Araştırma Makalesi
BibTex RIS Kaynak Göster

Relationship between ultrasonographic liver steatosis degree and oxidative/nitrosative stress in patients diagnosed with metabolic dysfunction-associated steatotic liver disease

Yıl 2024, Cilt: 6 Sayı: 6, 391 - 396, 28.10.2024
https://doi.org/10.38053/acmj.1557448

Öz

Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) remains the most common chronic liver disease worldwide. It is considered to be a complication of metabolic syndrome. The main element in intra- and extrahepatic disorders in MASLD is oxidative/nitrosative stress (ONS). The relationship between the increase and decrease in these markers and the degree of liver steatosis defined sonographically has not been specifically studied before.
Methods: Patients in the MASLD spectrum were divided into 3 groups according to the degree of liver steatosis on ultrasonography (US). Patients without liver steatosis on US were taken as the control group. Nitric oxide (NO), malondialdehyde (MDA), catalase (CAT) and superoxide dismutase (SOD) were studied in the blood of these patients.
Results: Changes in the degree of liver steatosis on US and changes in the studied parameters were found to be statistically significant. In addition, the cut-off values of NO and MDA were shown to be 8.98 and 2.375, respectively, in distinguishing the healthy control group from the patient group.
Discussion: As the degree of liver steatosis increases on US, NO and MDA levels increase, while antioxidant enzymes CAT and SOD levels decrease. NO and MDA can be used to distinguish healthy and patient groups in the preliminary diagnosis of MASLD.
Conclusion: There is a significant relationship between the degree of liver steatosis on US and ONS parameters.

Etik Beyan

Ethics committee approval was obtained for this study from the local tertiary university hospital Medical Faculty Local Ethics Committee (2022/37 decision no: 06, Decision: Positive). The study was conducted in accordance with the principles of the Declaration of Helsinki. Informed consent was obtained from patients in the patient group and control group.

Destekleyen Kurum

No

Kaynakça

  • Younossi Zobair M. “Non-alcoholic fatty liver disease–a global public health perspective.” J Hepatol. 2019;70(3):531-544. doi:10.1016/j.jhep.2018.10.033
  • Wong SK, Chin KY, Ahmad F, Ima-Nirwana S. “Regulation of inflammatory response and oxidative stress by tocotrienol in a rat model of non-alcoholic fatty liver disease.” J Functional Foods 2020;74:104209. doi:10.1016/j.jff.2020.104209
  • M. Benedict, X. Zhang. Non-alcoholic fatty liver disease: an expanded review. World J Hepatol. 2017;16(9):715-732. doi:10.4254/wjh.v9.i16.715
  • Sanal, MG. Biomarkers in nonalcoholic fatty liver disease-the emperor has no clothes?. World J Gastroenterol. WJG 2015;21(11):3223. doi:10.3748/wjg.v21.i11.3223
  • Eslam M, Sanyal AJ, George J, International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterol. 2020;158(7):1999-2014.e1. doi:10.1053/j.gastro.2019.11.312
  • Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017; 66(6):2055-2065. doi:10.1002/hep.29420
  • Gan D, Wang L, Jia M, et al. Low muscle mass and low muscle strength associate with nonalcoholic fatty liver disease. Clin Nutr. 2020;39(4):1124-1130. doi:10.1016/j.clnu.2019.04.023
  • Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front Med (Lausanne). 2021;8:595371. doi:10.3389/fmed.2021.595371
  • Gonzalez A, Huerta-Salgado C, Orozco-Aguilar J, et al. Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD). Oxid Med Cell Longev. 2020;2020:1617805. doi:10.1155/2020/1617805
  • Ramos-Tovar E, Muriel P. Molecular mechanisms that link oxidative stress, ınflammation, and fibrosis in the liver. Antioxidants (Basel). 2020;9(12):1279. doi:10.3390/antiox9121279
  • Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. Vitam Horm. 2023; 121:271-292. doi:10.1016/bs.vh.2022.09.006
  • Zhang L, Wang X, Cueto R, et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019;26:101284. doi:10.1016/j.redox.2019.101284
  • Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial dysfunction in skeletal muscle pathologies. Curr Protein Pept Sci. 2019;20(6):536-546. doi:10.2174/1389203720666190402100902
  • Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease [published correction appears in Free Radic Biol Med. 2021;162:174. doi: 10.1016/j.freeradbiomed.2020.06.011]. Free Radic Biol Med. 2020;152:116-141. doi:10.1016/j.freeradbiomed.2020.02.025
  • Reccia I, Kumar J, Akladios C, et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism. 2017;72:94-108. doi:10.1016/j.metabol.2017.04.011
  • Toprak D. “Hepatosteatosis (fatty liver disease).” The Jl of Tur Family Phys. (2011): 50-57.
  • İmamoğlu FG, İmamoğlu Ç, Çiledağ N, Arda K, Tola MD. Classification of hepatosteatosis with ultrasonography and analysis of the effect of hepatosteatosis degree on the liver function tests. Med J Muğla Sıtkı Koçman University. 2015;8(2):23-28.
  • Beutler E. Red Cell Metabolism. Handbook of biochemical methods. 2nd ed. New York: Grune and Stratton Inc. 1984: 68–70.
  • Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):35-97. doi:10.1002/9780470122860.ch2
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358. doi:10.1016/0003-2697(79)90738-3
  • Pomacu MM, Trașcă MD, Pădureanu V, et al. Interrelation of inflammation and oxidative stress in liver cirrhosis. Exp Ther Med. 2021;21(6):602. doi:10.3892/etm.2021.10034
  • Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med. 2021;10(14):3011. doi:10.3390/jcm10143011
  • Videla LA, Rodrigo R, Araya J, Poniachik J. Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease. Free Radic Biol Med. 2004;37(9):1499-1507. doi:10.1016/j.freeradbiomed.2004.06.033
  • Samancı TÇ, Gökçimen A, Kuloğlu T, Boyacıoğlu M, Kuyucu Y, Polat S. “Biochemical and histopathological investigation of liver tissues on high fat diet fed rats.” 2022;23(1):101-107. doi:10.4274/meandros.galenos.2021.32932
  • Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13(10):423-444. doi:10.1089/met.2015.0095
  • Nabih, GA, Sheshtawy NE., Mikkawy DME, Kamel MA. (2024). Serum malondialdehyde as a marker of oxidative stress in rheumatoid arthritis. Egyptian Rheumatology and Rehabilitation. 2024;51(1):43. doi:10.1186/s43166-024-00275-4
  • Phababpha, Suphawadee, et al. Elevation of plasma malondialdehyde levels associated with the severity of coronary atherosclerosis in coronary artery disease patients.” Int J. 2023;10(2):3523-3529. https://www.researchgate.net/publication/37591747828-
  • Liu WN, Hsu YC, Lu CW, Lin SC, Wu TJ, Lin GM. Serum malondialdehyde-modified low-density lipoprotein as a risk marker for peripheral arterial stiffness in maintenance hemodialysis patients. Medicina (Kaunas). 2024;60(5):697. doi:10. 3390/medicina60050697
  • Estep JM, Birerdinc A, Younossi Z. Non-invasive diagnostic tests for non-alcoholic fatty liver disease. Curr Mol Med. 2010; 10(2):166-172. doi:10.2174/156652410790963321
  • Han JH, Park MH, Myung CS. Garcinia cambogia ameliorates non-alcoholic fatty liver disease by inhibiting oxidative stress-mediated steatosis and apoptosis through NRF2-ARE activation. Antioxidants (Basel). 2021;10(8):1226. doi:10.3390/antiox10081226

Nonalkolik Yağlı Karaciğer Tanısı Alan Hastalarda Ultrasonografik Karaciğer Steatozis Derecesi ile Oksidatif/Nitrozatif Stres Arasındaki İlişki

Yıl 2024, Cilt: 6 Sayı: 6, 391 - 396, 28.10.2024
https://doi.org/10.38053/acmj.1557448

Öz

Giriş: Metabolik disfonksiyonla ilişkili steatotik karaciğer hastalığı (MASLD), dünya çapında en sık görülen kronik karaciğer hastalığıdır. Metabolik sendromun bir komplikasyonu olarak kabul edilir. MASLD'deki intra- ve ekstrahepatik bozukluklardaki temel unsur, oksidatif türlerde artış ve antioksidan sistemlerde azalma ile oluşan oksidatif strestir. Bu belirteçlerdeki artış ve azalış ile sonografik olarak tanımlanan karaciğer steatozu derecesi arasındaki ilişki daha önce özel olarak incelenmemiştir.
Materyal ve yöntem: MASLD spektrumundaki hastalar, US'deki karaciğer steatozu derecesine göre 3 gruba ayrıldı. US'de karaciğer steatozu olmayan hastalar kontrol grubu olarak alındı. Bu hastaların kanında nitrik oksit (NO), maledialdehit (MDA), katalaz (CAT) ve süperoksit dismutaz (SOD) çalışıldı.
Sonuçlar: US'de karaciğer steatozu derecesindeki değişiklikler ve çalışılan parametrelerdeki değişiklikler istatistiksel olarak anlamlı bulundu. Ayrıca, NO ve maledialdehitin kesme değerlerinin sağlıklı kontrol grubunu hasta grubundan ayırmada sırasıyla 8,98 ve 2,375 olduğu gösterildi.
Tartışma: US'de karaciğer yağlanması derecesi arttıkça NO ve MDA düzeyleri artarken, antioksidan enzimler CAT ve SOD düzeyleri azalır. NO ve MDA, MASLD'nin ön tanısında sağlıklı ve hasta gruplarını ayırt etmek için kullanılabilir.
Sonuç: ABD'de karaciğer yağlanması derecesi ile Oksidatif/nitrozatif stres parametreleri arasında anlamlı bir ilişki vardır.

Kaynakça

  • Younossi Zobair M. “Non-alcoholic fatty liver disease–a global public health perspective.” J Hepatol. 2019;70(3):531-544. doi:10.1016/j.jhep.2018.10.033
  • Wong SK, Chin KY, Ahmad F, Ima-Nirwana S. “Regulation of inflammatory response and oxidative stress by tocotrienol in a rat model of non-alcoholic fatty liver disease.” J Functional Foods 2020;74:104209. doi:10.1016/j.jff.2020.104209
  • M. Benedict, X. Zhang. Non-alcoholic fatty liver disease: an expanded review. World J Hepatol. 2017;16(9):715-732. doi:10.4254/wjh.v9.i16.715
  • Sanal, MG. Biomarkers in nonalcoholic fatty liver disease-the emperor has no clothes?. World J Gastroenterol. WJG 2015;21(11):3223. doi:10.3748/wjg.v21.i11.3223
  • Eslam M, Sanyal AJ, George J, International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterol. 2020;158(7):1999-2014.e1. doi:10.1053/j.gastro.2019.11.312
  • Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017; 66(6):2055-2065. doi:10.1002/hep.29420
  • Gan D, Wang L, Jia M, et al. Low muscle mass and low muscle strength associate with nonalcoholic fatty liver disease. Clin Nutr. 2020;39(4):1124-1130. doi:10.1016/j.clnu.2019.04.023
  • Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front Med (Lausanne). 2021;8:595371. doi:10.3389/fmed.2021.595371
  • Gonzalez A, Huerta-Salgado C, Orozco-Aguilar J, et al. Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD). Oxid Med Cell Longev. 2020;2020:1617805. doi:10.1155/2020/1617805
  • Ramos-Tovar E, Muriel P. Molecular mechanisms that link oxidative stress, ınflammation, and fibrosis in the liver. Antioxidants (Basel). 2020;9(12):1279. doi:10.3390/antiox9121279
  • Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. Vitam Horm. 2023; 121:271-292. doi:10.1016/bs.vh.2022.09.006
  • Zhang L, Wang X, Cueto R, et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019;26:101284. doi:10.1016/j.redox.2019.101284
  • Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial dysfunction in skeletal muscle pathologies. Curr Protein Pept Sci. 2019;20(6):536-546. doi:10.2174/1389203720666190402100902
  • Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease [published correction appears in Free Radic Biol Med. 2021;162:174. doi: 10.1016/j.freeradbiomed.2020.06.011]. Free Radic Biol Med. 2020;152:116-141. doi:10.1016/j.freeradbiomed.2020.02.025
  • Reccia I, Kumar J, Akladios C, et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism. 2017;72:94-108. doi:10.1016/j.metabol.2017.04.011
  • Toprak D. “Hepatosteatosis (fatty liver disease).” The Jl of Tur Family Phys. (2011): 50-57.
  • İmamoğlu FG, İmamoğlu Ç, Çiledağ N, Arda K, Tola MD. Classification of hepatosteatosis with ultrasonography and analysis of the effect of hepatosteatosis degree on the liver function tests. Med J Muğla Sıtkı Koçman University. 2015;8(2):23-28.
  • Beutler E. Red Cell Metabolism. Handbook of biochemical methods. 2nd ed. New York: Grune and Stratton Inc. 1984: 68–70.
  • Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):35-97. doi:10.1002/9780470122860.ch2
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358. doi:10.1016/0003-2697(79)90738-3
  • Pomacu MM, Trașcă MD, Pădureanu V, et al. Interrelation of inflammation and oxidative stress in liver cirrhosis. Exp Ther Med. 2021;21(6):602. doi:10.3892/etm.2021.10034
  • Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med. 2021;10(14):3011. doi:10.3390/jcm10143011
  • Videla LA, Rodrigo R, Araya J, Poniachik J. Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease. Free Radic Biol Med. 2004;37(9):1499-1507. doi:10.1016/j.freeradbiomed.2004.06.033
  • Samancı TÇ, Gökçimen A, Kuloğlu T, Boyacıoğlu M, Kuyucu Y, Polat S. “Biochemical and histopathological investigation of liver tissues on high fat diet fed rats.” 2022;23(1):101-107. doi:10.4274/meandros.galenos.2021.32932
  • Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13(10):423-444. doi:10.1089/met.2015.0095
  • Nabih, GA, Sheshtawy NE., Mikkawy DME, Kamel MA. (2024). Serum malondialdehyde as a marker of oxidative stress in rheumatoid arthritis. Egyptian Rheumatology and Rehabilitation. 2024;51(1):43. doi:10.1186/s43166-024-00275-4
  • Phababpha, Suphawadee, et al. Elevation of plasma malondialdehyde levels associated with the severity of coronary atherosclerosis in coronary artery disease patients.” Int J. 2023;10(2):3523-3529. https://www.researchgate.net/publication/37591747828-
  • Liu WN, Hsu YC, Lu CW, Lin SC, Wu TJ, Lin GM. Serum malondialdehyde-modified low-density lipoprotein as a risk marker for peripheral arterial stiffness in maintenance hemodialysis patients. Medicina (Kaunas). 2024;60(5):697. doi:10. 3390/medicina60050697
  • Estep JM, Birerdinc A, Younossi Z. Non-invasive diagnostic tests for non-alcoholic fatty liver disease. Curr Mol Med. 2010; 10(2):166-172. doi:10.2174/156652410790963321
  • Han JH, Park MH, Myung CS. Garcinia cambogia ameliorates non-alcoholic fatty liver disease by inhibiting oxidative stress-mediated steatosis and apoptosis through NRF2-ARE activation. Antioxidants (Basel). 2021;10(8):1226. doi:10.3390/antiox10081226
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyoloji ve Organ Görüntüleme, Metabolik Tıp
Bölüm Research Articles
Yazarlar

Kamil Doğan 0000-0002-8558-6295

Ergül Belge Kurutaş 0000-0002-6653-4801

Velid Ünsal 0000-0003-1415-0563

Murat İspiroğlu 0000-0002-0655-7235

Mürvet Yüksel 0000-0003-0376-4973

Yayımlanma Tarihi 28 Ekim 2024
Gönderilme Tarihi 29 Eylül 2024
Kabul Tarihi 22 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 6

Kaynak Göster

AMA Doğan K, Belge Kurutaş E, Ünsal V, İspiroğlu M, Yüksel M. Relationship between ultrasonographic liver steatosis degree and oxidative/nitrosative stress in patients diagnosed with metabolic dysfunction-associated steatotic liver disease. Anatolian Curr Med J / ACMJ / acmj. Ekim 2024;6(6):391-396. doi:10.38053/acmj.1557448

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği: Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

-  Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not: Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamaktadır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/3449/page/10809/update 

Dergi Dizin ve Platformları

TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.