Araştırma Makalesi
BibTex RIS Kaynak Göster

Samaryum ve Bor Katkılı İndiyum Oksit İnce Filmin Radyasyon Karakteristiklerinin Simülasyon Yöntemiyle Belirlenmesi

Yıl 2025, Cilt: 15 Sayı: 1, 146 - 156, 01.07.2025
https://doi.org/10.37094/adyujsci.1591478

Öz

Günümüzde radyasyonun kullanıldığı ortamlarda radyasyonun meydana getirebileceği etkilerin minimize edilmesi önem arz etmektedir. Bu amaçla tıp, malzeme bilimi, enerji gibi birçok sektörde radyasyondan korunmak veya radyasyonu daha verimli kullanabilmek için teknolojik gelişmeler üzerinde yoğun çalışmalar mevcuttur. Bunlardan biri de ince filmlerin tasarım ve iyileştirme çalışmalarıdır. İnce filmlerin fiziksel özelliklerini iyileştirmek için bazı çalışmalarda farklı element katkıları da yapılabilmektedir. Bu çalışmada yüksek kimyasal kararlılığa, optik şeffaflığa, mükemmel elektriksel ve yarı iletken özelliklere sahip, ekran, güneş pilleri ve sensörler gibi birçok alanda yaygın olarak kullanılan İndiyum Oksit ince filmine %5, %10 ve %20 oranlarında Samaryum ve Bor katkılanarak numunelerin radyasyon özellikleri MCNP6.2 simülasyon programıyla belirlenmeye çalışılmıştır. Simülasyon sonuçları XCOM veri tabanındaki değerlerle karşılaştırılarak yapılan simülasyonun hata oranlarının kabul edilebilirliği gözlenmiştir. Simülasyon analizlerine göre Samaryum ve Bor katkılı İndiyum Oksit ince film numuneleri için uygun olabileceği ve bu bağlamda radyasyonlu ortamlarda ilgili cihazlarda kullanılabileceği düşünülmektedir. Bu çalışma, ince filmlere farklı element katkılandırma çalışmalarına fikir sunmuş olacaktır.

Kaynakça

  • Saeed, J.J., Jasim Hasan, M., Hala, A.R., Ajmi, D.R.N., & Ati, E.M., The dangers of ionizing radiation that affect human safety and the environment: A review Article, Texas Journal of Medical Science, 26, 151–160, 2023.
  • Tasnim, A., Sahadath, M.H., & Islam Khan, M.N., Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties, Radiation Physics and Chemistry, 189, 109772, 2021.
  • Alshahrani, B., Olarinoye, I.O., Mutuwong, C., Sriwunkum, C., Yakout, H.A., Tekin, H.O., et al., Amorphous alloys with high Fe content for radiation shielding applications, Radiation Physics and Chemistry, 183, 109386, 2021.
  • Sayyed, M.I., Mhareb, M.H.A., Alajerami, Y.S.M., Mahmoud, K.A., Imheidat, M.A., Alshahri, F., et al., Optical and radiation shielding features for a new series of borate glass samples, Optik, 239, 166790, 2021.
  • Charles, M., UNSCEAR Report 2000: Sources and effects of ionizing radiation, Journal of Radiological Protection, 21(1), 83–86, 2021.
  • Al-Buriahi, M.S., Alrowaili, Z.A., Alomairy, S., Olarinoye, I.O., & Mutuwong, C., Optical properties and radiation shielding competence of Bi/Te-BGe glass system containing B2O3 and GeO2, Optik, 257, 168883, 2022.
  • Alharshan, G.A., Eke, C., Al-Buriahi, M.S., Radiation-transmission and self-absorption factors of P2O5–SrO–Sb2O3 glass system, Radiation Physics and Chemistry, 193, 109938, 2022.
  • Alothman, M.A., Kurtulus, R., Olarinoye, I.O., Kavas, T., Mutuwong, C., Al-Buriahi, M.S., Optical, elastic, and radiation shielding properties of Bi2O3-PbO-B2O3 glass system: a role of SnO2 addition, Optik, 248, 168047, 2021.
  • Sekhar, K.C., Hameed, A., Narsimlu, N., Alzahrani, J.S., Alothman, M.A., Olarinoye, I.O., et al., Synthesis,optical,structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: An experimental and in silico study, Optical Materials, 117, 111173, 2021.
  • Karpuz, N., Radiation shielding properties of glass composition, Journal of Radiation Research and Applied Sciences, 16(4), 100689, 2023.
  • Eid, M.S., Bondouk, I., Saleh, H.M., Omar, K.M., Sayyed, M., El-Khatib, A.M., et al., Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications, Nuclear Engineering and Technology, 54(4),1456–1463, 2022.
  • Sudha, A., Sharma, S.L., and Gupta, A.N., Achieving sensitive and stable indium oxide thin films for gamma radiation monitoring, Sensors and Actuators A: Physical, 285, 378–385, 2019.
  • Yan, C., Su, Z., Zhao, Z., & Zhou, Y., Abrasion-resistant, transparent, conductive In2O3@ SiO2 films, Ceramics International, 49(22), 35316–35322, 2023.
  • Deokate, R.J., Influence of spray solution quantity on microstructural and optical properties of In2O3 thin films prepared by spray pyrolysis, Macromolecular Symposia, 392, 1900152, 2020.
  • Patil, S.P., Patil, V.L., Shendage, S.S., Harale, N.S., Vanalakar, S.A., Kim, J.H., et al., Spray pyrolyzed indium oxide thick films as NO2 gas sensor, Ceramics International, 42, 16160–16168, 2016.
  • Gavrilovic, T.V., Jovanovic, D.J., and Dramicanin, M.D., Synthesis of Multifunctional Inorganic Materials: From Micrometer to Nanometer Dimensions, Nanomaterials for Green Energy, 55–81,2018.
  • El Hichou, A., Addou, M., Mansori, M., and Eboth ́E, J., Structural, optical and luminescent characteristics of sprayed fluorine-doped In2O3 thin films for solar cells, Solar Energy Materials and Solar Cells, 93, 609–612, 2009.
  • Beji, N., Souli, M., Ajili, M., Azzaza, S., Alleg, S., and Turki, N.K., Effect of iron doping on structural, optical and electrical properties of sprayed In2O3 thin films, Superlattices and Microstructures, 81, 114–128, 2015.
  • Meng, Y., Yang, X.L., Chen, H.X., Shen, J., Jiang, Y.M., Zhang, Z.J., et al., Molybdenum-doped indium oxide transparent conductive thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20(1), 288–290, 2002.
  • Sokkalingam, R., Panghal, A., Roy, S.S., Sankaran, E.M., & Sonachalam, A., Impact of shockwaves on the structural and morphological characteristics of the Sm2O3 compound for wastewater treatment, Journal of the Taiwan Institute of Chemical Engineers, 106105, 2025.
  • Yayla, N., Albayrak, M.G., Güler, Ö., Sen Baykal, D., Alkarrani, H., ALMisned, G., et al., Enhanced Radiation Shielding and Structural Modifications in Samarium (III) Oxide-Reinforced Type 316L Stainless Steel Composites for Nuclear Applications:A Comprehensive Evaluation of Physical, Structural, Mechanical, Gamma-Ray, and Neutron Attenuation Properties, Nuclear Technology, 1–21, 2025.
  • Iliyasu, U., Bature, M., Umar, M., Abubakar, U., & Shehu, A., Photon attenuation properties of samarium-doped zinc bismuth silicate glass: A study using Cs-137, Co-60, and Na-22 Radiation Sources, Caliphate Journal of Science and Technology, 6(3), 281–288, 2024.
  • Shin, J.W., Lee, J.W., Yu, S., Baek, B.K., Hong, J.P., Seo, Y., et al., Polyethylene/boron-containing composites for radiation shielding, Thermochimica Acta, 585, 5–9, 2014.
  • Levet, A., Kavaz, E., & Özdemir, Y., An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, Journal of Alloys and Compounds, 819, 152946, 2020.
  • Eskalen, H., Kavun, Y., Kerli, S., Eken, S., An investigation of radiation shielding properties of boron doped ZnO thin films, Optical Materials, 105, 109871, 2020.
  • Mirji, R., & Lobo, B., Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies, Radiation Physics and Chemistry, 135, 32–44, 2017.
  • Hubbell, J.H., Gimm, H.A., & Verbo, I.O., Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV‐100 GeV photons in elements Z= 1 to 100, Journal of Physical and Chemical Reference Data, 9(4), 1023–1148, 1980.
  • Gerward, L., Guilbert, N., Jensen, K.B., Levring, H., WinXCom-a program for calculating X-ray attenuation coefficients, Radiation Physics and Chemistry, 71(3–4), 653–654, 2004.
  • El-bashir, B.O., Sayyed, M.I., Zaid, M.H.M., Matori, K.A., Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material, Journal of Non-Crystalline Solids, 468, 92–99,2017.

Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method

Yıl 2025, Cilt: 15 Sayı: 1, 146 - 156, 01.07.2025
https://doi.org/10.37094/adyujsci.1591478

Öz

Today, it is important to minimize the effects of radiation in environments where radiation is used. For this purpose, there are intensive studies on technological developments in many sectors such as medicine, material science and energy in order to protect from radiation or to use radiation more efficiently. One of these is the design and improvement of thin films. In some studies, different elemental additives can be used to improve the physical properties of thin films. In this study, 5%, 10% and 20% Samarium and Boron were doped into Indium Oxide thin film, which has high chemical stability, optical transparency, excellent electrical and semiconductor properties and is widely used in many fields such as displays, solar cells and sensors, and the radiation properties of the samples were tried to be determined with MCNP6.2 simulation program. The simulation results were compared with the values in the XCOM database and the acceptability of the error rates of the simulation was observed. According to the simulation analysis, it is thought that Samarium and Boron doped Indium Oxide thin film samples may be suitable for the samples and in this context, they can be used in related devices in radiation environments. This study will provide ideas for studies on doping different elements into thin films.

Kaynakça

  • Saeed, J.J., Jasim Hasan, M., Hala, A.R., Ajmi, D.R.N., & Ati, E.M., The dangers of ionizing radiation that affect human safety and the environment: A review Article, Texas Journal of Medical Science, 26, 151–160, 2023.
  • Tasnim, A., Sahadath, M.H., & Islam Khan, M.N., Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties, Radiation Physics and Chemistry, 189, 109772, 2021.
  • Alshahrani, B., Olarinoye, I.O., Mutuwong, C., Sriwunkum, C., Yakout, H.A., Tekin, H.O., et al., Amorphous alloys with high Fe content for radiation shielding applications, Radiation Physics and Chemistry, 183, 109386, 2021.
  • Sayyed, M.I., Mhareb, M.H.A., Alajerami, Y.S.M., Mahmoud, K.A., Imheidat, M.A., Alshahri, F., et al., Optical and radiation shielding features for a new series of borate glass samples, Optik, 239, 166790, 2021.
  • Charles, M., UNSCEAR Report 2000: Sources and effects of ionizing radiation, Journal of Radiological Protection, 21(1), 83–86, 2021.
  • Al-Buriahi, M.S., Alrowaili, Z.A., Alomairy, S., Olarinoye, I.O., & Mutuwong, C., Optical properties and radiation shielding competence of Bi/Te-BGe glass system containing B2O3 and GeO2, Optik, 257, 168883, 2022.
  • Alharshan, G.A., Eke, C., Al-Buriahi, M.S., Radiation-transmission and self-absorption factors of P2O5–SrO–Sb2O3 glass system, Radiation Physics and Chemistry, 193, 109938, 2022.
  • Alothman, M.A., Kurtulus, R., Olarinoye, I.O., Kavas, T., Mutuwong, C., Al-Buriahi, M.S., Optical, elastic, and radiation shielding properties of Bi2O3-PbO-B2O3 glass system: a role of SnO2 addition, Optik, 248, 168047, 2021.
  • Sekhar, K.C., Hameed, A., Narsimlu, N., Alzahrani, J.S., Alothman, M.A., Olarinoye, I.O., et al., Synthesis,optical,structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: An experimental and in silico study, Optical Materials, 117, 111173, 2021.
  • Karpuz, N., Radiation shielding properties of glass composition, Journal of Radiation Research and Applied Sciences, 16(4), 100689, 2023.
  • Eid, M.S., Bondouk, I., Saleh, H.M., Omar, K.M., Sayyed, M., El-Khatib, A.M., et al., Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications, Nuclear Engineering and Technology, 54(4),1456–1463, 2022.
  • Sudha, A., Sharma, S.L., and Gupta, A.N., Achieving sensitive and stable indium oxide thin films for gamma radiation monitoring, Sensors and Actuators A: Physical, 285, 378–385, 2019.
  • Yan, C., Su, Z., Zhao, Z., & Zhou, Y., Abrasion-resistant, transparent, conductive In2O3@ SiO2 films, Ceramics International, 49(22), 35316–35322, 2023.
  • Deokate, R.J., Influence of spray solution quantity on microstructural and optical properties of In2O3 thin films prepared by spray pyrolysis, Macromolecular Symposia, 392, 1900152, 2020.
  • Patil, S.P., Patil, V.L., Shendage, S.S., Harale, N.S., Vanalakar, S.A., Kim, J.H., et al., Spray pyrolyzed indium oxide thick films as NO2 gas sensor, Ceramics International, 42, 16160–16168, 2016.
  • Gavrilovic, T.V., Jovanovic, D.J., and Dramicanin, M.D., Synthesis of Multifunctional Inorganic Materials: From Micrometer to Nanometer Dimensions, Nanomaterials for Green Energy, 55–81,2018.
  • El Hichou, A., Addou, M., Mansori, M., and Eboth ́E, J., Structural, optical and luminescent characteristics of sprayed fluorine-doped In2O3 thin films for solar cells, Solar Energy Materials and Solar Cells, 93, 609–612, 2009.
  • Beji, N., Souli, M., Ajili, M., Azzaza, S., Alleg, S., and Turki, N.K., Effect of iron doping on structural, optical and electrical properties of sprayed In2O3 thin films, Superlattices and Microstructures, 81, 114–128, 2015.
  • Meng, Y., Yang, X.L., Chen, H.X., Shen, J., Jiang, Y.M., Zhang, Z.J., et al., Molybdenum-doped indium oxide transparent conductive thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20(1), 288–290, 2002.
  • Sokkalingam, R., Panghal, A., Roy, S.S., Sankaran, E.M., & Sonachalam, A., Impact of shockwaves on the structural and morphological characteristics of the Sm2O3 compound for wastewater treatment, Journal of the Taiwan Institute of Chemical Engineers, 106105, 2025.
  • Yayla, N., Albayrak, M.G., Güler, Ö., Sen Baykal, D., Alkarrani, H., ALMisned, G., et al., Enhanced Radiation Shielding and Structural Modifications in Samarium (III) Oxide-Reinforced Type 316L Stainless Steel Composites for Nuclear Applications:A Comprehensive Evaluation of Physical, Structural, Mechanical, Gamma-Ray, and Neutron Attenuation Properties, Nuclear Technology, 1–21, 2025.
  • Iliyasu, U., Bature, M., Umar, M., Abubakar, U., & Shehu, A., Photon attenuation properties of samarium-doped zinc bismuth silicate glass: A study using Cs-137, Co-60, and Na-22 Radiation Sources, Caliphate Journal of Science and Technology, 6(3), 281–288, 2024.
  • Shin, J.W., Lee, J.W., Yu, S., Baek, B.K., Hong, J.P., Seo, Y., et al., Polyethylene/boron-containing composites for radiation shielding, Thermochimica Acta, 585, 5–9, 2014.
  • Levet, A., Kavaz, E., & Özdemir, Y., An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, Journal of Alloys and Compounds, 819, 152946, 2020.
  • Eskalen, H., Kavun, Y., Kerli, S., Eken, S., An investigation of radiation shielding properties of boron doped ZnO thin films, Optical Materials, 105, 109871, 2020.
  • Mirji, R., & Lobo, B., Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies, Radiation Physics and Chemistry, 135, 32–44, 2017.
  • Hubbell, J.H., Gimm, H.A., & Verbo, I.O., Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV‐100 GeV photons in elements Z= 1 to 100, Journal of Physical and Chemical Reference Data, 9(4), 1023–1148, 1980.
  • Gerward, L., Guilbert, N., Jensen, K.B., Levring, H., WinXCom-a program for calculating X-ray attenuation coefficients, Radiation Physics and Chemistry, 71(3–4), 653–654, 2004.
  • El-bashir, B.O., Sayyed, M.I., Zaid, M.H.M., Matori, K.A., Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material, Journal of Non-Crystalline Solids, 468, 92–99,2017.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Fiziği
Bölüm Fizik
Yazarlar

Mehmet Murat Yaşar 0000-0001-6211-0350

Mehmet Koşal 0000-0002-3224-5569

Ali Süt 0009-0009-0600-5746

Yayımlanma Tarihi 1 Temmuz 2025
Gönderilme Tarihi 26 Kasım 2024
Kabul Tarihi 17 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Yaşar, M. M., Koşal, M., & Süt, A. (2025). Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method. Adıyaman University Journal of Science, 15(1), 146-156. https://doi.org/10.37094/adyujsci.1591478
AMA Yaşar MM, Koşal M, Süt A. Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method. ADYU J SCI. Temmuz 2025;15(1):146-156. doi:10.37094/adyujsci.1591478
Chicago Yaşar, Mehmet Murat, Mehmet Koşal, ve Ali Süt. “Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method”. Adıyaman University Journal of Science 15, sy. 1 (Temmuz 2025): 146-56. https://doi.org/10.37094/adyujsci.1591478.
EndNote Yaşar MM, Koşal M, Süt A (01 Temmuz 2025) Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method. Adıyaman University Journal of Science 15 1 146–156.
IEEE M. M. Yaşar, M. Koşal, ve A. Süt, “Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method”, ADYU J SCI, c. 15, sy. 1, ss. 146–156, 2025, doi: 10.37094/adyujsci.1591478.
ISNAD Yaşar, Mehmet Murat vd. “Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method”. Adıyaman University Journal of Science 15/1 (Temmuz 2025), 146-156. https://doi.org/10.37094/adyujsci.1591478.
JAMA Yaşar MM, Koşal M, Süt A. Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method. ADYU J SCI. 2025;15:146–156.
MLA Yaşar, Mehmet Murat vd. “Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method”. Adıyaman University Journal of Science, c. 15, sy. 1, 2025, ss. 146-5, doi:10.37094/adyujsci.1591478.
Vancouver Yaşar MM, Koşal M, Süt A. Determination of Radiation Characteristics of Samarium and Boron Doped Indium Oxide Thin Film by Simulation Method. ADYU J SCI. 2025;15(1):146-5.

...