Araştırma Makalesi
BibTex RIS Kaynak Göster

Bilimsel Model Eğitimi ve Model Tabanlı Etkinliklerin Ortaokul Öğrencilerinin Model Algısına ve Modelleme Seviyesine Etkisi*

Yıl 2025, Cilt: 15 Sayı: 1, 214 - 249, 30.06.2025
https://doi.org/10.17984/adyuebd.1594563

Öz

Bilimsel modeller ve model tabanlı etkinlikler bilimsel konu ve kavramların öğrenilmesinde önemli bir yere sahiptir. Model tabanlı eğitimin öneminden yola çıkılarak tasarlanan ve karma araştırma deseninde yürütülen bu araştırmanın amacı ortaokul öğrencilerinin iki farklı müdahalenin uygulanması (bilimsel model eğitimi ve model tabanlı etkinliklerle yürütülen dersler) sonucunda model algıları ve modelleme seviyelerinin nasıl değiştiğini belirlemektir. Araştırma kapsamında dört farklı sınıftan nicel ve nitel veriler toplanmış ve analiz edilmiştir. Araştırmanın odak noktası bilimsel modeller ve bilimsel modellerin doğası hakkında eğitim verilen, model tasarımı etkinliği yapan öğrencilerin model algıları ve modelleme seviyelerinin, eğitim almayan ve etkinlik yapmayan öğrencilere göre nasıl değiştiğinin ortaya çıkarılmasına dayanmaktadır. Çalışma grubu dört farklı şubeden 80 ortaokul öğrencisini kapsamaktadır. Veriler, Öğrencilerin Bilimsel Model Algı Ölçeği ve Öğrenci Modellerini Değerlendirme Rubriği kullanılarak toplanmıştır. Üç deney (eğitim, modelleme, eğitim ve modelleme) ve bir kontrol şubesinden elde edilen veriler karşılaştırılarak analiz edilmiştir. Araştırmanın sonuçları model tabanlı öğretim sürecinde, bilimsel modellerin doğası hakkında verilen eğitim ile modelleme etkinliği aracılığıyla yürütülen ortaokul fen derslerinin müdahale öncesi ve sonrasında sınıfların modelleme seviyeleri ve model algısında belirgin bir değişime yol açmadığını göstermiştir. Bununla birlikte, modelleme etkinliği gerçekleştirilen şubelerde modelin amacı ve modelin iletişim unsurları boyutlarında anlamlı farklılıklar gözlenmiştir. Çalışma kapsamında öğrencilerin modelleme seviyeleri ve bilimsel model algısını geliştirebilmek amacıyla literatüre ve araştırmanın bulgularına dayanarak çeşitli öneriler getirilmiştir.

Kaynakça

  • Aktan, M. B. (2016). Pre-Service Science Teachers’ Perceptions and Attitudes About the Use of Models. Journal of Baltic Science Education, 15(1), 7-17.
  • Aktan, M. B., Kaynak, S., Abdüsselam, Z., & Ardoğan, E. (2019). Güncel fen öğretim programları ve ders kitaplarında model ve modelleme kavramlarının analizi. Cumhuriyet Uluslararası Eğitim Dergisi, 8(1), 44-69. https://doi.org/10.30703/cije.450242
  • Al-Balushi, S. M. (2011). Students’ evaluation of the credibility of scientific models that represent natural entities and phenomena. International Journal of Science and Mathematics Education, 9(3), 571-601. https://doi.org/10.1007/s10763-010-9209-4
  • Arslan, A., & Doğru, M. (2014). Modellemeye dayalı fen öğretiminin ilköğretim öğrencilerinin anlama, hatırda tutma, yaratıcılık düzeyleri ile zihinsel modelleri üzerine etkisi. Akdeniz İnsani Bilimler Dergisi, 4(2), 1-17. https://doi.org/10.13114/MJH.201428425
  • Ayvacı, H. Ş., & Bebek, G. (2017). 2013 Yılında Revize Edilen Fen Bilimleri Dersi Öğretim Programı’nda Yer Alan Kazanımların İncelenmesi: Model Oluşturma ve Kullanma Konusu. Hasan Ali Yücel Egitim Fakültesi Dergisi, 14(1), 89.
  • Bamberger, Y., & Davis, E. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213-238. https://doi.org/10.1080/09500693.2011.624133
  • Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186-3191.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö., E., Karadeniz, Ş., & Demirel, F. (2018). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi.
  • Campos, V. M., Arias, J. C., Martínez, J. M. O., López, Á. B., & Marisca11, A. J. F. (2016). Assessment of teacher training students’ understanding of the nature of the models. Nature of science: History, philosophy and sociology of science, 6, 799-805.
  • Chang, H. Y., & Chang, H. C. (2013). Scaffolding students’ online critiquing of expert-and peer-generated molecular models of chemical reactions. International Journal of Science Education, 35(12), 2028–2056. https://doi.org/10.1080/09500693.2012.733978
  • Cheng, M. F., & Brown, D. E. (2015). The role of scientific modeling criteria in advancing students’explanatory ideas of magnetism. Journal of Research in Science Teaching, 52(8), 1053–1081. https://doi.org/10.1002/tea.21234
  • Cheng, M. F., & Lin, J. L. (2015). Investigating the relationship between students’ views of scientific models and their development of models. International Journal of Science Education, 37(15), 2453-2475. https://doi.org/10.1080/09500693.2015.1082671
  • Cheng, M. F., Lin, J. L., Lin, S. Y., & Cheng, C. H. (2017). Scaffolding Middle School and High School Students' Modeling Processes. Journal of Baltic Science Education, 16(2), 207-217.
  • Cheng, M. F., Lin, J.-L., Chang, Y.-C., Li, H.-W., Wu, T.-Y., & Lin, D.-M. (2014). Developing explanatory models of magnetic phenomena through model-based inquiry. Journal of Baltic Science Education, 13(3), 351–360.
  • Cheng, M. F., Wu, T. Y., & Lin, S. F. (2019). Investigating the relationship between views of scientific models and modeling practice. Research in Science Education, 51(Suppl1), 307-323. https://doi.org/10.1007/s11165-019-09880-2
  • Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23(2), 195-212. https://doi.org/10.1080/02635140500266484
  • Chiu, M. H., & Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 12. https://doi.org/10.1186/s43031-019-0012-y
  • Coll, R. K. (2006). The role of models, mental models and analogies in chemistry teaching. In Metaphor and analogy in science education (pp. 65-77). Dordrecht: Springer Netherlands.
  • Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers' conceptions of modelling in science. International Journal of Science Education, 26(11), 1379-1401. https://doi.org/10.1080/09500690410001673775
  • Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research. Thousand Oaks, CA: Sage Publications.
  • Çiltaş, A., & Muşlu, M. (2016). Doğal sayılarda işlemler konusunun öğretiminde matematiksel modelleme yönteminin öğrenci başarısına etkisi. Bayburt Eğitim Fakültesi Dergisi, 11(2), 329-343.
  • Derman A. & Kayacan K., (2017), Investigating of the Relationship Between the Views of the Prospective ScienceTeachers on the Nature of Scientific Models and Their Achievement on the Topic of Atom. Eur. J. Educ. Stud., 3(6), 541–559. https://doi.org/10.5281/zenodo.583777
  • Everett, S., Otto, C., & Luera, G. R. (2009). Preservice elementary teachers’ growth in knowledge of models in a science capstone course. International Journal of Science and Mathematics Education, 7(6), 1201–1225. https://doi.org/10.1007/s10763-009-9158-y
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. New York: McGraw-Hill.
  • Gilbert, J. K., & Justi, R. (2016). Models of Modelling. In: Modelling-based Teaching in Science Education. https://doi.org/10.1007/978-3-319-29039-3_2
  • Gobert, J. D., O’Dwyer, L., Horwitz, P., Buckley, B. C., Levy, S. T., & Wilensky, U. (2011). Examining the relationship between students’ understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684. https://doi.org/10.1080/09500691003720671
  • Gogolin, S., & Krüger, D. (2018). Students' understanding of the nature and purpose of models. Journal of Research in Science Teaching, 55(9), 1313-1338. https://doi.org/10.1002/tea.21453
  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science teaching, 28(9), 799-822. https://doi.org/10.1002/tea.3660280907
  • Gümüş, İ., Demir, Y., Koçak, E., Kaya, Y., & Kırıcı, M. (2008). Modellerle Öğretimin Öğrenci Başarısına Etkisi. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 10(1), 65-90.
  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for teaching chemistry. Science education, 80(5), 509-534.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International journal of science education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  • Hayes, A. F., & Krippendorff, K. (2007). Answering the call for a standard reliability measure for coding data. Communication methods and measures, 1(1), 77-89. https://doi.org/10.1080/19312450709336664
  • Justi, R., & Gilbert, J. (2003). Teachers' views on the nature of models. International Journal of science education, 25(11), 1369-1386. https://doi.org/10.1080/0950069032000070324
  • Kara, S. (2019). Model destekli argümantasyon tabanlı bilim öğrenme yaklaşımının ilkokul fen dersinde uygulanması [Yayımlanmamış doktora tezi]. Hacettepe Üniversitesi, Ankara.
  • Khan, S. (2007). Model‐based inquiries in chemistry. Science Education, 91(6), 877-905. https://doi.org/10.1002/sce.20226
  • Khan, S. (2011). What’s missing in model-based teaching. Journal of Science Teacher Education, 22, 535–560. https://doi.org/10.1007/s10972-011-9248-x
  • Krell, M., Reinisch, B. & Krüger, D. (2015). Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics. Res. Sci. Educ. 45, 367–393. https://doi.org/10.1007/s11165-014-9427-9
  • Krell, M., Upmeier zu Belzen, A. & Krüger, D. (2014). Students’ Levels of Understanding Models and Modelling in Biology: Global or Aspect-Dependent? Res. Sci. Educ. 44, 109–132. https://doi.org/10.1007/s11165-013-9365-y
  • Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2012). Students' understanding of the purpose of models in different biological contexts. International Journal of Biology Education, 2(2), 1–34.
  • Lazenby, K., & Becker, N. M. (2021). Evaluation of the students’ understanding of models in science (SUMS) for use in undergraduate chemistry. Chemistry Education Research and Practice, 22(1), 62-76. https://doi.org/10.1039/D0RP00084A
  • Leech, N. L., & Onwuegbuzie, A. J. (2009). A typology of mixed methods research designs. Quality & Quantity, 43, 265-275.
  • Liu, X. (2006). Effects of combined hands-on laboratory and computer modeling on student learning of gas laws: A quasi-experimental study. Journal of Science Education & Technology, 15(1), 89–100. https://doi.org/10.1007/s10956-006-0359-7
  • Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471–492. https://doi.org/10.1080/00131911.2011.628748
  • MEB. (2018). Fen Bilimleri Dersi Öğretim Programı. Ankara: Millî Eğitim Bakanlığı Yayınları.
  • MEB. (2024). Fen Bilimleri Dersi Öğretim Programı. Türkiye Yüzyılı Maarif Modeli. Ankara: Millî Eğitim Bakanlığı Yayınları.
  • Metin, D., & Leblebicioğlu, G. (2015). Ortaokul 6. ve 7. sınıf öğrencilerinin bilimsel model ve modelleme hakkındaki görüşlerinin bir yaz bilim kampı süresince gelişimi. Eğitim ve Bilim, 40(177), 1-18. http://dx.doi.org/10.15390/EB.2015.1507
  • Ministry of Education of Taiwan. (2018). Curriculum guidelines of 12‐year basic education curriculum. National Academy for Educational Research.
  • National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press.
  • Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching, 48(3), 237–256. https://doi.org/10.1002/tea.20400
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academy Press.
  • Nielsen, S. S., & Nielsen, J. A. (2021). A competence-oriented approach to models and modelling in lower secondary science education: practices and rationales among Danish teachers. Research in Science Education, 51(Suppl2), 565-593. https://doi.org/10.1007/s11165-019-09900-1
  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  • Oliva, J. M. & Blanco-Lopez, A. (2021). Development of a questionnaire for assessing Spanish-speaking students understanding of the nature of models and their uses in science. Journal of Research in Science Teaching, 58(6), 852–878. http://dx.doi.org/10.1002/tea.21681
  • Park, M., Liu, X., Smith, E., & Waight, N. (2017). The effect of computer models as formative assessment on student understanding of the nature of models. Chemistry Education Research and Practice, 18(4), 572-581. https://doi.org/10.1039/C7RP00018A
  • Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125-143
  • Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511. https://doi.org/10.1002/tea.20415
  • Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and instruction, 23(2), 165-205.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311
  • Sins, P., Savelsbergh, E., van Joolingen, W., & van Hout-Wolters, B. (2009). The relation between students' epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31(9), 1205–1229. https://doi.org/10.1080/09500690802192181
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Pearson Pub.
  • Treagust, D. F., Chittleborough, G. D., & Mamiala, T. L. (2004). Students' understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34, 1-20. https://doi.org/10.1023/B:RISE.0000020885.41497.ed
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368. https://doi.org/10.1080/09500690110066485
  • Ünal Çoban, G., & Ergin, Ö. (2011). Bilimsel bilginin varlık alanına modellemeye dayalı öğretimle bakış. Türk Eğitim Bilimleri Dergisi, 9(2), 211-254.
  • Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153. https://doi.org/10.1080/095006999290110
  • Villablanca, S., Montenegro, M., & Ramos-Moore, E. (2020). Analysis of student perceptions of scientific models: Validation of a Spanish-adapted version of the Students’ Understanding of Models in Science instrument. International Journal of Science Education, 42(17), 2945-2958. https://doi.org/10.1080/09500693.2020.1843735
  • Wei S., Liu X. & Jia Y. (2014). Using Rasch measurement to validate the instrument of Students’ Understanding of Models in Science (SUMS), Int. J. Sci. Math. Educ., 12(5), 1067–1082. https://doi.org/10.1007/s10763-013-9459-z
  • Willard, T., & Roseman, J. E. (2010). Probing students’ ideas about models using standards-based assessment items. In 83rd NARST Annual International Conference, Philadelphia, PA, USA.
  • Williams, G., & Clement, J. (2015). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82-107. https://doi.org/10.1080/09500693.2014.966257

The Effect of Scientific Model Training and Model-Based Activities on Middle School Students' Model Perception and Modeling Level

Yıl 2025, Cilt: 15 Sayı: 1, 214 - 249, 30.06.2025
https://doi.org/10.17984/adyuebd.1594563

Öz

Scientific models and model-based activities have an important place in learning scientific topics and concepts. The aim of this research, which was designed based on the importance of model-based education and conducted in a mixed research design, is to determine how middle school students' model perceptions and modeling levels change as a result of two different interventions, lessons conducted with scientific model training and model-based activities. Within the scope of the research, quantitative and qualitative data were collected and analyzed from four different classes. The focus of the research is based on revealing how the model perceptions and modeling levels of students who are trained about the nature of scientific models and who engaged in model design activities changed compared to students who did not receive training and did not engage in activities. The study group includes 80 middle school students from four different classrooms. Data were collected using the Students’ Understanding of Models in Science Scale and the Student Models Evaluation Rubric. Data from three groups (training, modeling, training and modeling) and one control group were compared and analyzed. The results showed that in the model-based teaching process, the education given about the nature of scientific models and the middle school science lessons conducted through the modeling activity did not lead to a significant change in the modeling levels and model perception of the classes before and after the intervention. However, significant differences were observed in the groups where the modeling activity was carried out in terms of the purpose of the model and the communication elements of the model. Within the scope of the study, various suggestions were made based on the literature and the findings of the research in order to improve students' modeling levels and perception of scientific models.

Kaynakça

  • Aktan, M. B. (2016). Pre-Service Science Teachers’ Perceptions and Attitudes About the Use of Models. Journal of Baltic Science Education, 15(1), 7-17.
  • Aktan, M. B., Kaynak, S., Abdüsselam, Z., & Ardoğan, E. (2019). Güncel fen öğretim programları ve ders kitaplarında model ve modelleme kavramlarının analizi. Cumhuriyet Uluslararası Eğitim Dergisi, 8(1), 44-69. https://doi.org/10.30703/cije.450242
  • Al-Balushi, S. M. (2011). Students’ evaluation of the credibility of scientific models that represent natural entities and phenomena. International Journal of Science and Mathematics Education, 9(3), 571-601. https://doi.org/10.1007/s10763-010-9209-4
  • Arslan, A., & Doğru, M. (2014). Modellemeye dayalı fen öğretiminin ilköğretim öğrencilerinin anlama, hatırda tutma, yaratıcılık düzeyleri ile zihinsel modelleri üzerine etkisi. Akdeniz İnsani Bilimler Dergisi, 4(2), 1-17. https://doi.org/10.13114/MJH.201428425
  • Ayvacı, H. Ş., & Bebek, G. (2017). 2013 Yılında Revize Edilen Fen Bilimleri Dersi Öğretim Programı’nda Yer Alan Kazanımların İncelenmesi: Model Oluşturma ve Kullanma Konusu. Hasan Ali Yücel Egitim Fakültesi Dergisi, 14(1), 89.
  • Bamberger, Y., & Davis, E. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213-238. https://doi.org/10.1080/09500693.2011.624133
  • Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186-3191.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö., E., Karadeniz, Ş., & Demirel, F. (2018). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi.
  • Campos, V. M., Arias, J. C., Martínez, J. M. O., López, Á. B., & Marisca11, A. J. F. (2016). Assessment of teacher training students’ understanding of the nature of the models. Nature of science: History, philosophy and sociology of science, 6, 799-805.
  • Chang, H. Y., & Chang, H. C. (2013). Scaffolding students’ online critiquing of expert-and peer-generated molecular models of chemical reactions. International Journal of Science Education, 35(12), 2028–2056. https://doi.org/10.1080/09500693.2012.733978
  • Cheng, M. F., & Brown, D. E. (2015). The role of scientific modeling criteria in advancing students’explanatory ideas of magnetism. Journal of Research in Science Teaching, 52(8), 1053–1081. https://doi.org/10.1002/tea.21234
  • Cheng, M. F., & Lin, J. L. (2015). Investigating the relationship between students’ views of scientific models and their development of models. International Journal of Science Education, 37(15), 2453-2475. https://doi.org/10.1080/09500693.2015.1082671
  • Cheng, M. F., Lin, J. L., Lin, S. Y., & Cheng, C. H. (2017). Scaffolding Middle School and High School Students' Modeling Processes. Journal of Baltic Science Education, 16(2), 207-217.
  • Cheng, M. F., Lin, J.-L., Chang, Y.-C., Li, H.-W., Wu, T.-Y., & Lin, D.-M. (2014). Developing explanatory models of magnetic phenomena through model-based inquiry. Journal of Baltic Science Education, 13(3), 351–360.
  • Cheng, M. F., Wu, T. Y., & Lin, S. F. (2019). Investigating the relationship between views of scientific models and modeling practice. Research in Science Education, 51(Suppl1), 307-323. https://doi.org/10.1007/s11165-019-09880-2
  • Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23(2), 195-212. https://doi.org/10.1080/02635140500266484
  • Chiu, M. H., & Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 12. https://doi.org/10.1186/s43031-019-0012-y
  • Coll, R. K. (2006). The role of models, mental models and analogies in chemistry teaching. In Metaphor and analogy in science education (pp. 65-77). Dordrecht: Springer Netherlands.
  • Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers' conceptions of modelling in science. International Journal of Science Education, 26(11), 1379-1401. https://doi.org/10.1080/09500690410001673775
  • Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research. Thousand Oaks, CA: Sage Publications.
  • Çiltaş, A., & Muşlu, M. (2016). Doğal sayılarda işlemler konusunun öğretiminde matematiksel modelleme yönteminin öğrenci başarısına etkisi. Bayburt Eğitim Fakültesi Dergisi, 11(2), 329-343.
  • Derman A. & Kayacan K., (2017), Investigating of the Relationship Between the Views of the Prospective ScienceTeachers on the Nature of Scientific Models and Their Achievement on the Topic of Atom. Eur. J. Educ. Stud., 3(6), 541–559. https://doi.org/10.5281/zenodo.583777
  • Everett, S., Otto, C., & Luera, G. R. (2009). Preservice elementary teachers’ growth in knowledge of models in a science capstone course. International Journal of Science and Mathematics Education, 7(6), 1201–1225. https://doi.org/10.1007/s10763-009-9158-y
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. New York: McGraw-Hill.
  • Gilbert, J. K., & Justi, R. (2016). Models of Modelling. In: Modelling-based Teaching in Science Education. https://doi.org/10.1007/978-3-319-29039-3_2
  • Gobert, J. D., O’Dwyer, L., Horwitz, P., Buckley, B. C., Levy, S. T., & Wilensky, U. (2011). Examining the relationship between students’ understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684. https://doi.org/10.1080/09500691003720671
  • Gogolin, S., & Krüger, D. (2018). Students' understanding of the nature and purpose of models. Journal of Research in Science Teaching, 55(9), 1313-1338. https://doi.org/10.1002/tea.21453
  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science teaching, 28(9), 799-822. https://doi.org/10.1002/tea.3660280907
  • Gümüş, İ., Demir, Y., Koçak, E., Kaya, Y., & Kırıcı, M. (2008). Modellerle Öğretimin Öğrenci Başarısına Etkisi. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 10(1), 65-90.
  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for teaching chemistry. Science education, 80(5), 509-534.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International journal of science education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  • Hayes, A. F., & Krippendorff, K. (2007). Answering the call for a standard reliability measure for coding data. Communication methods and measures, 1(1), 77-89. https://doi.org/10.1080/19312450709336664
  • Justi, R., & Gilbert, J. (2003). Teachers' views on the nature of models. International Journal of science education, 25(11), 1369-1386. https://doi.org/10.1080/0950069032000070324
  • Kara, S. (2019). Model destekli argümantasyon tabanlı bilim öğrenme yaklaşımının ilkokul fen dersinde uygulanması [Yayımlanmamış doktora tezi]. Hacettepe Üniversitesi, Ankara.
  • Khan, S. (2007). Model‐based inquiries in chemistry. Science Education, 91(6), 877-905. https://doi.org/10.1002/sce.20226
  • Khan, S. (2011). What’s missing in model-based teaching. Journal of Science Teacher Education, 22, 535–560. https://doi.org/10.1007/s10972-011-9248-x
  • Krell, M., Reinisch, B. & Krüger, D. (2015). Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics. Res. Sci. Educ. 45, 367–393. https://doi.org/10.1007/s11165-014-9427-9
  • Krell, M., Upmeier zu Belzen, A. & Krüger, D. (2014). Students’ Levels of Understanding Models and Modelling in Biology: Global or Aspect-Dependent? Res. Sci. Educ. 44, 109–132. https://doi.org/10.1007/s11165-013-9365-y
  • Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2012). Students' understanding of the purpose of models in different biological contexts. International Journal of Biology Education, 2(2), 1–34.
  • Lazenby, K., & Becker, N. M. (2021). Evaluation of the students’ understanding of models in science (SUMS) for use in undergraduate chemistry. Chemistry Education Research and Practice, 22(1), 62-76. https://doi.org/10.1039/D0RP00084A
  • Leech, N. L., & Onwuegbuzie, A. J. (2009). A typology of mixed methods research designs. Quality & Quantity, 43, 265-275.
  • Liu, X. (2006). Effects of combined hands-on laboratory and computer modeling on student learning of gas laws: A quasi-experimental study. Journal of Science Education & Technology, 15(1), 89–100. https://doi.org/10.1007/s10956-006-0359-7
  • Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471–492. https://doi.org/10.1080/00131911.2011.628748
  • MEB. (2018). Fen Bilimleri Dersi Öğretim Programı. Ankara: Millî Eğitim Bakanlığı Yayınları.
  • MEB. (2024). Fen Bilimleri Dersi Öğretim Programı. Türkiye Yüzyılı Maarif Modeli. Ankara: Millî Eğitim Bakanlığı Yayınları.
  • Metin, D., & Leblebicioğlu, G. (2015). Ortaokul 6. ve 7. sınıf öğrencilerinin bilimsel model ve modelleme hakkındaki görüşlerinin bir yaz bilim kampı süresince gelişimi. Eğitim ve Bilim, 40(177), 1-18. http://dx.doi.org/10.15390/EB.2015.1507
  • Ministry of Education of Taiwan. (2018). Curriculum guidelines of 12‐year basic education curriculum. National Academy for Educational Research.
  • National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press.
  • Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching, 48(3), 237–256. https://doi.org/10.1002/tea.20400
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academy Press.
  • Nielsen, S. S., & Nielsen, J. A. (2021). A competence-oriented approach to models and modelling in lower secondary science education: practices and rationales among Danish teachers. Research in Science Education, 51(Suppl2), 565-593. https://doi.org/10.1007/s11165-019-09900-1
  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  • Oliva, J. M. & Blanco-Lopez, A. (2021). Development of a questionnaire for assessing Spanish-speaking students understanding of the nature of models and their uses in science. Journal of Research in Science Teaching, 58(6), 852–878. http://dx.doi.org/10.1002/tea.21681
  • Park, M., Liu, X., Smith, E., & Waight, N. (2017). The effect of computer models as formative assessment on student understanding of the nature of models. Chemistry Education Research and Practice, 18(4), 572-581. https://doi.org/10.1039/C7RP00018A
  • Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125-143
  • Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511. https://doi.org/10.1002/tea.20415
  • Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and instruction, 23(2), 165-205.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311
  • Sins, P., Savelsbergh, E., van Joolingen, W., & van Hout-Wolters, B. (2009). The relation between students' epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31(9), 1205–1229. https://doi.org/10.1080/09500690802192181
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Pearson Pub.
  • Treagust, D. F., Chittleborough, G. D., & Mamiala, T. L. (2004). Students' understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34, 1-20. https://doi.org/10.1023/B:RISE.0000020885.41497.ed
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368. https://doi.org/10.1080/09500690110066485
  • Ünal Çoban, G., & Ergin, Ö. (2011). Bilimsel bilginin varlık alanına modellemeye dayalı öğretimle bakış. Türk Eğitim Bilimleri Dergisi, 9(2), 211-254.
  • Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153. https://doi.org/10.1080/095006999290110
  • Villablanca, S., Montenegro, M., & Ramos-Moore, E. (2020). Analysis of student perceptions of scientific models: Validation of a Spanish-adapted version of the Students’ Understanding of Models in Science instrument. International Journal of Science Education, 42(17), 2945-2958. https://doi.org/10.1080/09500693.2020.1843735
  • Wei S., Liu X. & Jia Y. (2014). Using Rasch measurement to validate the instrument of Students’ Understanding of Models in Science (SUMS), Int. J. Sci. Math. Educ., 12(5), 1067–1082. https://doi.org/10.1007/s10763-013-9459-z
  • Willard, T., & Roseman, J. E. (2010). Probing students’ ideas about models using standards-based assessment items. In 83rd NARST Annual International Conference, Philadelphia, PA, USA.
  • Williams, G., & Clement, J. (2015). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82-107. https://doi.org/10.1080/09500693.2014.966257
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fen Bilgisi Eğitimi
Bölüm Araştırma Makaleleri
Yazarlar

Ayşegül Yazan 0009-0007-8433-3601

Mustafa B. Aktan 0000-0002-4160-1406

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 1 Aralık 2024
Kabul Tarihi 28 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Yazan, A., & Aktan, M. B. (2025). The Effect of Scientific Model Training and Model-Based Activities on Middle School Students’ Model Perception and Modeling Level. Adıyaman University Journal of Educational Sciences, 15(1), 214-249. https://doi.org/10.17984/adyuebd.1594563

                                                                                             

by-nc-nd.png?resize=300%2C105&ssl=1 Bu eser CC BY-NC-ND Atıf-GayriTicari-Türetilemez ile lisanslanmıştır.