • 22. Wang, Y., E. Yutuc, and W.J. Griffiths, Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol, 2021. 178(16): p. 3176-3193.
  • 23. Saeed, A.A., et al., Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain. J Biol Chem, 2014. 289(34): p. 23712-22.
  • 24. Minagar, A. and J.S. Alexander, Blood-brain barrier disruption in multiple sclerosis. Mult Scler, 2003. 9(6): p. 540-9.
  • 25. Lorincz, B., et al., The role of cholesterol metabolism in multiple sclerosis: From molecular pathophysiology to radiological and clinical disease activity. Autoimmun Rev, 2022. 21(6): p. 103088.
  • 26. Glaria, E., N.A. Letelier, and A.F. Valledor, Integrating the roles of liver X receptors in inflammation and infection: mechanisms and outcomes. Curr Opin Pharmacol, 2020. 53: p. 55-65.
  • 27. Wang, Z., et al., Nuclear Receptor NR1H3 in Familial Multiple Sclerosis. Neuron, 2016. 90(5): p. 948-54.
  • 28. Berghoff, S.A., et al., Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci, 2021. 24(1): p. 47-60.
  • 29. Fukumoto, H., et al., Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J Biol Chem, 2002. 277(50): p. 48508-13.
  • 30. McComb, M., et al., Apolipoproteins AI and E are associated with neuroaxonal injury to gray matter in multiple sclerosis. Mult Scler Relat Disord, 2020. 45: p. 102389.
  • 31. Murali, N., et al., Cholesterol and neurodegeneration: longitudinal changes in serum cholesterol biomarkers are associated with new lesions and gray matter atrophy in multiple sclerosis over 5 years of follow-up. Eur J Neurol, 2020. 27(1): p. 188-e4.
  • 32. Jakimovski, D., et al., High density lipoprotein cholesterol and apolipoprotein A-I are associated with greater cerebral perfusion in multiple sclerosis. J Neurol Sci, 2020. 418: p. 117120.
  • 33. Tettey, P., et al., Adverse lipid profile is not associated with relapse risk in MS: results from an observational cohort study. J Neurol Sci, 2014. 340(1-2): p. 230-2.
  • 34. Tettey, P., et al., An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J Neurol Neurosurg Psychiatry, 2017. 88(5): p. 395-401.
  • 35. Weinstock-Guttman, B., et al., Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation, 2011. 8: p. 127.
  • 36. Palavra, F., et al., New markers of early cardiovascular risk in multiple sclerosis patients: oxidized-LDL correlates with clinical staging. Dis Markers, 2013. 34(5): p. 341-8.
  • 37. Gafson, A.R., et al., Lipoprotein markers associated with disability from multiple sclerosis. Sci Rep, 2018. 8(1): p. 17026.
  • 38. Weinstock-Guttman, B., et al., Lipid profiles are associated with lesion formation over 24 months in interferon-beta treated patients following the first demyelinating event. J Neurol Neurosurg Psychiatry, 2013. 84(11): p. 1186-91.
  • 39. Fellows, K., et al., Protective associations of HDL with blood-brain barrier injury in multiple sclerosis patients. J Lipid Res, 2015. 56(10): p. 2010-8.
  • 40. Jende, J.M.E., et al., Peripheral nerve involvement in multiple sclerosis: Demonstration by magnetic resonance neurography. Ann Neurol, 2017. 82(5): p. 676-685.
  • 41. van de Kraats, C., et al., Oxysterols and cholesterol precursors correlate to magnetic resonance imaging measures of neurodegeneration in multiple sclerosis. Mult Scler, 2014. 20(4): p. 412-7.
  • 42. Lorincz, B., et al., Lipid measures are associated with cognitive functioning in multiple sclerosis patients. Mult Scler Relat Disord, 2024. 91: p. 105879.
  • 43. Damiza-Detmer, A., M. Pawelczyk, and A. Glabinski, Protective Role of High-Density Lipoprotein in Multiple Sclerosis. Antioxidants (Basel), 2024. 13(11).
  • 44. Greenwood, J., L. Steinman, and S.S. Zamvil, Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol, 2006. 6(5): p. 358-70.
  • 45. Greenwood, J., et al., Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J, 2003. 17(8): p. 905-7.
  • 46. Weber, M.S., et al., Statins in the treatment of central nervous system autoimmune disease. J Neuroimmunol, 2006. 178(1-2): p. 140-8.
  • 47. Zamvil, S.S. and L. Steinman, Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology, 2002. 59(7): p. 970-1.
  • 48. van der Most, P.J., et al., Statins: mechanisms of neuroprotection. Prog Neurobiol, 2009. 88(1): p. 64-75.
  • 49. Giannopoulos, S., et al., Statins and cerebral hemodynamics. J Cereb Blood Flow Metab, 2012. 32(11): p. 1973-6.
  • 50. Greenwood, J. and J.C. Mason, Statins and the vascular endothelial inflammatory response. Trends Immunol, 2007. 28(2): p. 88-98.
  • 51. Waubant, E., et al., Randomized controlled trial of atorvastatin in clinically isolated syndrome: the STAyCIS study. Neurology, 2012. 78(15): p. 1171-8.
  • 52. Sorensen, P.S., et al., Simvastatin as add-on therapy to interferon beta-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol, 2011. 10(8): p. 691-701.
  • 53. Tsakiri, A., et al., Simvastatin improves final visual outcome in acute optic neuritis: a randomized study. Mult Scler, 2012. 18(1): p. 72-81.
  • 54. Chataway, J., et al., Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet, 2014. 383(9936): p. 2213-21.
  • 55. Blackstone, J., et al., Evaluating the effectiveness of simvastatin in slowing the progression of disability in secondary progressive multiple sclerosis (MS-STAT2): protocol for a multicentre, randomised controlled, double-blind, phase 3 clinical trial in the UK. BMJ Open, 2024. 14(9): p. e086414.
  • 56. Zielinska, M. and I. Michonska, Effectiveness of various diet patterns among patients with multiple sclerosis. Postep Psychiatr Neurol, 2023. 32(1): p. 49-58.
There are 56 citations in total.

Details

Primary Language English
Subjects Endocrinology, Neurology and Neuromuscular Diseases
Journal Section Review Articles
Authors

Furkan Sarıdaş 0000-0001-5945-2317

Filiz Mercan Sarıdaş 0000-0002-3135-9388

Canan Ersoy 0000-0003-4510-6282

Ömer Faruk Turan 0000-0002-6752-1519

Publication Date May 27, 2025
Submission Date November 26, 2024
Acceptance Date February 5, 2025
Published in Issue Year 2025 Volume: 51 Issue: 1

Cite

AMA Sarıdaş F, Mercan Sarıdaş F, Ersoy C, Turan ÖF. Multiple Sclerosis and Cholesterol Metabolism. Uludağ Tıp Derg. May 2025;51(1):139-144. doi:10.32708/uutfd.1589812

ISSN: 1300-414X, e-ISSN: 2645-9027

Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
2023