Review
BibTex RIS Cite

Biyokütlenin Torrefaksiyonunda Güneş Enerjisi Kullanımı

Year 2025, Volume: 30 Issue: 1, 377 - 395, 29.04.2025
https://doi.org/10.53433/yyufbed.1540415

Abstract

Yüzyıldan kısa bir süreçte yenilenebilen, çeşitli atıkları ve bitkileri içeren biyokütle, çevresel sorunları ve enerji ihtiyacını karşılayabilen bir enerji kaynağıdır. Ancak biyokütlenin düşük enerji yoğunluğu ve güçlü hidrofibik yapı gibi dezavantajları vardır, bu da yüksek biyokütle dönüşümü ve nakliye maliyetlerine neden olur. Bu nedenle torrefaksiyon ön işlemi, biyokütlenin kalitesini ve yakıt olarak kullanılabilirliğini artırmak için gerekir. Torrefaksiyon, genellikle fosil yakıtların yakılmasıyla sağlanan enerji kaynağına ihtiyaç duyar. Enerjinin yenilenemez enerji kaynakları tarafından sağlanması, torrefaksiyon işleminin enerji verimliliğini etkiler. Bu sorun güneş enerjisinin kullanılmasıyla çözülebilmektedir. Solar torrefaksiyon olarak adlandırılan bu ön işlem, herhangi bir karbonlu ham maddenin güneş enerjisi kullanılarak katı, sıvı ve gaz halindeki ürünlere dönüşmesini sağlar. Solar ve elektrikli torrefaksiyonda katı ve enerji verimi yüzdeleri birbirine yakındır. Bir literatür örneğine bakıldığında ortalama katı veriminin elektrik ısıtmalı torrefaksiyonda %43.2, solar torrefaksiyonda %42.9 ve enerji veriminin elektrikli torrefaksiyonda %50.8, solar torrefaksiyonda %51.3 olduğu görülmüştür. Her iki sistemde verimler birbirine yakın iken solar torrefaksiyonun öne çıkan avantajı enerji tasarrufudur. Kaynak olarak güneş enerjisinin kullanıldığı solar torrefaksiyon enerji ve yakıt üretmek için karbon açısından zengin atıkları kullandığından son zamanlarda oldukça dikkat çekmektedir.

References

  • Acharya, B., Sule, I., & Dutta, A. (2012). A review on advances of torrefaction technologies for biomass processing. Biomass Conversion and Biorefinery, 2, 349-369. https://doi.org/10.1007/s13399-012-0058-y
  • Acharya, B., & Dutta, A. (2016). Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction. Biomass Conversion and Biorefinery, 6(2), 139-149. https://doi.org/10.1007/s13399-015-0170-x
  • Aziz, N. A. M., Mohamed, H., Kania, D., Ong, H. C., Zainal, B. S., Junoh, H., Ker, P. J., & Silitonga, A. S. (2024). Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis. Renewable and Sustainable Energy Reviews, 191, 114097. https://doi.org/10.1016/j.rser.2023.114097
  • Bandgar, P. S., Jain, S., & Panwar, N. L. (2022). A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass and Bioenergy, 161, 106479. https://doi.org/10.1016/j.biombioe.2022.106479
  • Bashir, M., Yu, X., Hassan, M., & Makkawi, Y. (2017). Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor. ACS Sustainable Chemistry & Engineering, 5(5), 3795-3807. https://doi.org/10.1021/acssuschemeng.6b02806
  • Benanti, E., Freda, C., Lorefice, V., Braccio, G., & Sharma, V. K. (2011). Simulation of olive pits pyrolysis in a rotary kiln plant. Thermal Science, 15(1), 145-158. https://doi.org/10.2298/tsci090901073b
  • Bhavanam, A., & Sastry, R. (2011). Biomass gasification processes in downdraft fixed bed reactors: A review. International Journal of Chemical Engineering and Applications, 2(6), 425-433. https://doi.org/10.7763/IJCEA.2011.V2.146
  • Brassard, P., Godbout, S., & Raghavan, V. (2017). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80-92. https://doi.org/10.1016/j.biosystemseng.2017.06.020
  • Bui, H. H., Tran K. Q., & Chen, W. H. (2015). Pyrolysis of microalgae residues a kinetic study. Bioresource Technology, 199, 362-366. https://doi.org/10.1016/j.biortech.2015.08.069
  • Cellatoğlu, N., & İlkan, M. (2016). Solar torrefaction of solid olive mill residue. Bioresource, 11(4), 10087-10098. https://doi.org/10.15376/biores.11.4.10087-10098
  • Chen, W. H., & Kuo, P. C. (2011). Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 36(2), 803-811. https://doi.org/10.1016/j.energy.2010.12.036
  • Chen, W. H., Lu, K. M., Lee, W. J., Liu, S. H., & Lin, T. C. (2014). Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Applied Energy, 114, 104-113. https://doi.org/10.1016/j.apenergy.2013.09.045
  • Chen, W. H., Zhuang, Y. Q., Liu, S. H., Juang, T. T., & Tsai, C. M. (2016). Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresource Technology, 199, 367-374. https://doi.org/10.1016/j.biortech.2015.08.066
  • Chen, D., Cen, K., Cao, X., Zhang, J., Chen, F., & Zhou, J. (2020). Upgrading of bio-oil via solar pyrolysis of the biomass pretreated with aqueous phase bio-oil washing, solar drying, and solar torrefaction. Bioresource Technology, 305, 123130. https://doi.org/10.1016/j.biortech.2020.123130
  • Chen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J., Ho, S., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887
  • Chen, D., Cen, K., Gan, Z., Zhuang, X., & Ba, Y. (2022). Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: Characterization of property variation and energy usage with torrefaction severity. Applications in Energy and Combustion Science, 9, 100051. https://doi.org/10.1016/j.jaecs.2021.100051
  • Chen, Z., Chen, L., Khoo, K. S., Gupta, V. K., Sharma, M., Show, P. L., & Yap, P. S. (2023). Exploitation of lignocellulosic-based biomass biorefinery: a critical review of renewable bioresource, sustainability and economic views. Biotechnology Advances, 69, 108265. https://doi.org/10.1016/j.biotechadv.2023.108265
  • Cheng, Y., Asaoka, Y., Hachiya, Y., Moriuchi, N., Shiota, K., Oshita, K., & Takaoka, M. (2022). Mercury emission profile for the torrefaction of sewage sludge at a full-scale plant and application of polymer sorbent. Journal of Hazardous Materials, 423, 127186. https://doi.org/10.1016/j.jhazmat.2021.127186
  • Chintala, V., Kumar, S., Pandey, J. K., Sharma, A. K., Kumar, S. (2017). Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Conversion and Management, 153, 482-492. https://doi.org/10.1016/j.enconman.2017.10.029
  • Christoforou, E. A., & Fokaides, P. A. (2016). Life cycle assessment (LCA) of olive husk torrefaction. Renewable Energy, 90, 257-266. https://doi.org/10.1016/j.renene.2016.01.022
  • Christoforou, E. A., & Fokaides, P. A. (2018). Recent advancements in torrefaction of solid biomass. Current Sustainable/Renewable Energy Reports, 5, 163-171. https://doi.org/10.1007/s40518-018-0110-z
  • Deora, P. S., Verma, Y., Muhal, R. A., Goswami, C., & Singh, T. (2022). Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings, 48, 1178-1184. https://doi.org/10.1016/j.matpr.2021.08.227
  • Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716. https://doi.org/10.1016/j.renene.2017.04.035
  • Garba, A. (2020). Biomass conversion technologies for bioenergy generation: an introduction. In Biotechnological applications of biomass. IntechOpen. https://doi.org/10.5772/intechopen.93669
  • Han, J., Yu, D., Wu, J., Yu, X., Liu, F., Wang, Z., & Xu, M. (2021). Co-firing raw and torrefied rice husk with a high-Na/Ca/Cl coal: impacts on fine particulates emission and elemental partitioning. Fuel, 292, 120327. https://doi.org/10.1016/j.fuel.2021.120327
  • Haykiri Acma, H., Yaman, S., & Kucukbayrak, S. (2016). Combustion characteristics of torrefied biomass materials to generate power. The 4th Ieee international conference on Smart energy grid Engineering, 226–230. https://doi.org/10.1109/SEGE.2016.7589530
  • Ho, S. H., Zhang, C., Chen, W. H., Shen, Y., & Chang, J. S. (2018). Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresource Technology, 264, 7-16. https://doi.org/10.1016/j.biortech.2018.05.047
  • Huang, Y. F., Chen, W. R., Chiueh, P. T., Kuan, W. H., & Lo, S. L. (2012). Microwave torrefaction of rice straw and pennisetum. Bioresource Technology, 123, 1-7. https://doi.org/10.1016/j.biortech.2012.08.006
  • Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., & Dastjerdi, B. (2020). Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews, 123, 109763. https://doi.org/10.1016/j.rser.2020.109763
  • Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renewable and Sustainable Energy Reviews, 90, 877-891. https://doi.org/10.1016/j.rser.2018.03.111
  • Li, H., Liu, X., Legros, R., Bi, X. T., Lim, C. J., & Sokhansanj, S. (2012). Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, 680-685. https://doi.org/10.1016/j.apenergy.2012.01.002
  • Medic, D., Darr, M., Shah, A., & Rahn, S. (2012). The effects of particle size, different corn stover components, and gas residence time on torrefaction of corn stover. Energies, 5(4), 1199-1214. https://doi.org/10.3390/en5041199
  • Mishra, R. K., Sahoo, A., & Mohanty, K. (2019). Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Bioresource Technology, 289, 121608. https://doi.org/10.1016/j.biortech.2019.121608
  • Mundike, J., Collard, F. X., & Görgens, J. F. (2016). Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value. Bioresource Technology, 209, 90-99. https://doi.org/10.1016/j.biortech.2016.02.082
  • Negi, S., Jaswal, G., Dass, K., Mazumder, K., Elumalai, S., & Roy, J. K. (2020). Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Reviews in Environmental Science and Bio/Technology, 19, 463-488. https://doi.org/10.1007/s11157-020-09532-2
  • Nhuchhen, D. R., Basu, P., & Acharya, B. (2014). A comprehensive review on biomass torrefaction. International Journal of Renewable Energy & Biofuels, 2014, 1-56. https://doi.org/10.5171/2014.506376
  • Ong, H. C., Chen, W. H., Farooq, A., Gan, Y. Y., Lee, K. T., & Ashokkumar, V. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113, 109266. https://doi.org/10.1016/j.rser.2019.109266
  • Parvej, A. M., Rahman, M. A., & Reza, K. M. A. (2022). The combined effect of solar assisted torrefaction and pyrolysis on the production of valuable chemicals obtained from water hyacinth biomass. Cleaner Waste Systems, 3, 100027. https://doi.org/10.1016/j.clwas.2022.100027
  • Persson, H., & Yang, W. (2019). Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel, 252, 200-209. https://doi.org/10.1016/j.fuel.2019.04.087
  • Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246-1253. https://doi.org/10.1016/j.biortech.2010.08.028
  • Piersa, P., Unyay, H., Szufa, S., Lewandowska, W., Modrzewski, R., Ślężak, R., & Ledakowicz, S. (2022). An extensive review and comparison of modern biomass torrefaction reactors vs. biomass pyrolysis—part 1. Energies, 15(6), 2227. https://doi.org/10.3390/en15062227
  • Rahman, M. A. (2020). Valorizing of weeds algae through the solar assisted pyrolysis: effects of dependable parameters on yields and characterization of products. Renewable Energy, 147, 937-946. https://doi.org/10.1016/j.renene.2019.09.046
  • Rahman, M. A., Parvej, A. M., & Aziz, M. A. (2021). Concentrating technologies with reactor integration and effect of process variables on solar assisted pyrolysis: A critical review. Thermal Science and Engineering Progress, 25, 100957. https://doi.org/10.1016/j.tsep.2021.100957
  • Ren, S., Lei, H., Wang, L., Bu, Q., Wei, Y., Liang, J., Liu, Y., Julson, J., Chen, S., Wu, J., & Ruan, R. (2012). Microwave torrefaction of Douglas fir sawdust pellets. Energy & Fuels, 26(9), 5936-5943. https://doi.org/10.1021/ef300633c
  • Rodriguez-Alejandro, D. A., Nam, H., Granados-Lieberman, D., Wang, S., Hwang, S.-C., Nam, H., & Capareda, S. C. (2023). Experimental and numerical investigation on a solar-driven torrefaction reactor using woody waste (Ashe Juniper). Energy Conversion and Management, 288, 117114. https://doi.org/10.1016/j.enconman.2023.117114
  • Rousset, P., Aguiar, C., Labbé, N., & Commandré, J. M. (2011). Enhancing the combustible properties of bamboo by torrefaction. Bioresource Technology, 102(17), 8225-8231. https://doi.org/10.1016/j.biortech.2011.05.093
  • Rousset, P., Macedo, L., Commandré, J. M., & Moreira, A. (2012). Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. Journal of Analytical and Applied Pyrolysis, 96, 86-91. https://doi.org/10.1016/j.jaap.2012.03.009
  • Rudolfsson, M., Stelte, W., & Lestander, T. A. (2015). Process optimization of combined biomass torrefaction and pelletization for fuel pellet production–A parametric study. Applied Energy, 140, 378-384. https://doi.org/10.1016/j.apenergy.2014.11.041
  • Sarker, T. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). A review of torrefaction technology for upgrading lignocellulosic biomass to solid biofuels. BioEnergy Research, 14, 645-669. https://doi.org/10.1007/s12155-020-10236-2
  • Satpathy, S. K., Tabil, L. G., Meda, V., Naik, S. N., & Prasad, R. (2014). Torrefaction of wheat and barley straw after microwave heating. Fuel, 124, 269-278. https://doi.org/10.1016/j.fuel.2014.01.102
  • Sukiran, M. A., Daud, W. W., Abnisa, F., Nasrin, A. B., & Loh, S. K. (2020). Effect of torrefaction conditions on physicochemical properties of empty fruit bunches. IOP Conference Series: Materials Science and Engineering, 736(2), 022073. https://doi.org/10.1088/1757-899X/736/2/022073
  • Szufa, S., Piersa, P., Adrian, Ł., Czerwińska, J., Lewandowski, A., Lewandowska, W., Sielski, J., Dzikuć, M., Wróbel, M., Jewiarz, M., & Knapczyk, A. (2021). Sustainable drying and torrefaction processes of miscanthus for use as a pelletized solid biofuel and biocarbon-carrier for fertilizers. Molecules, 26(4), 1014. https://doi.org/10.3390/molecules26041014
  • Thanapal, S. S., Chen, W., Annamalai, K., Carlin, N., Ansley, R. J., & Ranjan, D. (2014). Carbon dioxide torrefaction of woody biomass. Energy & Fuels, 28(2), 1147-1157. https://doi.org/10.1021/ef4022625
  • Thengane, S. K., Kung, K. S., Gupta, A., Ateia, M., Sanchez, D. L., Mahajani, S. M., ... & Ghoniem, A. F. (2020). Oxidative torrefaction for cleaner utilization of biomass for soil amendment. Cleaner Engineering and Technology, 1, 100033. https://doi.org/10.1016/j.clet.2020.100033
  • Thengane, S. K., Kung, K. S., Gomez-Barea, A., & Ghoniem, A. F. (2022). Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Progress in Energy and Combustion Science, 93, 101040. https://doi.org/10.1016/j.pecs.2022.101040
  • Tregambi, C., Montagnaro, F., Salatino, P., & Solimene, R. (2019). Solar-driven torrefaction of a lignin-rich biomass residue in a directly irradiated fluidized bed reactor. Combustion Science and Technology, 191(9), 1609-1627. https://doi.org/10.1080/00102202.2019.1607847
  • Uemura, Y., Saadon, S., Osman, N., Mansor, N., & Tanoue, K. I. (2015). Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide. Fuel, 144, 171-179. https://doi.org/10.1016/j.fuel.2014.12.050
  • Wang, Z., Lim, C. J., Grace, J. R., Li, H., & Parise, M. R. (2017). Effects of temperature and particle size on biomass torrefaction in a slotrectangular spouted bed reactor. Bioresource Technology, 244, 281-288. https://doi.org/10.1016/j.biortech.2017.07.097
  • Wang, Z., Li, H., Lim, C. J., & Grace, J. R. (2018). Oxidative torrefaction of spruce-pine-fir sawdust in a slot-rectangular spouted bed reactor. Energy Conversion and Management, 174, 276-287. https://doi.org/10.1016/j.enconman.2018.08.035
  • Yang, X., Liu, X., Li, R., Liu, C., Qing, T., Yue, X., & Zhang, S. (2018). Co-gasification of thermally pretreated wheat straw with Shengli lignite for hydrogen production. Renewable Energy, 117, 501-508. https://doi.org/10.1016/j.renene.2017.10.055
  • Yanging, N., Yuan, L., Sigi, L., Yang, L., Denghui W., & Shien, H. (2019). Biomass torrefaction: properties, applications, challenges and economy. Renewable and Sustainable Energy Reviews, 115, 109395. doi:10.1016/j.rser.2019.109395
  • Yu, Y., Yang, Y., Cheng, Z., Blanco, P. H., Liu, R., Bridgwater, A. V., & Cai, J. (2016). Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures. Energy & Fuels, 30(12), 10568-10574. https://doi.org/10.1021/acs.energyfuels.6b02276
  • Zhang, C., Ho, S. H., Chen, W. H., Fu, Y., Chang, J. S., & Bi, X. (2019). Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Applied Energy, 235, 428-441 https://doi.org/10.1016/j.apenergy.2018.10.090
  • Zhang, Y., Chen, F., Chen, D., Cen, K., Zhang, J., & Cao, X. (2020). Upgrading of biomass pellets by torrefaction and its influence on the hydrophobicity, mechanical property, and fuel quality. Biomass Conversion and Biorefinery, 12, 2061-2070. https://doi.org/10.1007/s13399-020-00666-5
  • Zhang, H., Han, L., & Dong, H. (2021). An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies. Renewable and Sustainable Energy Reviews, 140, 110758. https://doi.org/10.1016/j.rser.2021.110758
  • Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35-53. https://doi.org/10.1016/j.pecs.2014.01.001

Use of Solar Energy in Torrefaction Biomass

Year 2025, Volume: 30 Issue: 1, 377 - 395, 29.04.2025
https://doi.org/10.53433/yyufbed.1540415

Abstract

Biomass, which can be renewed in less than a century and includes various wastes and plants, is an energy source that can meet environmental problems and energy needs. However, biomass has disadvantages such as low energy density and strong hydrophilic structure, which causes high biomass conversion and transportation costs. Therefore, torrefaction pretreatment is required to increase the quality of biomass and its usability as fuel. Torrefaction generally requires an energy source provided by burning fossil fuels. The provision of energy by non-renewable energy sources affects the energy efficiency of the torrefaction process. This problem can be solved by using solar energy. This pretreatment, called solar torrefaction, allows any carbonaceous raw material to be converted into solid, liquid and gaseous products using solar energy. In solar and electric torrefaction, solid and energy efficiency percentages are close to each other. When a literature example is examined, it is seen that the average solid efficiency is %43.2 in electrically heated torrefaction, %42.9 in solar torrefaction and the energy efficiency is %50.8 in electrical torrefaction and %51.3 in solar torrefaction. While the efficiencies in both systems are close to each other, the prominent advantage of solar torrefaction is energy saving. Solar torrefaction, which uses solar energy as a source, has recently attracted considerable attention because it uses carbon-rich waste to produce energy and fuel.

References

  • Acharya, B., Sule, I., & Dutta, A. (2012). A review on advances of torrefaction technologies for biomass processing. Biomass Conversion and Biorefinery, 2, 349-369. https://doi.org/10.1007/s13399-012-0058-y
  • Acharya, B., & Dutta, A. (2016). Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction. Biomass Conversion and Biorefinery, 6(2), 139-149. https://doi.org/10.1007/s13399-015-0170-x
  • Aziz, N. A. M., Mohamed, H., Kania, D., Ong, H. C., Zainal, B. S., Junoh, H., Ker, P. J., & Silitonga, A. S. (2024). Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis. Renewable and Sustainable Energy Reviews, 191, 114097. https://doi.org/10.1016/j.rser.2023.114097
  • Bandgar, P. S., Jain, S., & Panwar, N. L. (2022). A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass and Bioenergy, 161, 106479. https://doi.org/10.1016/j.biombioe.2022.106479
  • Bashir, M., Yu, X., Hassan, M., & Makkawi, Y. (2017). Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor. ACS Sustainable Chemistry & Engineering, 5(5), 3795-3807. https://doi.org/10.1021/acssuschemeng.6b02806
  • Benanti, E., Freda, C., Lorefice, V., Braccio, G., & Sharma, V. K. (2011). Simulation of olive pits pyrolysis in a rotary kiln plant. Thermal Science, 15(1), 145-158. https://doi.org/10.2298/tsci090901073b
  • Bhavanam, A., & Sastry, R. (2011). Biomass gasification processes in downdraft fixed bed reactors: A review. International Journal of Chemical Engineering and Applications, 2(6), 425-433. https://doi.org/10.7763/IJCEA.2011.V2.146
  • Brassard, P., Godbout, S., & Raghavan, V. (2017). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80-92. https://doi.org/10.1016/j.biosystemseng.2017.06.020
  • Bui, H. H., Tran K. Q., & Chen, W. H. (2015). Pyrolysis of microalgae residues a kinetic study. Bioresource Technology, 199, 362-366. https://doi.org/10.1016/j.biortech.2015.08.069
  • Cellatoğlu, N., & İlkan, M. (2016). Solar torrefaction of solid olive mill residue. Bioresource, 11(4), 10087-10098. https://doi.org/10.15376/biores.11.4.10087-10098
  • Chen, W. H., & Kuo, P. C. (2011). Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 36(2), 803-811. https://doi.org/10.1016/j.energy.2010.12.036
  • Chen, W. H., Lu, K. M., Lee, W. J., Liu, S. H., & Lin, T. C. (2014). Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Applied Energy, 114, 104-113. https://doi.org/10.1016/j.apenergy.2013.09.045
  • Chen, W. H., Zhuang, Y. Q., Liu, S. H., Juang, T. T., & Tsai, C. M. (2016). Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresource Technology, 199, 367-374. https://doi.org/10.1016/j.biortech.2015.08.066
  • Chen, D., Cen, K., Cao, X., Zhang, J., Chen, F., & Zhou, J. (2020). Upgrading of bio-oil via solar pyrolysis of the biomass pretreated with aqueous phase bio-oil washing, solar drying, and solar torrefaction. Bioresource Technology, 305, 123130. https://doi.org/10.1016/j.biortech.2020.123130
  • Chen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J., Ho, S., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887
  • Chen, D., Cen, K., Gan, Z., Zhuang, X., & Ba, Y. (2022). Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: Characterization of property variation and energy usage with torrefaction severity. Applications in Energy and Combustion Science, 9, 100051. https://doi.org/10.1016/j.jaecs.2021.100051
  • Chen, Z., Chen, L., Khoo, K. S., Gupta, V. K., Sharma, M., Show, P. L., & Yap, P. S. (2023). Exploitation of lignocellulosic-based biomass biorefinery: a critical review of renewable bioresource, sustainability and economic views. Biotechnology Advances, 69, 108265. https://doi.org/10.1016/j.biotechadv.2023.108265
  • Cheng, Y., Asaoka, Y., Hachiya, Y., Moriuchi, N., Shiota, K., Oshita, K., & Takaoka, M. (2022). Mercury emission profile for the torrefaction of sewage sludge at a full-scale plant and application of polymer sorbent. Journal of Hazardous Materials, 423, 127186. https://doi.org/10.1016/j.jhazmat.2021.127186
  • Chintala, V., Kumar, S., Pandey, J. K., Sharma, A. K., Kumar, S. (2017). Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Conversion and Management, 153, 482-492. https://doi.org/10.1016/j.enconman.2017.10.029
  • Christoforou, E. A., & Fokaides, P. A. (2016). Life cycle assessment (LCA) of olive husk torrefaction. Renewable Energy, 90, 257-266. https://doi.org/10.1016/j.renene.2016.01.022
  • Christoforou, E. A., & Fokaides, P. A. (2018). Recent advancements in torrefaction of solid biomass. Current Sustainable/Renewable Energy Reports, 5, 163-171. https://doi.org/10.1007/s40518-018-0110-z
  • Deora, P. S., Verma, Y., Muhal, R. A., Goswami, C., & Singh, T. (2022). Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings, 48, 1178-1184. https://doi.org/10.1016/j.matpr.2021.08.227
  • Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716. https://doi.org/10.1016/j.renene.2017.04.035
  • Garba, A. (2020). Biomass conversion technologies for bioenergy generation: an introduction. In Biotechnological applications of biomass. IntechOpen. https://doi.org/10.5772/intechopen.93669
  • Han, J., Yu, D., Wu, J., Yu, X., Liu, F., Wang, Z., & Xu, M. (2021). Co-firing raw and torrefied rice husk with a high-Na/Ca/Cl coal: impacts on fine particulates emission and elemental partitioning. Fuel, 292, 120327. https://doi.org/10.1016/j.fuel.2021.120327
  • Haykiri Acma, H., Yaman, S., & Kucukbayrak, S. (2016). Combustion characteristics of torrefied biomass materials to generate power. The 4th Ieee international conference on Smart energy grid Engineering, 226–230. https://doi.org/10.1109/SEGE.2016.7589530
  • Ho, S. H., Zhang, C., Chen, W. H., Shen, Y., & Chang, J. S. (2018). Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresource Technology, 264, 7-16. https://doi.org/10.1016/j.biortech.2018.05.047
  • Huang, Y. F., Chen, W. R., Chiueh, P. T., Kuan, W. H., & Lo, S. L. (2012). Microwave torrefaction of rice straw and pennisetum. Bioresource Technology, 123, 1-7. https://doi.org/10.1016/j.biortech.2012.08.006
  • Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., & Dastjerdi, B. (2020). Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews, 123, 109763. https://doi.org/10.1016/j.rser.2020.109763
  • Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renewable and Sustainable Energy Reviews, 90, 877-891. https://doi.org/10.1016/j.rser.2018.03.111
  • Li, H., Liu, X., Legros, R., Bi, X. T., Lim, C. J., & Sokhansanj, S. (2012). Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, 680-685. https://doi.org/10.1016/j.apenergy.2012.01.002
  • Medic, D., Darr, M., Shah, A., & Rahn, S. (2012). The effects of particle size, different corn stover components, and gas residence time on torrefaction of corn stover. Energies, 5(4), 1199-1214. https://doi.org/10.3390/en5041199
  • Mishra, R. K., Sahoo, A., & Mohanty, K. (2019). Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Bioresource Technology, 289, 121608. https://doi.org/10.1016/j.biortech.2019.121608
  • Mundike, J., Collard, F. X., & Görgens, J. F. (2016). Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value. Bioresource Technology, 209, 90-99. https://doi.org/10.1016/j.biortech.2016.02.082
  • Negi, S., Jaswal, G., Dass, K., Mazumder, K., Elumalai, S., & Roy, J. K. (2020). Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Reviews in Environmental Science and Bio/Technology, 19, 463-488. https://doi.org/10.1007/s11157-020-09532-2
  • Nhuchhen, D. R., Basu, P., & Acharya, B. (2014). A comprehensive review on biomass torrefaction. International Journal of Renewable Energy & Biofuels, 2014, 1-56. https://doi.org/10.5171/2014.506376
  • Ong, H. C., Chen, W. H., Farooq, A., Gan, Y. Y., Lee, K. T., & Ashokkumar, V. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113, 109266. https://doi.org/10.1016/j.rser.2019.109266
  • Parvej, A. M., Rahman, M. A., & Reza, K. M. A. (2022). The combined effect of solar assisted torrefaction and pyrolysis on the production of valuable chemicals obtained from water hyacinth biomass. Cleaner Waste Systems, 3, 100027. https://doi.org/10.1016/j.clwas.2022.100027
  • Persson, H., & Yang, W. (2019). Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel, 252, 200-209. https://doi.org/10.1016/j.fuel.2019.04.087
  • Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246-1253. https://doi.org/10.1016/j.biortech.2010.08.028
  • Piersa, P., Unyay, H., Szufa, S., Lewandowska, W., Modrzewski, R., Ślężak, R., & Ledakowicz, S. (2022). An extensive review and comparison of modern biomass torrefaction reactors vs. biomass pyrolysis—part 1. Energies, 15(6), 2227. https://doi.org/10.3390/en15062227
  • Rahman, M. A. (2020). Valorizing of weeds algae through the solar assisted pyrolysis: effects of dependable parameters on yields and characterization of products. Renewable Energy, 147, 937-946. https://doi.org/10.1016/j.renene.2019.09.046
  • Rahman, M. A., Parvej, A. M., & Aziz, M. A. (2021). Concentrating technologies with reactor integration and effect of process variables on solar assisted pyrolysis: A critical review. Thermal Science and Engineering Progress, 25, 100957. https://doi.org/10.1016/j.tsep.2021.100957
  • Ren, S., Lei, H., Wang, L., Bu, Q., Wei, Y., Liang, J., Liu, Y., Julson, J., Chen, S., Wu, J., & Ruan, R. (2012). Microwave torrefaction of Douglas fir sawdust pellets. Energy & Fuels, 26(9), 5936-5943. https://doi.org/10.1021/ef300633c
  • Rodriguez-Alejandro, D. A., Nam, H., Granados-Lieberman, D., Wang, S., Hwang, S.-C., Nam, H., & Capareda, S. C. (2023). Experimental and numerical investigation on a solar-driven torrefaction reactor using woody waste (Ashe Juniper). Energy Conversion and Management, 288, 117114. https://doi.org/10.1016/j.enconman.2023.117114
  • Rousset, P., Aguiar, C., Labbé, N., & Commandré, J. M. (2011). Enhancing the combustible properties of bamboo by torrefaction. Bioresource Technology, 102(17), 8225-8231. https://doi.org/10.1016/j.biortech.2011.05.093
  • Rousset, P., Macedo, L., Commandré, J. M., & Moreira, A. (2012). Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. Journal of Analytical and Applied Pyrolysis, 96, 86-91. https://doi.org/10.1016/j.jaap.2012.03.009
  • Rudolfsson, M., Stelte, W., & Lestander, T. A. (2015). Process optimization of combined biomass torrefaction and pelletization for fuel pellet production–A parametric study. Applied Energy, 140, 378-384. https://doi.org/10.1016/j.apenergy.2014.11.041
  • Sarker, T. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). A review of torrefaction technology for upgrading lignocellulosic biomass to solid biofuels. BioEnergy Research, 14, 645-669. https://doi.org/10.1007/s12155-020-10236-2
  • Satpathy, S. K., Tabil, L. G., Meda, V., Naik, S. N., & Prasad, R. (2014). Torrefaction of wheat and barley straw after microwave heating. Fuel, 124, 269-278. https://doi.org/10.1016/j.fuel.2014.01.102
  • Sukiran, M. A., Daud, W. W., Abnisa, F., Nasrin, A. B., & Loh, S. K. (2020). Effect of torrefaction conditions on physicochemical properties of empty fruit bunches. IOP Conference Series: Materials Science and Engineering, 736(2), 022073. https://doi.org/10.1088/1757-899X/736/2/022073
  • Szufa, S., Piersa, P., Adrian, Ł., Czerwińska, J., Lewandowski, A., Lewandowska, W., Sielski, J., Dzikuć, M., Wróbel, M., Jewiarz, M., & Knapczyk, A. (2021). Sustainable drying and torrefaction processes of miscanthus for use as a pelletized solid biofuel and biocarbon-carrier for fertilizers. Molecules, 26(4), 1014. https://doi.org/10.3390/molecules26041014
  • Thanapal, S. S., Chen, W., Annamalai, K., Carlin, N., Ansley, R. J., & Ranjan, D. (2014). Carbon dioxide torrefaction of woody biomass. Energy & Fuels, 28(2), 1147-1157. https://doi.org/10.1021/ef4022625
  • Thengane, S. K., Kung, K. S., Gupta, A., Ateia, M., Sanchez, D. L., Mahajani, S. M., ... & Ghoniem, A. F. (2020). Oxidative torrefaction for cleaner utilization of biomass for soil amendment. Cleaner Engineering and Technology, 1, 100033. https://doi.org/10.1016/j.clet.2020.100033
  • Thengane, S. K., Kung, K. S., Gomez-Barea, A., & Ghoniem, A. F. (2022). Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Progress in Energy and Combustion Science, 93, 101040. https://doi.org/10.1016/j.pecs.2022.101040
  • Tregambi, C., Montagnaro, F., Salatino, P., & Solimene, R. (2019). Solar-driven torrefaction of a lignin-rich biomass residue in a directly irradiated fluidized bed reactor. Combustion Science and Technology, 191(9), 1609-1627. https://doi.org/10.1080/00102202.2019.1607847
  • Uemura, Y., Saadon, S., Osman, N., Mansor, N., & Tanoue, K. I. (2015). Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide. Fuel, 144, 171-179. https://doi.org/10.1016/j.fuel.2014.12.050
  • Wang, Z., Lim, C. J., Grace, J. R., Li, H., & Parise, M. R. (2017). Effects of temperature and particle size on biomass torrefaction in a slotrectangular spouted bed reactor. Bioresource Technology, 244, 281-288. https://doi.org/10.1016/j.biortech.2017.07.097
  • Wang, Z., Li, H., Lim, C. J., & Grace, J. R. (2018). Oxidative torrefaction of spruce-pine-fir sawdust in a slot-rectangular spouted bed reactor. Energy Conversion and Management, 174, 276-287. https://doi.org/10.1016/j.enconman.2018.08.035
  • Yang, X., Liu, X., Li, R., Liu, C., Qing, T., Yue, X., & Zhang, S. (2018). Co-gasification of thermally pretreated wheat straw with Shengli lignite for hydrogen production. Renewable Energy, 117, 501-508. https://doi.org/10.1016/j.renene.2017.10.055
  • Yanging, N., Yuan, L., Sigi, L., Yang, L., Denghui W., & Shien, H. (2019). Biomass torrefaction: properties, applications, challenges and economy. Renewable and Sustainable Energy Reviews, 115, 109395. doi:10.1016/j.rser.2019.109395
  • Yu, Y., Yang, Y., Cheng, Z., Blanco, P. H., Liu, R., Bridgwater, A. V., & Cai, J. (2016). Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures. Energy & Fuels, 30(12), 10568-10574. https://doi.org/10.1021/acs.energyfuels.6b02276
  • Zhang, C., Ho, S. H., Chen, W. H., Fu, Y., Chang, J. S., & Bi, X. (2019). Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Applied Energy, 235, 428-441 https://doi.org/10.1016/j.apenergy.2018.10.090
  • Zhang, Y., Chen, F., Chen, D., Cen, K., Zhang, J., & Cao, X. (2020). Upgrading of biomass pellets by torrefaction and its influence on the hydrophobicity, mechanical property, and fuel quality. Biomass Conversion and Biorefinery, 12, 2061-2070. https://doi.org/10.1007/s13399-020-00666-5
  • Zhang, H., Han, L., & Dong, H. (2021). An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies. Renewable and Sustainable Energy Reviews, 140, 110758. https://doi.org/10.1016/j.rser.2021.110758
  • Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35-53. https://doi.org/10.1016/j.pecs.2014.01.001
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Chemical and Thermal Processes in Energy and Combustion
Journal Section Review Articles / Derleme Makaleler
Authors

Gizem Özer 0000-0003-3610-8454

Neslihan Duranay 0000-0001-7259-1864

Publication Date April 29, 2025
Submission Date August 29, 2024
Acceptance Date December 5, 2024
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Özer, G., & Duranay, N. (2025). Biyokütlenin Torrefaksiyonunda Güneş Enerjisi Kullanımı. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 377-395. https://doi.org/10.53433/yyufbed.1540415