Research Article
BibTex RIS Cite

Lojistik Performans Endeksinde Önde Gelen Ülkelerin Dijitalleşme Düzeylerinin Belirlenmesi: CRITIC-TOPSIS Yaklaşımı ile Bir Uygulama

Year 2025, Volume: 59 Issue: 2, 431 - 450, 16.04.2025
https://doi.org/10.51551/verimlilik.1541480

Abstract

Amaç: Bu çalışma, 2023 yılı verilerini temel alarak Lojistik Performans Endeksi'nde (LPI) önde gelen ülkelerin dijitalleşme düzeylerinin analiz edilmesini amaçlamaktadır.
Yöntem: Dijitalleşme indeksleri ile ülkelerin lojistik performansları arasındaki ilişkiyi değerlendirmek için altı dijitalleşme endeksi kriterler olarak, LPI’de ön sıralarda yer alan 23 ülke ise alternatifler olarak analize dahil edilmiştir. Çalışmada, kriterleri ağırlıklandırmak için CRITIC yöntemi kullanılmış, karar alternatiflerinin sıralanması ise TOPSIS yöntemiyle gerçekleştirilmiştir.
Bulgular: Araştırmanın bulguları, LPI’de ilk sıralarda yer alan ülkelerin dijitalleşme endekslerinde de yüksek skorlara sahip olduğunu göstermektedir. Kriterlerin önem düzeylerini belirlemek için CRITIC yöntemi kullanılarak yapılan analizde LPI'deki ilk 23 ülke için en önemli üç endeksin önem sırasına göre IDI, WCI ve GII olduğu ortaya koyulmuştur. LPI'de önde gelen ülkelerin dijitalleşme seviyelerine göre TOPSIS yöntemiyle yapılan sıralamadaysa dijitalleşme seviyesi en yüksek ülkelerin sırasıyla Singapur, ABD ve Hollanda olduğu belirlenmiştir.
Özgünlük: Literatürde, bu çalışmada sunulan endeksler temel alınarak LPI sıralamasındaki lider ülkelerin dijitalleşme düzeylerini değerlendiren herhangi bir araştırmaya rastlanmamıştır. Dijital teknolojilerin ülkelerin lojistik performansını etkilemedeki kritik rolü ve LPI ile dijitalleşme endekslerini bütüncül bir bakış açısıyla kapsamlı bir şekilde değerlendiren bir çalışmanın yokluğu göz önüne alındığında, bu araştırmanın mevcut literatüre önemli bir katkı sağlaması beklenmektedir.

References

  • Adiguzel Mercangoz, B., Yildirim, B. and Kuzu Yildirim, S. (2020). "Time Period based COPRAS-G Method: Application on the Logistics Performance Index", Logforum, 16(2), 239-250. https://doi.org/10.17270/J.LOG.2020.432
  • Alidrisi, H. (2021). “The Development of an Efficiency-Based Global Green Manufacturing Innovation Index: An Input-Oriented DEA Approach”, Sustainability, 13(22), 22. https://doi.org/10.1016/j.techfore.2023.122904
  • Amiri, E. and Sangar, A. B. (2023). “Assessing the ICT Development in Iranian Cities: The Strategy to Accelerate Digital Advancement”, Technological Forecasting and Social Change, 197, 122904. https://doi.org/10.1016/j.techfore.2023.122904
  • Ayçin, E. (2020). “Çok Kriterli Karar Verme: Bilgisayar Uygulamalı Çözümler”, Nobel Yayınevi, Ankara.
  • Aytekin, A., Ecer, F., Korucuk, S. and Karamaşa, Ç. (2022). “Global Innovation Efficiency Assessment of EU Member and Candidate Countries via DEA-EATWIOS Multi-criteria Methodology”, Technology in Society, 68, 101896. https://doi.org/10.1016/j.techsoc.2022.101896
  • Bánhidi, Z. and Dobos, I. (2024). “Measuring Digital Development: Ranking Using Data Envelopment Analysis (DEA) and Network Readiness Index (NRI)”, Central European Journal of Operations Research. https://doi.org/10.1007/s10100-024-00919-y
  • Behzadian, M., Otaghsara, S. K., Yazdani, M. and Ignatius, J. (2012). “A State-of the-Art Survey of TOPSIS Applications”, Expert Systems with applications, 39(17), 13051-13069.
  • Chejarla, K.C. and Vaidya, O.S. (2024). “A Hybrid Multi-Criteria Decision-Making Approach for Longitudinal Data”, OPSEARCH, 61(3), 1013-1060. https://doi.org/10.1007/s12597-023-00736-y
  • Çakır, S. (2017). “Measuring Logistics Performance of OECD Countries via Fuzzy Linear Regression”, Journal of Multi-Criteria Decision Analysis, 24(3-4), 177-186. https://doi.org/10.1002/mcda.1601
  • Çakir, S. and Perçin, S. (2013). “Çok Kriterli Karar Verme Teknikleriyle Lojistik Firmalarında Performans Ölçümü”, Ege Akademik Bakış, 13(4), 449-459.
  • Çalık, A., Erdebilli, B. and Özdemir, Y. S. (2023). “Novel Integrated Hybrid Multi-Criteria Decision-Making Approach for Logistics Performance Index”, Transportation Research Record, 2677(2), 1392-1400. https://doi.org/10.1177/0361198122111331
  • Deng, Y. and Chan, F.T. (2011). “A New Fuzzy Dempster MCDM Method and Its Application in Supplier Selection”, Expert Systems with Applications, 38(8), 9854-9861.
  • Diakoulaki, D., Mavrotas, G. and Papayannakis, L. (1995). “Determining Objective Weights in Multiple Criteria Problems: The CRITIC Method”, Computers & Operations Research, 22(7), 763-770.
  • Erdin, C. and Çağlar, M. (2023). “National Innovation Efficiency: A DEA-Based Measurement of OECD Countries”, International Journal of Innovation Science, 15(3), 427-456. https://doi.org/10.1108/IJIS-07-2021-0118
  • Erh, J. (2023). “Singapore’s Digital Transformation Journey”, Journal of Southeast Asian Economies, 40(1), 4-31. European Commission. (2024). 2030 “Digital Decade—Annex:The Netherlands”. https://www.nlconnect.org/files/knowledgebase/2023/10/Netherlands-KvScfRYoOrO7mrK8JBMawkv0mWc- 98660.pdf, (Accessed: 25.07.2024).
  • Eurostat. (2024). “The Netherlands, Italy and Spain Each Handled More Than 100 Million Tonnes of Goods in the Fourth Quarter of 2023”, Maritime Transport of Goods - Quarterly Data, https://ec.europa.eu/eurostat/statistics-explained/index.php? title=File:Gross_weight_of_seaborne_goods_handled_in_main_ports,_2022Q4,_2023Q3_and_2023Q4_(million_tonnes).png (Accessed: 31.07.2024).
  • Fedajev, A., Panić, M. and Živković, Ž. (2024). “Western Balkan Countries’ Innovation as Determinant of their Future Growth and Development”, Innovation: The European Journal of Social Science Research, 0(0), 1-29. https://doi.org/10.1080/13511610.2024.2339939
  • Foma, A. A.K. and Mohammed, I. (2018). “Digital Transformation in the Logistics Industry”, Unpublished Master’s Thesis, Jönköping University International Business Scholl, Jönköping, Sweden.
  • Gültekin Yıldırım, Z. (2015, May 8). “Türkiye Lojistik Sektörü ve Demiryolu Taşımacılığına İlişkin Araştırma Sonuçları ve Hedefler”, Elektrikli Raylı Ulaşım Sistemleri Sempozyumu, Eskişehir. http://www.emo.org.tr/ekler/b2622eb706641a5_ek.pdf, (Accessed: 05.08.2024).
  • Gürler, H. E., Özçalıcı, M. and Pamucar, D. (2024). “Determining Criteria Weights with Genetic Algorithms for Multi-Criteria Decision Making Methods: The Case of Logistics Performance Index Rankings of European Union Countries”, Socio-Economic Planning Sciences, 91, 101758. https://doi.org/10.1016/j.seps.2023.101758
  • Hwang, C.L. and Yoon, K.P. (1981). “Multiple Attribute Decision Making: Methods and Applications”, Springer-Verlag, New York.
  • IMD. (2024a). “World Competitiveness Ranking”, https://www.imd.org/centers/wcc/world-competitiveness-center/rankings/world-competitiveness-ranking/, (Accessed: 15.07.2024).
  • IMD. (2024b). “World Digital Competitiveness Ranking”, https://www.imd.org/centers/wcc/world-competitiveness-center/rankings/world-digital-competitiveness-ranking/, (Accessed: 15.07.2024). International Telecommunication Union (ITU). (2024). “The ICT Development Index”, https://www.itu.int/en/ITU- D/Statistics/Pages/IDI/default.aspx, (Accessed: 15.07.2024).
  • Işik, Ö., Aydin, Y. and Koşarolu, Ş. (2020). “The Assessment of the Logistics Performance Index of CEE Countries with the New Combination of SV and MABAC Methods”, Logforum, 16(4), 549-559. https://doi.org/10.17270/J.LOG.2020.504
  • Jahanshahloo, G.R., Lotfi, F.H. and Izadikhah, M. (2006). “An Algorithmic Method to Extend TOPSIS for Decision-Making Problems with Interval Data”, Applied Mathematics and Computation, 175(2), 1375-1384.
  • Ju, M., Mirović, I., Petrović, V., Erceg, Ž. and Stević, Ž. (2024). “A Novel Approach for the Assessment of Logistics Performance İndex of EU Countries”, Economics, 18(1), 20220074. https://doi.org/10.1515/econ-2022-0074
  • Kara, K., Yalcin, G.C. and Kaygisiz, E.G. (2022). “Determination of Logistics Innovation Performance Index with Entropy and Combined Compromise Solution Techniques”, Symmetry: Culture and Science, 33(4), 387-408. https://doi.org/10.26830/symmetry_2022_4_387
  • Kaynak, S., Altuntas, S. and Dereli, T. (2017). “Comparing the Innovation Performance of EU Candidate Countries: An Entropy-Based TOPSIS Approach”, Economic Research-Ekonomska Istraživanja, 30(1), 31-54.
  • Krishnan A. R., Kasim M. M., Hamid R. and Ghazali M. F. (2021). “A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria”, Symmetry, 13(6), 973. https://doi.org/10.3390/sym13060973
  • Lee, C-T., Hu, J-L. and Kung, M-H. (2022). “Economic Resilience in the Early Stage of the COVID-19 Pandemic: An Across-Economy Comparison”, Sustainability, 14(8), 8. https://doi.org/10.3390/su14084609
  • Lima Junior, F.R., Osiro, L. and Carpinetti, L.C.R. (2014). “A Comparison between Fuzzy AHP and Fuzzy TOPSIS Methods to Supplier Selection”, Applied Soft Computing, 21, 194-209. https://doi.org/10.1016/j.asoc.2014.03.014
  • Mahmoody Vanolya, N. and Jelokhani-Niaraki, M. (2021). “The Use of Subjective-Objective Weights in GIS-based Multi-Criteria Decision Analysis for Flood Hazard Assessment: A Case Study in Mazandaran, Iran”, GeoJournal, 86(1), 379-398. https://doi.org/10.1007/s10708-019-10075-5
  • Manavgat, G., Demirci, A., Korkmaz, O. and Koluman, A. (2023). “Global Scale Integrated Logistics Performance Analysis and its Spillover Effect”, Logforum, 19(2), 245-262.
  • Markovits-Somogyi, R. and Bokor, Z. (2014). “Assessing the Logistics Efficiency of European Countries by Using the DEA-PC Methodology”, Transport, 29(2), 2. https://doi.org/10.3846/16484142.2014.928787
  • Marti, L. and Puertas, R. (2023). “Analysis of European Competitiveness based on its Innovative Capacity and Digitalization Level”, Technology in Society, 72, 102206. https://doi.org/10.1016/j.techsoc.2023.102206
  • Martí, L., Martín, J.C. and Puertas, R. (2017). “A DEA-Logistics Performance Index”, Journal of Applied Economics, 20(1), 169-192. https://doi.org/10.1016/S1514-0326(17)30008-9
  • Martí, L., Puertas, R. and García, L. (2014). “The Importance of the Logistics Performance Index in International Trade”, Applied Economics, 46(24), 2982-2992. https://doi.org/10.1080/00036846.2014.916394
  • Mazurek, J. and Strzałka, D. (2022). “On the Monte Carlo Weights in Multiple Criteria Decision Analysis”, Plos One, 17(10), e0268950. https://doi.org/10.1371/journal.pone.0268950
  • Ministry of Customs and Trade. (2017). “Lojistik Performans Endeksi 2016”, http://risk.gtb.gov.tr/data/52c5898e487c8eca94a7c695/LPI_2016_01_03_2017.pdf, (Accessed: 20.06.2022).
  • Network Readiness Index. (2024). “Network Readiness Index”. https://networkreadinessindex.org/, (Accessed: 15.07.2024).
  • Ojala, L. and Celebi, D. (2015, March 9). “The World Bank’s Logistics Performance Index (LPI) and Drivers of Logistics Performance”, International Transport Forum, Quretaro. https://www.itf-oecd.org/sites/default/files/docs/ojala.pdf, (Accessed:03.08.2024).
  • Oxford Insights. (2024). “Government AI Readiness Index”, https://oxfordinsights.com/ai-readiness/ai-readiness-index/, (Accessed:15.07.2024).
  • Öztemiz, H.H. (2023). “Deniz Ticaretinde Dijital Teknolojiler ve Akıllı Limanlar: Dış Ticaret Bağlamında Bir İnceleme Singapur Limanı”, Deniz İşletmeciliği ve Yönetiminde Güncel Yaklaşımlar (Editor: M. Yorulmaz), Efe Akademi Yayınları, İstanbul, 147-167.
  • Placek, M. (2023, December 18). “U.S. Logistics Industry—Statistics & Facts”, Statista, https://www.statista.com/topics/1417/logistics-industry-in-the-us/, (Accessed: 31.07.2024).
  • Rotterdam Port. (2024). “Introduction—Digital Report 2023”, https://publications.portofrotterdam.com/digital-report/introduction, (Accessed: 31.07.2024).
  • Satı, Z.E. (2024). “Comparison of the Criteria Affecting the Digital Innovation Performance of the European Union (EU) Member and Candidate Countries with the Entropy Weight-TOPSIS Method and Investigation of Its Importance for SMEs”, Technological Forecasting and Social Change, 200, 123094. https://doi.org/10.1016/j.techfore.2023.123094
  • Senir, G. (2021). “Comparison of Domestic Logistics Performances of Turkey and European Union Countries in 2018 with an Integrated Model”, Logforum, 17(2), 193-204. https://doi.org/10.17270/J.LOG.2021.576
  • Shih, H.S., Shyur, H.J. and Lee, E.S. (2007). “An Extension of TOPSIS for Group Decision Making”, Mathematical and Computer Modelling, 45(7-8), 801-813. https://doi.org/10.1016/j.mcm.2006.03.023
  • Silva, M. do C., Gomes Costa, H. and Simões Gomes, C. F. (2020). “Multicriteria Decision Choices for Investment in Innovative Upper-middle Income Countries”, Innovation & Management Review, 17(3), 321-347. https://doi.org/10.1108/INMR-02-2019-0016
  • Skytrax. (2024). “World’s Top 100 Airports 2023”, https:// www.worldairportawards.com /worlds-top-100-airports-2023/, (Accessed: 25.07.2024).
  • Statista. (2024). “AI in Logistics—Statistics & Facts”, https://www.statista.com/topics/11469/ai-in-logistics/#topicOverview, (Accessed: 21.07.2024).
  • Tunsi, W. and Alidrisi, H. (2023). “The Innovation-Based Human Development Index Using PROMETHEE II: The Context of G8 Countries”, Sustainability, 15(14), 14. https://doi.org/10.3390/su151411373
  • Tziogkidis, P., Philippas, D., Leontitsis, A. and Sickles, R.C. (2020). “A Data envelopment Analysis and Local Partial Least Squares Approach for Identifying the Optimal Innovation Policy Direction”, European Journal of Operational Research, 285(3), 1011-1024. https://doi.org/10.1016/j.ejor.2020.02.023
  • Ulutaş, A. and Karaköy, Ç.K. (2019). “An Analysis of the Logistics Performance Index of EU Countries with an Integrated MCDM Model”, Economics and Business Review, 5(4), 4. https://doi.org/10.18559/ebr.2019.4.3
  • UNCTAD. (2023, July 28). “Handbook on Measuring Digital Trade”, https://unctad.org/publication/handbook-measuring-digital-trade, (Accessed: 22.07.2024).
  • Vevera, A-V., Cirnu, C.E. and Radulescu, C.Z. (2022). “A Multi-criteria Approach for the Calculation of a Complex Indicator of Cyber Security and Digital Development”, Romanian Journal of Information Technology and Automatic Control-Revista Romana De Informatica Si Automatica, 32(4), 19-32. https://doi.org/10.33436/v32i4y202202
  • Voronenko, I., Klymenko, N. and Nahorna, O. (2022). “Challenges to Ukraine’s Innovative Development in a Digital Environment”, Management and Production Engineering Review, 13(4), 48-58. https://doi.org/10.24425/mper.2022.142394
  • Wang, P., Zhu, Z. and Wang, Y. (2016). “A novel hybrid MCDM model combining the SAW, TOPSIS and GRA Methods Based on Experimental Design”, Information sciences, 345, 27-45. https://doi.org/10.1016/j.ins.2016.01.076
  • West, J.K. (2019). “An Introduction to Online Platforms and their Role in the Digital Transformation”, OECD, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4669281, (Accessed: 30.07.2024).
  • World Bank. (2024). “About LPI”, https://lpi.worldbank.org/about, (Accessed: 22.07.2024). World Intellectual Property Organization [WIPO]. (2024). “Global Innovation Index”, https://www.wipo.int/global_innovation_index/en/, (Accessed: 15.07.2024).
  • Yildirim, B.F. and Adiguzel Mercangoz, B. (2020). “Evaluating the Logistics Performance of OECD Countries by Using Fuzzy AHP and ARAS-G”, Eurasian Economic Review, 10(1), 27-45. https://doi.org/10.1007/s40822-019-00131-3
  • Yılmaz, B. (2024). “Dijitalleşmenin Uluslararası Ticaret ve Lojistik Performansa Etkisi: AB, APEC ve MERCOSUR Ülkelerinin Karşılaştırmalı Analizi”, Unpublished PhD thesis. Akdeniz University Social Sciences Institute, Antalya.
  • Ziemba, P. and Becker, J. (2019). “Analysis of the Digital Divide Using Fuzzy Forecasting”, Symmetry, 11(2), 2. https://doi.org/10.3390/sym11020166

Determining The Digitalization Levels of Leading Countries in Logistics Performance Index: An Application with CRITIC-TOPSIS Approach

Year 2025, Volume: 59 Issue: 2, 431 - 450, 16.04.2025
https://doi.org/10.51551/verimlilik.1541480

Abstract

Purpose: This study aims to analyze the digitalization levels of leading countries in the Logistics Performance Index (LPI) based on 2023 data.
Methodology: Six digitalization indices were utilized as criteria, and the top 23 countries in the LPI were included as alternatives to evaluate the relationship between digitalization indices and the logistics performance of these countries. In the study, the CRITIC method was employed to weight the criteria, while the ranking of decision alternatives was carried out using the TOPSIS method.
Findings: The findings of the research indicate that countries ranked high in the LPI also have high ranking in digitalization indices. Using the CRITIC method to determine the importance of the criteria, the analysis revealed that the three most significant indices for the top 23 countries in the LPI, in order of importance, are IDI, WCI, and GII. The ranking of the leading countries in the LPI based on their levels of digitalization, determined using the TOPSIS method, showed that Singapore, the United States, and the Netherlands are the top three countries with the highest levels of digitalization, respectively.
Originality: The literature lacks any research evaluating the digitalization levels of the leading countries in the LPI ranking based on the indices introduced in this study. Given the critical role of digital technologies in influencing the logistics performance of countries, and the absence of a study that comprehensively evaluates LPI and digitalization indices from a holistic perspective, this research is expected to contribute significantly to the existing literature.

References

  • Adiguzel Mercangoz, B., Yildirim, B. and Kuzu Yildirim, S. (2020). "Time Period based COPRAS-G Method: Application on the Logistics Performance Index", Logforum, 16(2), 239-250. https://doi.org/10.17270/J.LOG.2020.432
  • Alidrisi, H. (2021). “The Development of an Efficiency-Based Global Green Manufacturing Innovation Index: An Input-Oriented DEA Approach”, Sustainability, 13(22), 22. https://doi.org/10.1016/j.techfore.2023.122904
  • Amiri, E. and Sangar, A. B. (2023). “Assessing the ICT Development in Iranian Cities: The Strategy to Accelerate Digital Advancement”, Technological Forecasting and Social Change, 197, 122904. https://doi.org/10.1016/j.techfore.2023.122904
  • Ayçin, E. (2020). “Çok Kriterli Karar Verme: Bilgisayar Uygulamalı Çözümler”, Nobel Yayınevi, Ankara.
  • Aytekin, A., Ecer, F., Korucuk, S. and Karamaşa, Ç. (2022). “Global Innovation Efficiency Assessment of EU Member and Candidate Countries via DEA-EATWIOS Multi-criteria Methodology”, Technology in Society, 68, 101896. https://doi.org/10.1016/j.techsoc.2022.101896
  • Bánhidi, Z. and Dobos, I. (2024). “Measuring Digital Development: Ranking Using Data Envelopment Analysis (DEA) and Network Readiness Index (NRI)”, Central European Journal of Operations Research. https://doi.org/10.1007/s10100-024-00919-y
  • Behzadian, M., Otaghsara, S. K., Yazdani, M. and Ignatius, J. (2012). “A State-of the-Art Survey of TOPSIS Applications”, Expert Systems with applications, 39(17), 13051-13069.
  • Chejarla, K.C. and Vaidya, O.S. (2024). “A Hybrid Multi-Criteria Decision-Making Approach for Longitudinal Data”, OPSEARCH, 61(3), 1013-1060. https://doi.org/10.1007/s12597-023-00736-y
  • Çakır, S. (2017). “Measuring Logistics Performance of OECD Countries via Fuzzy Linear Regression”, Journal of Multi-Criteria Decision Analysis, 24(3-4), 177-186. https://doi.org/10.1002/mcda.1601
  • Çakir, S. and Perçin, S. (2013). “Çok Kriterli Karar Verme Teknikleriyle Lojistik Firmalarında Performans Ölçümü”, Ege Akademik Bakış, 13(4), 449-459.
  • Çalık, A., Erdebilli, B. and Özdemir, Y. S. (2023). “Novel Integrated Hybrid Multi-Criteria Decision-Making Approach for Logistics Performance Index”, Transportation Research Record, 2677(2), 1392-1400. https://doi.org/10.1177/0361198122111331
  • Deng, Y. and Chan, F.T. (2011). “A New Fuzzy Dempster MCDM Method and Its Application in Supplier Selection”, Expert Systems with Applications, 38(8), 9854-9861.
  • Diakoulaki, D., Mavrotas, G. and Papayannakis, L. (1995). “Determining Objective Weights in Multiple Criteria Problems: The CRITIC Method”, Computers & Operations Research, 22(7), 763-770.
  • Erdin, C. and Çağlar, M. (2023). “National Innovation Efficiency: A DEA-Based Measurement of OECD Countries”, International Journal of Innovation Science, 15(3), 427-456. https://doi.org/10.1108/IJIS-07-2021-0118
  • Erh, J. (2023). “Singapore’s Digital Transformation Journey”, Journal of Southeast Asian Economies, 40(1), 4-31. European Commission. (2024). 2030 “Digital Decade—Annex:The Netherlands”. https://www.nlconnect.org/files/knowledgebase/2023/10/Netherlands-KvScfRYoOrO7mrK8JBMawkv0mWc- 98660.pdf, (Accessed: 25.07.2024).
  • Eurostat. (2024). “The Netherlands, Italy and Spain Each Handled More Than 100 Million Tonnes of Goods in the Fourth Quarter of 2023”, Maritime Transport of Goods - Quarterly Data, https://ec.europa.eu/eurostat/statistics-explained/index.php? title=File:Gross_weight_of_seaborne_goods_handled_in_main_ports,_2022Q4,_2023Q3_and_2023Q4_(million_tonnes).png (Accessed: 31.07.2024).
  • Fedajev, A., Panić, M. and Živković, Ž. (2024). “Western Balkan Countries’ Innovation as Determinant of their Future Growth and Development”, Innovation: The European Journal of Social Science Research, 0(0), 1-29. https://doi.org/10.1080/13511610.2024.2339939
  • Foma, A. A.K. and Mohammed, I. (2018). “Digital Transformation in the Logistics Industry”, Unpublished Master’s Thesis, Jönköping University International Business Scholl, Jönköping, Sweden.
  • Gültekin Yıldırım, Z. (2015, May 8). “Türkiye Lojistik Sektörü ve Demiryolu Taşımacılığına İlişkin Araştırma Sonuçları ve Hedefler”, Elektrikli Raylı Ulaşım Sistemleri Sempozyumu, Eskişehir. http://www.emo.org.tr/ekler/b2622eb706641a5_ek.pdf, (Accessed: 05.08.2024).
  • Gürler, H. E., Özçalıcı, M. and Pamucar, D. (2024). “Determining Criteria Weights with Genetic Algorithms for Multi-Criteria Decision Making Methods: The Case of Logistics Performance Index Rankings of European Union Countries”, Socio-Economic Planning Sciences, 91, 101758. https://doi.org/10.1016/j.seps.2023.101758
  • Hwang, C.L. and Yoon, K.P. (1981). “Multiple Attribute Decision Making: Methods and Applications”, Springer-Verlag, New York.
  • IMD. (2024a). “World Competitiveness Ranking”, https://www.imd.org/centers/wcc/world-competitiveness-center/rankings/world-competitiveness-ranking/, (Accessed: 15.07.2024).
  • IMD. (2024b). “World Digital Competitiveness Ranking”, https://www.imd.org/centers/wcc/world-competitiveness-center/rankings/world-digital-competitiveness-ranking/, (Accessed: 15.07.2024). International Telecommunication Union (ITU). (2024). “The ICT Development Index”, https://www.itu.int/en/ITU- D/Statistics/Pages/IDI/default.aspx, (Accessed: 15.07.2024).
  • Işik, Ö., Aydin, Y. and Koşarolu, Ş. (2020). “The Assessment of the Logistics Performance Index of CEE Countries with the New Combination of SV and MABAC Methods”, Logforum, 16(4), 549-559. https://doi.org/10.17270/J.LOG.2020.504
  • Jahanshahloo, G.R., Lotfi, F.H. and Izadikhah, M. (2006). “An Algorithmic Method to Extend TOPSIS for Decision-Making Problems with Interval Data”, Applied Mathematics and Computation, 175(2), 1375-1384.
  • Ju, M., Mirović, I., Petrović, V., Erceg, Ž. and Stević, Ž. (2024). “A Novel Approach for the Assessment of Logistics Performance İndex of EU Countries”, Economics, 18(1), 20220074. https://doi.org/10.1515/econ-2022-0074
  • Kara, K., Yalcin, G.C. and Kaygisiz, E.G. (2022). “Determination of Logistics Innovation Performance Index with Entropy and Combined Compromise Solution Techniques”, Symmetry: Culture and Science, 33(4), 387-408. https://doi.org/10.26830/symmetry_2022_4_387
  • Kaynak, S., Altuntas, S. and Dereli, T. (2017). “Comparing the Innovation Performance of EU Candidate Countries: An Entropy-Based TOPSIS Approach”, Economic Research-Ekonomska Istraživanja, 30(1), 31-54.
  • Krishnan A. R., Kasim M. M., Hamid R. and Ghazali M. F. (2021). “A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria”, Symmetry, 13(6), 973. https://doi.org/10.3390/sym13060973
  • Lee, C-T., Hu, J-L. and Kung, M-H. (2022). “Economic Resilience in the Early Stage of the COVID-19 Pandemic: An Across-Economy Comparison”, Sustainability, 14(8), 8. https://doi.org/10.3390/su14084609
  • Lima Junior, F.R., Osiro, L. and Carpinetti, L.C.R. (2014). “A Comparison between Fuzzy AHP and Fuzzy TOPSIS Methods to Supplier Selection”, Applied Soft Computing, 21, 194-209. https://doi.org/10.1016/j.asoc.2014.03.014
  • Mahmoody Vanolya, N. and Jelokhani-Niaraki, M. (2021). “The Use of Subjective-Objective Weights in GIS-based Multi-Criteria Decision Analysis for Flood Hazard Assessment: A Case Study in Mazandaran, Iran”, GeoJournal, 86(1), 379-398. https://doi.org/10.1007/s10708-019-10075-5
  • Manavgat, G., Demirci, A., Korkmaz, O. and Koluman, A. (2023). “Global Scale Integrated Logistics Performance Analysis and its Spillover Effect”, Logforum, 19(2), 245-262.
  • Markovits-Somogyi, R. and Bokor, Z. (2014). “Assessing the Logistics Efficiency of European Countries by Using the DEA-PC Methodology”, Transport, 29(2), 2. https://doi.org/10.3846/16484142.2014.928787
  • Marti, L. and Puertas, R. (2023). “Analysis of European Competitiveness based on its Innovative Capacity and Digitalization Level”, Technology in Society, 72, 102206. https://doi.org/10.1016/j.techsoc.2023.102206
  • Martí, L., Martín, J.C. and Puertas, R. (2017). “A DEA-Logistics Performance Index”, Journal of Applied Economics, 20(1), 169-192. https://doi.org/10.1016/S1514-0326(17)30008-9
  • Martí, L., Puertas, R. and García, L. (2014). “The Importance of the Logistics Performance Index in International Trade”, Applied Economics, 46(24), 2982-2992. https://doi.org/10.1080/00036846.2014.916394
  • Mazurek, J. and Strzałka, D. (2022). “On the Monte Carlo Weights in Multiple Criteria Decision Analysis”, Plos One, 17(10), e0268950. https://doi.org/10.1371/journal.pone.0268950
  • Ministry of Customs and Trade. (2017). “Lojistik Performans Endeksi 2016”, http://risk.gtb.gov.tr/data/52c5898e487c8eca94a7c695/LPI_2016_01_03_2017.pdf, (Accessed: 20.06.2022).
  • Network Readiness Index. (2024). “Network Readiness Index”. https://networkreadinessindex.org/, (Accessed: 15.07.2024).
  • Ojala, L. and Celebi, D. (2015, March 9). “The World Bank’s Logistics Performance Index (LPI) and Drivers of Logistics Performance”, International Transport Forum, Quretaro. https://www.itf-oecd.org/sites/default/files/docs/ojala.pdf, (Accessed:03.08.2024).
  • Oxford Insights. (2024). “Government AI Readiness Index”, https://oxfordinsights.com/ai-readiness/ai-readiness-index/, (Accessed:15.07.2024).
  • Öztemiz, H.H. (2023). “Deniz Ticaretinde Dijital Teknolojiler ve Akıllı Limanlar: Dış Ticaret Bağlamında Bir İnceleme Singapur Limanı”, Deniz İşletmeciliği ve Yönetiminde Güncel Yaklaşımlar (Editor: M. Yorulmaz), Efe Akademi Yayınları, İstanbul, 147-167.
  • Placek, M. (2023, December 18). “U.S. Logistics Industry—Statistics & Facts”, Statista, https://www.statista.com/topics/1417/logistics-industry-in-the-us/, (Accessed: 31.07.2024).
  • Rotterdam Port. (2024). “Introduction—Digital Report 2023”, https://publications.portofrotterdam.com/digital-report/introduction, (Accessed: 31.07.2024).
  • Satı, Z.E. (2024). “Comparison of the Criteria Affecting the Digital Innovation Performance of the European Union (EU) Member and Candidate Countries with the Entropy Weight-TOPSIS Method and Investigation of Its Importance for SMEs”, Technological Forecasting and Social Change, 200, 123094. https://doi.org/10.1016/j.techfore.2023.123094
  • Senir, G. (2021). “Comparison of Domestic Logistics Performances of Turkey and European Union Countries in 2018 with an Integrated Model”, Logforum, 17(2), 193-204. https://doi.org/10.17270/J.LOG.2021.576
  • Shih, H.S., Shyur, H.J. and Lee, E.S. (2007). “An Extension of TOPSIS for Group Decision Making”, Mathematical and Computer Modelling, 45(7-8), 801-813. https://doi.org/10.1016/j.mcm.2006.03.023
  • Silva, M. do C., Gomes Costa, H. and Simões Gomes, C. F. (2020). “Multicriteria Decision Choices for Investment in Innovative Upper-middle Income Countries”, Innovation & Management Review, 17(3), 321-347. https://doi.org/10.1108/INMR-02-2019-0016
  • Skytrax. (2024). “World’s Top 100 Airports 2023”, https:// www.worldairportawards.com /worlds-top-100-airports-2023/, (Accessed: 25.07.2024).
  • Statista. (2024). “AI in Logistics—Statistics & Facts”, https://www.statista.com/topics/11469/ai-in-logistics/#topicOverview, (Accessed: 21.07.2024).
  • Tunsi, W. and Alidrisi, H. (2023). “The Innovation-Based Human Development Index Using PROMETHEE II: The Context of G8 Countries”, Sustainability, 15(14), 14. https://doi.org/10.3390/su151411373
  • Tziogkidis, P., Philippas, D., Leontitsis, A. and Sickles, R.C. (2020). “A Data envelopment Analysis and Local Partial Least Squares Approach for Identifying the Optimal Innovation Policy Direction”, European Journal of Operational Research, 285(3), 1011-1024. https://doi.org/10.1016/j.ejor.2020.02.023
  • Ulutaş, A. and Karaköy, Ç.K. (2019). “An Analysis of the Logistics Performance Index of EU Countries with an Integrated MCDM Model”, Economics and Business Review, 5(4), 4. https://doi.org/10.18559/ebr.2019.4.3
  • UNCTAD. (2023, July 28). “Handbook on Measuring Digital Trade”, https://unctad.org/publication/handbook-measuring-digital-trade, (Accessed: 22.07.2024).
  • Vevera, A-V., Cirnu, C.E. and Radulescu, C.Z. (2022). “A Multi-criteria Approach for the Calculation of a Complex Indicator of Cyber Security and Digital Development”, Romanian Journal of Information Technology and Automatic Control-Revista Romana De Informatica Si Automatica, 32(4), 19-32. https://doi.org/10.33436/v32i4y202202
  • Voronenko, I., Klymenko, N. and Nahorna, O. (2022). “Challenges to Ukraine’s Innovative Development in a Digital Environment”, Management and Production Engineering Review, 13(4), 48-58. https://doi.org/10.24425/mper.2022.142394
  • Wang, P., Zhu, Z. and Wang, Y. (2016). “A novel hybrid MCDM model combining the SAW, TOPSIS and GRA Methods Based on Experimental Design”, Information sciences, 345, 27-45. https://doi.org/10.1016/j.ins.2016.01.076
  • West, J.K. (2019). “An Introduction to Online Platforms and their Role in the Digital Transformation”, OECD, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4669281, (Accessed: 30.07.2024).
  • World Bank. (2024). “About LPI”, https://lpi.worldbank.org/about, (Accessed: 22.07.2024). World Intellectual Property Organization [WIPO]. (2024). “Global Innovation Index”, https://www.wipo.int/global_innovation_index/en/, (Accessed: 15.07.2024).
  • Yildirim, B.F. and Adiguzel Mercangoz, B. (2020). “Evaluating the Logistics Performance of OECD Countries by Using Fuzzy AHP and ARAS-G”, Eurasian Economic Review, 10(1), 27-45. https://doi.org/10.1007/s40822-019-00131-3
  • Yılmaz, B. (2024). “Dijitalleşmenin Uluslararası Ticaret ve Lojistik Performansa Etkisi: AB, APEC ve MERCOSUR Ülkelerinin Karşılaştırmalı Analizi”, Unpublished PhD thesis. Akdeniz University Social Sciences Institute, Antalya.
  • Ziemba, P. and Becker, J. (2019). “Analysis of the Digital Divide Using Fuzzy Forecasting”, Symmetry, 11(2), 2. https://doi.org/10.3390/sym11020166
There are 63 citations in total.

Details

Primary Language English
Subjects Logistics
Journal Section Araştırma Makalesi
Authors

Burcu Yılmaz 0000-0002-6004-0640

Publication Date April 16, 2025
Submission Date September 1, 2024
Acceptance Date March 20, 2025
Published in Issue Year 2025 Volume: 59 Issue: 2

Cite

APA Yılmaz, B. (2025). Determining The Digitalization Levels of Leading Countries in Logistics Performance Index: An Application with CRITIC-TOPSIS Approach. Verimlilik Dergisi, 59(2), 431-450. https://doi.org/10.51551/verimlilik.1541480

23139       23140          29293

22408 Journal of Productivity is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)