Araştırma Makalesi
BibTex RIS Kaynak Göster

The Potential of Ornamental Fish Culture in Biofloc Technology with Different C/N Ratio and Multi-Criteria Decision Making Model: An Example of Goldfish (Carassius auratus)

Yıl 2025, Cilt: 21 Sayı: 3, 188 - 202, 01.09.2025
https://doi.org/10.22392/actaquatr.1614520

Öz

Biofloc technology (BFT) has become an agenda to meet the need for protein food and ornamental aquaculture with the increasing interest in sustainable aquaculture. In this context, the current study focused on BFT for ornamental goldfish (Carassius auratus), which has commercial value. The study was conducted with control and two different C/N ratios (15:1 and 20:1). On the other hand, increasing the C/N ratio had a positive effect on total suspended solids and total bacteria count in the culture water. The specific growth rate and weight gain were observed to be significantly higher at a high C/N ratio. The feed conversion ratio was lower in the C/N 20 group, indicating a more efficient feed utilization. According to the liver histological results, the vacuolization symptom is more severe in BFT groups. Considering all the results, the suitability of C. auratus cultivation in the BFT system with a C/N ratio of 20 was proven according to nine different evaluation criteria. In conclusion, rearing C. auratus in BFT systems is advised due to its economic and ecological benefits.

Etik Beyan

Current study was checked and approved by the Ethical Local Committee of the Recep Tayyip Erdogan University (Decision No: 2023/05)

Teşekkür

We would like to thank Dear Prof. Dr. İlker Zeki KURTOGU for his support in supplying the experimental area. Furthermore, Dr. Akif ER helped to the author in histological analysis.

Kaynakça

  • Ahmed, N., & Turchini, G. M. (2021). Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. Journal of Cleaner Production, 297, 126604. https://doi.org/10.1016/J.JCLEPRO.2021.126604
  • Asaduzzaman, M., Wahab, M. A., Verdegem, M. C. J., Huque, S., Salam, M. A., & Azim, M. E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280(1–4), 117–123. https://doi.org/10.1016/J.AQUACULTURE.2008.04.019
  • Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3–4), 227–235. https://doi.org/10.1016/S0044-8486(99)00085-X
  • Avnimelech, Y. (2009). Biofloc technology : a practical guide book (B. Rouge (ed.)). The World Aquaculture Society. https://lib.ugent.be/en/catalog/rug01:002180973
  • Avnimelech, Y., & Kochba, M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287(1–2), 163–168. https://doi.org/10.1016/J.AQUACULTURE.2008.10.009
  • Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1–4), 29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036
  • Besen, K. P., da Cunha, L., Delziovo, F. R., Melim, E. W. H., Cipriani, L. A., Gomes, R., Skoronski, E., & Fabregat, T. E. H. P. (2021). Goldfish (Carassius auratus) larviculture in biofloc systems: Level of Artemia nauplii, stocking density and concentration of the bioflocs. Aquaculture, 540, 736738. https://doi.org/10.1016/J.AQUACULTURE.2021.736738
  • Boyd, C. E. (2017). General Relationship Between Water Quality and Aquaculture Performance in Ponds. Fish Diseases: Prevention and Control Strategies, 147–166. https://doi.org/10.1016/B978-0-12-804564-0.00006-5
  • Boyd, C. E., Tucker, C. S., & Viriyatum, R. (2011). Interpretation of pH, Acidity, and Alkalinity in Aquaculture and Fisheries. North American Journal of Aquaculture, 73(4), 403–408. https://doi.org/10.1080/15222055.2011.620861
  • Cavalcante, D. D. H., Lima, F. R. D. S., Rebouças, V. T., & Sá, M. V. do C. e. (2017). Integration between bioflocs and periphyton in Nile tilapia culture tanks. Acta Scientiarum. Technology, 39(5), 601. https://doi.org/10.4025/ACTASCITECHNOL.V39I5.30123
  • Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. In Aquaculture (Vols. 356–357, pp. 351–356). Elsevier. https://doi.org/10.1016/j.aquaculture.2012.04.046
  • Cullis, J. D. S., Rossouw, N., du Toit, G., Petrie, D., Wolfaardt, G., de Clercq, W., & Horn, A. (2018). Economic risks due to declining water quality in the breede river catchment. Water SA, 44(3), 464–473. https://doi.org/10.4314/WSA.V44I3.14
  • da Cunha, L., Besen, K. P., Ha, N., Uczay, J., Skoronski, E., & Fabregat, T. E. H. P. (2020). Biofloc technology (BFT) improves skin pigmentation of goldfish (Carassius auratus). Aquaculture, 522, 735132. https://doi.org/10.1016/J.AQUACULTURE.2020.735132
  • De Schryver, P., Sinha, A. K., Kunwar, P. S., Baruah, K., Verstraete, W., Boon, N., De Boeck, G., & Bossier, P. (2010). Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Applied Microbiology and Biotechnology, 86(5), 1535–1541. https://doi.org/10.1007/S00253-009-2414-9/FIGURES/4
  • De Schryver, P., & Verstraete, W. (2009). Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresource Technology, 100(3), 1162–1167. https://doi.org/10.1016/J.BIORTECH.2008.08.043
  • De Smet, Y., Mareschal, B., & Verly, C. (2009). Extending the PROMETHEE II method to continuous and combinatorial multi-objective optimization problems: A first model. IEEM 2009 - IEEE International Conference on Industrial Engineering and Engineering Management, 1608–1611. https://doi.org/10.1109/IEEM.2009.5373111
  • Demirel, Y. E., Simsek, E., Ozturk, E., & Kitis, M. (2021). Selection of priority energy efficiency practices for industrial steam boilers by PROMETHEE decision model. Energy Efficiency, 14(8), 1–20. https://doi.org/10.1007/S12053-021-10007-8/TABLES/6
  • Emerenciano, M., Ballester, E. L. C., Cavalli, R. O., & Wasielesky, W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3), 447–457. https://doi.org/10.1111/J.1365-2109.2011.02848.X
  • Faizullah, M., Rajagopalsamy, C. B. T., & Francis, B. A. and T. (2015). Impact of Biofloc Technology on the Growth of Goldfish Young Ones. Indian Journal of Science and Technology, 8(13), 1–8. https://doi.org/10.17485/IJST/2015/V8I13/54060
  • Fontagné, S., Geurden, I., Escaffre, A. M., & Bergot, P. (1998). Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture, 161(1–4), 213–223. https://doi.org/10.1016/S0044-8486(97)00271-8
  • Fraser, E. J., Bosma, P. T., Trudeau, V. L., & Docherty, K. (2002). The Effect of Water Temperature on the GABAergic and Reproductive Systems in Female and Male Goldfish (Carassius auratus). General and Comparative Endocrinology, 125(2), 163–175. https://doi.org/10.1006/GCEN.2001.7714
  • Gaona, C. A. P., Almeida, M. S. de, Viau, V., Poersch, L. H., & Wasielesky, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070–1079. https://doi.org/10.1111/ARE.12949
  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34(3), 344–363. https://doi.org/10.1016/j.aquaeng.2005.08.009
  • Harun, A. A. C., Mohammad, N. A. H., Ikhwanuddin, M., Jauhari, I., Sohaili, J., & Kasan, N. A. (2019). Effect of different aeration units, nitrogen types and inoculum on biofloc formation for improvement of Pacific Whiteleg shrimp production. Egyptian Journal of Aquatic Research, 45(3), 287–292. https://doi.org/10.1016/j.ejar.2019.07.001
  • Kaya, D., Genc, M. A., Aktas, M., Yavuzcan, H., Ozmen, O., & Genc, E. (2019). Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquaculture Research, 50(10), 2760–2768. https://doi.org/10.1111/are.14228
  • Khanjani, M. H., Alizadeh, M., Mohammadi, M., & Aliabad, H. S. (2021). The Effect of Adding Molasses in Different Times on Performance of Nile Tilapia (Oreochromis niloticus) Raised in a Low-Salinity Biofloc System. Annals of Animal Science, 21(4), 1435–1454. https://doi.org/10.2478/AOAS-2021-0011
  • Khanjani, M. H., Sharifinia, M., & Hajirezaee, S. (2020). Effects of Different Salinity Levels on Water Quality, Growth Performance and Body Composition of Pacific White Shrimp (Litopenaeus vannamei Boone, 1931) Cultured in a Zero Water Exchange Heterotrophic System. Annals of Animal Science, 20(4), 1471–1486. https://doi.org/10.2478/AOAS-2020-0036
  • Kim, J. H., Kang, Y. J., Kim, K. Il, Kim, S. K., & Kim, J. H. (2019). Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus. Environmental Toxicology and Pharmacology, 67, 73–78. https://doi.org/10.1016/J.ETAP.2019.02.001 Kuhn, D. D., Boardman, G. D., Lawrence, A. L., Marsh, L., & Flick, G. J. (2009). Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296, 51–57. https://doi.org/10.1016/j.aquaculture.2009.07.025
  • Lezama-Cervantes, C., & Paniagua-Michel, J. (2010). Effects of constructed microbial mats on water quality and performance of Litopenaeus vannamei post-larvae. Aquacultural Engineering, 42(2), 75–81. https://doi.org/10.1016/J.AQUAENG.2009.12.002
  • Minaz, M. (2024). A new herbal anesthetic agent for common carp (Cyprinus carpio) sedation and anesthesia: nutmeg (Myristica fragrans) essential oil. Frontiers in Veterinary Science, 11, 1477357.
  • Minaz, M., Er, A., Ak, K., Kurtoğlu, İ. Z., & Kayış, Ş. (2024). Determining the appropriate concentration of an anesthetic mixture in three different fish species with the PROMETHEE decision model. Frontiers in Veterinary Science, 11, 1492769.
  • Minaz, M., Er, A., Ak, K., Nane, I. D., Ipek, Z. Z., Yalcın, A., Kurtoglu, I. Z., & Kayis, S. (2022). Investigation of long-term bisphenol A exposure on rainbow trout (Oncorhynchus mykiss): Hematological parameters, biochemical indicator, antioxidant activity, and histopathological examination. Chemosphere, 303, 135136. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135136
  • Minaz, M., & Kubilay, A. (2021). Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquaculture International 2021 29:3, 29(3), 1121–1140. https://doi.org/10.1007/S10499-021-00681-X
  • Minaz, M., Yazici, İ. S., Sevgili, H., & Aydln, İ. (2023). Biofloc technology in aquaculture: Advantages and disadvantages from social and applicability perspectives. Annals of Animal Science. https://doi.org/10.2478/AOAS-2023-0043
  • Miranda-Filho, K. C., Pinho, G. L. L., Wasielesky, W., & Bianchini, A. (2009). Long-term ammonia toxicity to the pink-shrimp Farfantepenaeus paulensis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150(3), 377–382. https://doi.org/10.1016/J.CBPC.2009.06.001
  • Mirzakhani, N., Ebrahimi, E., Jalali, S. A. H., & Ekasari, J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512(November 2018), 734235. https://doi.org/10.1016/j.aquaculture.2019.734235
  • Mizuta, D. D., Froehlich, H. E., & Wilson, J. R. (2023). The changing role and definitions of aquaculture for environmental purposes. Reviews in Aquaculture, 15(1), 130–141. https://doi.org/10.1111/RAQ.12706
  • Mosconi-bac, N. (1987). Hepatic disturbances induced by an artificial feed in the sea bass (Dicentrarchus labrax) during the first year of life. Aquaculture, 67(1–2), 93–99. https://doi.org/10.1016/0044-8486(87)90012-3
  • Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry, 42(2), 457–465. https://doi.org/10.1007/s10695-015-0151-9
  • Ostaszewska, T., Dabrowski, K., Czumińska, K., Olech, W., & Olejniczak, M. (2005). Rearing of pike-perch larvae using formulated diets – first success with starter feeds. Aquaculture Research, 36(12), 1167–1176. https://doi.org/10.1111/J.1365-2109.2005.01332.X
  • Ozturk, E. (2018). Applying analytical decision methods for determination of the best treatment alternative to remove emerging micropollutants from drinking water and wastewater: triclosan example. Environmental Science and Pollution Research, 25(30), 30517–30546. https://doi.org/10.1007/S11356-018-3036-5
  • Panigrahi, A., Saranya, C., Sundaram, M., Vinoth Kannan, S. R., Das, R. R., Satish Kumar, R., Rajesh, P., & Otta, S. K. (2018). Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish and Shellfish Immunology, 81(July), 329–337. https://doi.org/10.1016/j.fsi.2018.07.035
  • Qiao, G., Zhang, M., Li, Y., Xu, C., Xu, D. H., Zhao, Z., Zhang, J., & Li, Q. (2018). Biofloc technology (BFT): An alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in gibel carp (Carassius auratus gibelio). Fish and Shellfish Immunology, 83(July), 140–147. https://doi.org/10.1016/j.fsi.2018.09.015
  • Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard methods for the examination of water and wastewater. In Standard Methods for the Examination of Water and Wastewater, American Public Health Association (23rd Edition). American Public Health Association, American Water Works Association, Water Environment Federation.
  • Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59–70. https://doi.org/10.1016/J.AQUAENG.2013.04.006
  • Segner, H., & Witt, U. (1990). Weaning experiments with turbot (Scophthalmus maximus): Electron microscopic study of liver. Marine Biology, 105(3), 353–361. https://doi.org/10.1007/BF01316306/METRICS
  • Sinha, A., & Asimi, O. A. (2007). China rose (Hibiscus rosasinensis) petals: a potent natural carotenoid source for goldfish (Carassius auratus L.). Aquaculture Research, 38(11), 1123–1128. https://doi.org/10.1111/J.1365-2109.2007.01767.X
  • Suita, S. M., Cardozo, A. P., Romano, L. A., Abreu, P. C., & Wasielesky, W. (2015). Development of the hepatopancreas and quality analysis of post-larvae Pacific white shrimp Litopenaeus vannamei produced in a BFT system. Aquaculture International, 23(2), 449–463. https://doi.org/10.1007/S10499-014-9825-Z/FIGURES/12
  • Tomasso, J. R. (1994). Toxicity of nitrogenous wastes to aquaculture animals. Reviews in Fisheries Science, 2(4), 291–314. https://doi.org/10.1080/10641269409388560
  • Tovar, A., Moreno, C., Mánuel-Vez, M. P., & García-Vargas, M. (2000). Environmental impacts of intensive aquaculture in marine waters. Water Research, 34(1), 334–342. https://doi.org/10.1016/S0043-1354(99)00102-5
  • Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents-What can we learn from the past for the future? Sustainability (Switzerland), 6(2), 836–856. https://doi.org/10.3390/SU6020836
  • Verdegem, M., Buschmann, A. H., Latt, U. W., Dalsgaard, A. J. T., & Lovatelli, A. (2023). The contribution of aquaculture systems to global aquaculture production. Journal of the World Aquaculture Society, 54(2), 206–250. https://doi.org/10.1111/JWAS.12963
  • Vogt, G. (2021). Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. Zoology, 147, 125945. https://doi.org/10.1016/J.ZOOL.2021.125945
  • Wang, G., Yu, E., Xie, J., Yu, D., Li, Z., Luo, W., Qiu, L., & Zheng, Z. (2015). Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443, 98–104. https://doi.org/10.1016/j.aquaculture.2015.03.015
  • Xu, W. J., Morris, T. C., & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169–175. https://doi.org/10.1016/J.AQUACULTURE.2015.11.021
  • Yu, Z., Li, L., Zhu, R., Li, M., Duan, J., Wang, J. Y., Liu, Y. H., & Wu, L. F. (2020). Monitoring of growth, digestive enzyme activity, immune response and water quality parameters of Golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems. Aquaculture Reports, 16, 100283. https://doi.org/10.1016/J.AQREP.2020.100283
  • Yun, X., ErMeng, Y., Jun, X., DeGuang, Y., GuangJun, W., ZhiFei, L., HaiYing, W., & WangBao, G. (2012). Analysis of bacterial community structure of Bio-Floc by PCR-DGGE. Journal of Fisheries of China, 36(10), 1563–1571.
  • Zhang, R., Chen, T., Wang, Y., & Short, M. (2024). An optimisation approach for the design and operation of recirculating aquaculture systems integrated with sustainable hybrid energy systems. Journal of Cleaner Production, 477, 143860. https://doi.org/10.1016/J.JCLEPRO.2024.143860
  • Zhao, C., Jiao, T., Zhang, W., Guo, Y., Han, F., Lei, J., & Zhou, W. (2024). Carbon sources influence on heterotrophic ammonia assimilation: Performance and mechanism. Chemical Engineering Journal, 497, 154545. https://doi.org/10.1016/J.CEJ.2024.154545

Biyoflok Teknolojisinde Farklı C/N Oranı ve Çok Kriterli Karar Verme Modeli ile Akvaryum Balığı Yetiştiriciliğinin Potansiyeli: Japon Balığı (Carassius auratus) Örneği

Yıl 2025, Cilt: 21 Sayı: 3, 188 - 202, 01.09.2025
https://doi.org/10.22392/actaquatr.1614520

Öz

Biyoflok teknolojisi (BFT), yalnızca protein ihtiyacını karşılamak için değil, aynı zamanda akvaryum balığı yetiştiriciliği için de gündeme gelmiştir. Bu bağlamda, mevcut çalışma ticari değere sahip bir tür olan Japon balığı (Carassius auratus) üzerine odaklanmıştır. Kontrol grubu ve iki farklı C/N oranı (15:1 ve 20:1) ile gerçekleştirilen çalışmada, BFT gruplarında azot döngüsü hızlı bir şekilde gerçekleşmiştir. Diğer yandan, C/N oranının artırılması, kültür suyunda toplam askıda katı madde ve toplam bakteri sayısı üzerinde olumlu bir etki göstermiştir. Büyüme performansı açısından, yüksek C/N oranında spesifik büyüme hızı ve ağırlık artışı önemli ölçüde daha yüksek gözlemlenmiştir. Yem değerlendirme oranı ise C/N 20 grubu için daha düşük sonuçlar göstermiştir. Karaciğer histolojik sonuçlarına göre, vakuolizasyon semptomunun BFT gruplarında daha şiddetli olduğu tespit edilmiştir. Tüm sonuçlar göz önünde bulundurulduğunda, 20 C/N oranına sahip BFT sisteminde C. auratus yetiştiriciliğinin uygunluğu dokuz farklı değerlendirme kriterine göre kanıtlanmıştır. Sonuç olarak, C. auratus’un BFT sistemlerinde yetiştirilmesi hem ekonomik hem de ekolojik açıdan önerilmektedir.

Kaynakça

  • Ahmed, N., & Turchini, G. M. (2021). Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. Journal of Cleaner Production, 297, 126604. https://doi.org/10.1016/J.JCLEPRO.2021.126604
  • Asaduzzaman, M., Wahab, M. A., Verdegem, M. C. J., Huque, S., Salam, M. A., & Azim, M. E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280(1–4), 117–123. https://doi.org/10.1016/J.AQUACULTURE.2008.04.019
  • Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3–4), 227–235. https://doi.org/10.1016/S0044-8486(99)00085-X
  • Avnimelech, Y. (2009). Biofloc technology : a practical guide book (B. Rouge (ed.)). The World Aquaculture Society. https://lib.ugent.be/en/catalog/rug01:002180973
  • Avnimelech, Y., & Kochba, M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287(1–2), 163–168. https://doi.org/10.1016/J.AQUACULTURE.2008.10.009
  • Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1–4), 29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036
  • Besen, K. P., da Cunha, L., Delziovo, F. R., Melim, E. W. H., Cipriani, L. A., Gomes, R., Skoronski, E., & Fabregat, T. E. H. P. (2021). Goldfish (Carassius auratus) larviculture in biofloc systems: Level of Artemia nauplii, stocking density and concentration of the bioflocs. Aquaculture, 540, 736738. https://doi.org/10.1016/J.AQUACULTURE.2021.736738
  • Boyd, C. E. (2017). General Relationship Between Water Quality and Aquaculture Performance in Ponds. Fish Diseases: Prevention and Control Strategies, 147–166. https://doi.org/10.1016/B978-0-12-804564-0.00006-5
  • Boyd, C. E., Tucker, C. S., & Viriyatum, R. (2011). Interpretation of pH, Acidity, and Alkalinity in Aquaculture and Fisheries. North American Journal of Aquaculture, 73(4), 403–408. https://doi.org/10.1080/15222055.2011.620861
  • Cavalcante, D. D. H., Lima, F. R. D. S., Rebouças, V. T., & Sá, M. V. do C. e. (2017). Integration between bioflocs and periphyton in Nile tilapia culture tanks. Acta Scientiarum. Technology, 39(5), 601. https://doi.org/10.4025/ACTASCITECHNOL.V39I5.30123
  • Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. In Aquaculture (Vols. 356–357, pp. 351–356). Elsevier. https://doi.org/10.1016/j.aquaculture.2012.04.046
  • Cullis, J. D. S., Rossouw, N., du Toit, G., Petrie, D., Wolfaardt, G., de Clercq, W., & Horn, A. (2018). Economic risks due to declining water quality in the breede river catchment. Water SA, 44(3), 464–473. https://doi.org/10.4314/WSA.V44I3.14
  • da Cunha, L., Besen, K. P., Ha, N., Uczay, J., Skoronski, E., & Fabregat, T. E. H. P. (2020). Biofloc technology (BFT) improves skin pigmentation of goldfish (Carassius auratus). Aquaculture, 522, 735132. https://doi.org/10.1016/J.AQUACULTURE.2020.735132
  • De Schryver, P., Sinha, A. K., Kunwar, P. S., Baruah, K., Verstraete, W., Boon, N., De Boeck, G., & Bossier, P. (2010). Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Applied Microbiology and Biotechnology, 86(5), 1535–1541. https://doi.org/10.1007/S00253-009-2414-9/FIGURES/4
  • De Schryver, P., & Verstraete, W. (2009). Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresource Technology, 100(3), 1162–1167. https://doi.org/10.1016/J.BIORTECH.2008.08.043
  • De Smet, Y., Mareschal, B., & Verly, C. (2009). Extending the PROMETHEE II method to continuous and combinatorial multi-objective optimization problems: A first model. IEEM 2009 - IEEE International Conference on Industrial Engineering and Engineering Management, 1608–1611. https://doi.org/10.1109/IEEM.2009.5373111
  • Demirel, Y. E., Simsek, E., Ozturk, E., & Kitis, M. (2021). Selection of priority energy efficiency practices for industrial steam boilers by PROMETHEE decision model. Energy Efficiency, 14(8), 1–20. https://doi.org/10.1007/S12053-021-10007-8/TABLES/6
  • Emerenciano, M., Ballester, E. L. C., Cavalli, R. O., & Wasielesky, W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3), 447–457. https://doi.org/10.1111/J.1365-2109.2011.02848.X
  • Faizullah, M., Rajagopalsamy, C. B. T., & Francis, B. A. and T. (2015). Impact of Biofloc Technology on the Growth of Goldfish Young Ones. Indian Journal of Science and Technology, 8(13), 1–8. https://doi.org/10.17485/IJST/2015/V8I13/54060
  • Fontagné, S., Geurden, I., Escaffre, A. M., & Bergot, P. (1998). Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture, 161(1–4), 213–223. https://doi.org/10.1016/S0044-8486(97)00271-8
  • Fraser, E. J., Bosma, P. T., Trudeau, V. L., & Docherty, K. (2002). The Effect of Water Temperature on the GABAergic and Reproductive Systems in Female and Male Goldfish (Carassius auratus). General and Comparative Endocrinology, 125(2), 163–175. https://doi.org/10.1006/GCEN.2001.7714
  • Gaona, C. A. P., Almeida, M. S. de, Viau, V., Poersch, L. H., & Wasielesky, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070–1079. https://doi.org/10.1111/ARE.12949
  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34(3), 344–363. https://doi.org/10.1016/j.aquaeng.2005.08.009
  • Harun, A. A. C., Mohammad, N. A. H., Ikhwanuddin, M., Jauhari, I., Sohaili, J., & Kasan, N. A. (2019). Effect of different aeration units, nitrogen types and inoculum on biofloc formation for improvement of Pacific Whiteleg shrimp production. Egyptian Journal of Aquatic Research, 45(3), 287–292. https://doi.org/10.1016/j.ejar.2019.07.001
  • Kaya, D., Genc, M. A., Aktas, M., Yavuzcan, H., Ozmen, O., & Genc, E. (2019). Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquaculture Research, 50(10), 2760–2768. https://doi.org/10.1111/are.14228
  • Khanjani, M. H., Alizadeh, M., Mohammadi, M., & Aliabad, H. S. (2021). The Effect of Adding Molasses in Different Times on Performance of Nile Tilapia (Oreochromis niloticus) Raised in a Low-Salinity Biofloc System. Annals of Animal Science, 21(4), 1435–1454. https://doi.org/10.2478/AOAS-2021-0011
  • Khanjani, M. H., Sharifinia, M., & Hajirezaee, S. (2020). Effects of Different Salinity Levels on Water Quality, Growth Performance and Body Composition of Pacific White Shrimp (Litopenaeus vannamei Boone, 1931) Cultured in a Zero Water Exchange Heterotrophic System. Annals of Animal Science, 20(4), 1471–1486. https://doi.org/10.2478/AOAS-2020-0036
  • Kim, J. H., Kang, Y. J., Kim, K. Il, Kim, S. K., & Kim, J. H. (2019). Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus. Environmental Toxicology and Pharmacology, 67, 73–78. https://doi.org/10.1016/J.ETAP.2019.02.001 Kuhn, D. D., Boardman, G. D., Lawrence, A. L., Marsh, L., & Flick, G. J. (2009). Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296, 51–57. https://doi.org/10.1016/j.aquaculture.2009.07.025
  • Lezama-Cervantes, C., & Paniagua-Michel, J. (2010). Effects of constructed microbial mats on water quality and performance of Litopenaeus vannamei post-larvae. Aquacultural Engineering, 42(2), 75–81. https://doi.org/10.1016/J.AQUAENG.2009.12.002
  • Minaz, M. (2024). A new herbal anesthetic agent for common carp (Cyprinus carpio) sedation and anesthesia: nutmeg (Myristica fragrans) essential oil. Frontiers in Veterinary Science, 11, 1477357.
  • Minaz, M., Er, A., Ak, K., Kurtoğlu, İ. Z., & Kayış, Ş. (2024). Determining the appropriate concentration of an anesthetic mixture in three different fish species with the PROMETHEE decision model. Frontiers in Veterinary Science, 11, 1492769.
  • Minaz, M., Er, A., Ak, K., Nane, I. D., Ipek, Z. Z., Yalcın, A., Kurtoglu, I. Z., & Kayis, S. (2022). Investigation of long-term bisphenol A exposure on rainbow trout (Oncorhynchus mykiss): Hematological parameters, biochemical indicator, antioxidant activity, and histopathological examination. Chemosphere, 303, 135136. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135136
  • Minaz, M., & Kubilay, A. (2021). Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquaculture International 2021 29:3, 29(3), 1121–1140. https://doi.org/10.1007/S10499-021-00681-X
  • Minaz, M., Yazici, İ. S., Sevgili, H., & Aydln, İ. (2023). Biofloc technology in aquaculture: Advantages and disadvantages from social and applicability perspectives. Annals of Animal Science. https://doi.org/10.2478/AOAS-2023-0043
  • Miranda-Filho, K. C., Pinho, G. L. L., Wasielesky, W., & Bianchini, A. (2009). Long-term ammonia toxicity to the pink-shrimp Farfantepenaeus paulensis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150(3), 377–382. https://doi.org/10.1016/J.CBPC.2009.06.001
  • Mirzakhani, N., Ebrahimi, E., Jalali, S. A. H., & Ekasari, J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512(November 2018), 734235. https://doi.org/10.1016/j.aquaculture.2019.734235
  • Mizuta, D. D., Froehlich, H. E., & Wilson, J. R. (2023). The changing role and definitions of aquaculture for environmental purposes. Reviews in Aquaculture, 15(1), 130–141. https://doi.org/10.1111/RAQ.12706
  • Mosconi-bac, N. (1987). Hepatic disturbances induced by an artificial feed in the sea bass (Dicentrarchus labrax) during the first year of life. Aquaculture, 67(1–2), 93–99. https://doi.org/10.1016/0044-8486(87)90012-3
  • Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry, 42(2), 457–465. https://doi.org/10.1007/s10695-015-0151-9
  • Ostaszewska, T., Dabrowski, K., Czumińska, K., Olech, W., & Olejniczak, M. (2005). Rearing of pike-perch larvae using formulated diets – first success with starter feeds. Aquaculture Research, 36(12), 1167–1176. https://doi.org/10.1111/J.1365-2109.2005.01332.X
  • Ozturk, E. (2018). Applying analytical decision methods for determination of the best treatment alternative to remove emerging micropollutants from drinking water and wastewater: triclosan example. Environmental Science and Pollution Research, 25(30), 30517–30546. https://doi.org/10.1007/S11356-018-3036-5
  • Panigrahi, A., Saranya, C., Sundaram, M., Vinoth Kannan, S. R., Das, R. R., Satish Kumar, R., Rajesh, P., & Otta, S. K. (2018). Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish and Shellfish Immunology, 81(July), 329–337. https://doi.org/10.1016/j.fsi.2018.07.035
  • Qiao, G., Zhang, M., Li, Y., Xu, C., Xu, D. H., Zhao, Z., Zhang, J., & Li, Q. (2018). Biofloc technology (BFT): An alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in gibel carp (Carassius auratus gibelio). Fish and Shellfish Immunology, 83(July), 140–147. https://doi.org/10.1016/j.fsi.2018.09.015
  • Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard methods for the examination of water and wastewater. In Standard Methods for the Examination of Water and Wastewater, American Public Health Association (23rd Edition). American Public Health Association, American Water Works Association, Water Environment Federation.
  • Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59–70. https://doi.org/10.1016/J.AQUAENG.2013.04.006
  • Segner, H., & Witt, U. (1990). Weaning experiments with turbot (Scophthalmus maximus): Electron microscopic study of liver. Marine Biology, 105(3), 353–361. https://doi.org/10.1007/BF01316306/METRICS
  • Sinha, A., & Asimi, O. A. (2007). China rose (Hibiscus rosasinensis) petals: a potent natural carotenoid source for goldfish (Carassius auratus L.). Aquaculture Research, 38(11), 1123–1128. https://doi.org/10.1111/J.1365-2109.2007.01767.X
  • Suita, S. M., Cardozo, A. P., Romano, L. A., Abreu, P. C., & Wasielesky, W. (2015). Development of the hepatopancreas and quality analysis of post-larvae Pacific white shrimp Litopenaeus vannamei produced in a BFT system. Aquaculture International, 23(2), 449–463. https://doi.org/10.1007/S10499-014-9825-Z/FIGURES/12
  • Tomasso, J. R. (1994). Toxicity of nitrogenous wastes to aquaculture animals. Reviews in Fisheries Science, 2(4), 291–314. https://doi.org/10.1080/10641269409388560
  • Tovar, A., Moreno, C., Mánuel-Vez, M. P., & García-Vargas, M. (2000). Environmental impacts of intensive aquaculture in marine waters. Water Research, 34(1), 334–342. https://doi.org/10.1016/S0043-1354(99)00102-5
  • Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents-What can we learn from the past for the future? Sustainability (Switzerland), 6(2), 836–856. https://doi.org/10.3390/SU6020836
  • Verdegem, M., Buschmann, A. H., Latt, U. W., Dalsgaard, A. J. T., & Lovatelli, A. (2023). The contribution of aquaculture systems to global aquaculture production. Journal of the World Aquaculture Society, 54(2), 206–250. https://doi.org/10.1111/JWAS.12963
  • Vogt, G. (2021). Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. Zoology, 147, 125945. https://doi.org/10.1016/J.ZOOL.2021.125945
  • Wang, G., Yu, E., Xie, J., Yu, D., Li, Z., Luo, W., Qiu, L., & Zheng, Z. (2015). Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443, 98–104. https://doi.org/10.1016/j.aquaculture.2015.03.015
  • Xu, W. J., Morris, T. C., & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169–175. https://doi.org/10.1016/J.AQUACULTURE.2015.11.021
  • Yu, Z., Li, L., Zhu, R., Li, M., Duan, J., Wang, J. Y., Liu, Y. H., & Wu, L. F. (2020). Monitoring of growth, digestive enzyme activity, immune response and water quality parameters of Golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems. Aquaculture Reports, 16, 100283. https://doi.org/10.1016/J.AQREP.2020.100283
  • Yun, X., ErMeng, Y., Jun, X., DeGuang, Y., GuangJun, W., ZhiFei, L., HaiYing, W., & WangBao, G. (2012). Analysis of bacterial community structure of Bio-Floc by PCR-DGGE. Journal of Fisheries of China, 36(10), 1563–1571.
  • Zhang, R., Chen, T., Wang, Y., & Short, M. (2024). An optimisation approach for the design and operation of recirculating aquaculture systems integrated with sustainable hybrid energy systems. Journal of Cleaner Production, 477, 143860. https://doi.org/10.1016/J.JCLEPRO.2024.143860
  • Zhao, C., Jiao, T., Zhang, W., Guo, Y., Han, F., Lei, J., & Zhou, W. (2024). Carbon sources influence on heterotrophic ammonia assimilation: Performance and mechanism. Chemical Engineering Journal, 497, 154545. https://doi.org/10.1016/J.CEJ.2024.154545
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balıkçılık Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Mert Minaz 0000-0003-1894-9807

Erken Görünüm Tarihi 3 Haziran 2025
Yayımlanma Tarihi 1 Eylül 2025
Gönderilme Tarihi 6 Ocak 2025
Kabul Tarihi 13 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 3

Kaynak Göster

APA Minaz, M. (2025). The Potential of Ornamental Fish Culture in Biofloc Technology with Different C/N Ratio and Multi-Criteria Decision Making Model: An Example of Goldfish (Carassius auratus). Acta Aquatica Turcica, 21(3), 188-202. https://doi.org/10.22392/actaquatr.1614520