Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessing Soil Degradation: A Comprehensive Study Using Soil Degradation Index (SDI) in Godrahav Watershed

Yıl 2025, , 141 - 154, 29.05.2025
https://doi.org/10.17097/agricultureatauni.1667680

Öz

Soil degradation is an important problem for watersheds that contain agricultural and natural areas within their border. This study was conducted to assess soil degradation using soil degradation index (SDI). The watershed was divided into transects at 500m intervals in the north-south and the east-west directions. Except for the hard-to-reach points because of topography, disturbed and undisturbed soil samples were taken from 138 sample points at the intersections of the transects. The SDI was calculated using the measured soil parameters including particle size distribution, aggregate stability, aggregation rate, mean weight diameter, dispersion rate, bulk density, porosity, field capacity, wilting point, organic matter content, pH and electrical conductivity. The spatial distribution patterns of these parameters were defined using geostatistical analyses. Slope, elevation, aspect and land use type of the watershed were also mapped using the Geographic Information System (GIS) technique. The results of the study showed that soil degradation can be quantified using an index value, and that basic soil properties can serve as parameters for this index. These parameters affect index values with different weighting, and these weighting values can be calculated by correlation analysis. Moreover, according to the distribution maps, SDI showed spatial variability due to the land use, altitude, and aspect, but it did not vary regularly due to the slope. Based on the findings, it is recommended to implement land use-specific soil management strategies across the watershed. Regular SDI-based monitoring and geospatial analysis can support early detection of degradation and guide sustainable land use planning.

Kaynakça

  • Acir, N., Günal, H., Mutlu, N., Cankar, S., & Akyol, N. (2013) Drenaj Faaliyetleri Sonrası Kaz Gölü Çevresindeki Toprak Özellikleri ve Vejetasyonun Mesafeye Bağlı Değişimleri. III. National Soil and Water Resources Congress, 22-24 October 2013, Tokat, Türkiye.
  • Amundson, R., Berhe, A.A., Hopmans, J.W., Olson, C., Sztein, A.E & Sparks, D.L. (2015). Soil science. Soil and human security in the 21st century. Science, 348(126-1071). https://doi.org/10.1126/science.1261071
  • Asare, M.O., Ondřej, S., & Afriyie, J.O. (2021). Chemical properties and magnetic susceptibility as proxy indicators of past settlement activities on contemporary arable soil in the Czech Republic. Geoderma Regional, 24, e00357. https://doi.org/https://doi.org/10.1016/j.geodrs.2021.e00357
  • Aydın, A., & Kara, F. (2019). Spatial assessment of land degradation using soil quality index: A case study from the Middle Black Sea Region. Environmental Monitoring and Assessment, 191(5), 1–15. https://doi.org/10.1007/s10661-019-7390-3 Barcelos, J. P. de Q., de Souza, M., Nascimento, C. A. C. do, & Rosolem, C. A. (2022). Soil acidity amelioration improves N and C cycles in the short term in a system with soybean followed by maize-guinea grass intercropping. Geoderma, 421, 115909. https://doi.org/10.1016/j.geoderma.2022.115909
  • Baul, T. K., Chowdhury, A. I., Uddin, M. J., Hasan, M. K., Kilpeläinen, A., Nandi, R., Karmakar, S. , & Akhter, J. (2023). Effects of fragmentation and shifting cultivation on soil carbon and nutrients: A case study in Sitapahar forest, Bangladesh. Rhizosphere, 27, 100756. https://doi.org/10.1016/j.rhisph.2023.100756
  • Bax, V., & Francesconi, W. (2018). Environmental predictors of forest change: An analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Applied Geography, 91, 99–110. https://doi.org/10.1016/j.apgeog.2018.01.002
  • Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach. Springer, Boston, MA, USA. http://dx.doi.org/10.4236/ajor.2016.64030
  • Blake, G. R., & Hartge, K. H. (1986). Bulk Density. In: Klute A (ed.). Methods of Soil Analysis Part I. Physical and Mineralogical Methods. Madison, WI, USA pp: 363-375. https://doi.org/10.2136/sssabookser5.1.2ed.c13
  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis: Part I. Physical and mineralogical methods (pp. 363–375). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c13
  • Buraka, T., Elias, E., & Lelago, A. (2023). Effects of land-use-cover-changes on selected soil physicochemical properties along slope position, Coka watershed, Southern Ethiopia. Heliyon, 9(5), e16142. https://doi.org/10.1016/j.heliyon.2023.e16142
  • Cassel, D. K., & Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (Ed.), Methods of soil analysis. Part I. Physical and mineralogical methods (pp. 901–926). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c36
  • Cerretelli, S., Poggio, L., Gimona, A., Yakob, G., Boke, S., Habte, B., Coull, M., Peressotti, A., & Black, H. (2018). Spatial assessment of land degradation through key ecosystem services: The role of globally available data. Science of the Total Environment, 628–629, 539–555. https://doi.org/10.1016/j.scitotenv.2018.02.085
  • Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In A. Klute (Ed.), Methods of soil analysis. Part I. Physical and mineralogical methods (pp. 443–461). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c18
  • Erdoğan Yüksel, E., & Yavuz, G. (2024). Evaluating the Soil Properties of Different Land Use Types in the Deviskel Watershed in the Hilly Region of Northeast Türkiye. Sustainability (Switzerland), 16(22). https://doi.org/10.3390/su16229732
  • FAO (Food and Agriculture Organization). (2020). Soil degradation. FAOSTAT. FAO Database on food and agriculture. United Nations Food and Agriculture Organization, Rome, Italy. Retrieved July 2021, from https://www.fao.org/soils-portal/soil-degradation-restoration/en/
  • Fenger-Nielsen, R., Hollesen, J., Matthiesen, H., Andersen, E. A. S., Westergaard-Nielsen, A., Harmsen, H., Michelsen, A., & Elberling, B. (2019). Footprints from the past: The influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Science of the Total Environment, 654, 895–905. https://doi.org/10.1016/j.scitotenv.2018.11.018
  • Gee, G., & Bauder, J. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis, Part I. Physical and mineralogical methods (pp. 383–411). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  • Griffiths, R. P., Madritch, M. D., & Swanson, A. K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management, 257, 1–7. https://doi.org/10.1016/j.foreco.2008.08.010
  • Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., & He, H. (2019). Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations, and future challenges. Journal of Environmental Management, 250, 109403. https://doi.org/10.1016/j.jenvman.2019.109403
  • Gürsoy, S., & Şahin, U. (2020). Assessment of soil degradation in Arhavi watershed using a soil quality index approach. Turkish Journal of Agriculture - Food Science and Technology, 8(10), 2150–2157. https://doi.org/10.24925/turjaf.v8i10.2150-2157.3725
  • Güler, S. (2020). Godrahav Havasında toprak bozulma katsayısındaki değişimin belirlenmesi (Tez No: 636346). [Yüksek Lisans Tezi, Artvin Çoruh Üniversitesi]. YÖK Tez Merkezi.
  • Han, X., Liu, J., Shen, X., Liu, H., Li, X., Zhang, J., Wu, P., & Liu, Y. (2022). High relief yield strong topography-soil water-vegetation relationships in headwater catchments of southeastern China. Geoderma, 428, 116214. https://doi.org/10.1016/j.geoderma.2022.116214
  • Hatfield, J. L., Sauer, T. J., & Cruse, R. M. (2017). Soil: The forgotten piece of the water, food, energy nexus. In Advances in Agronomy (pp. 1–46). Academic Press, Oxford, UK. https://doi.org/10.1016/bs.agron.2017.02.001
  • Hattori, D., Kenzo, T., Shirahama, T., Harada, Y., Kendawang, J. J., Ninomiya, I., & Sakurai, K. (2019). Degradation of soil nutrients and slow recovery of biomass following shifting cultivation in the heath forests of Sarawak, Malaysia. Forest Ecology and Management, 432, 467–477. https://doi.org/10.1016/j.foreco.2018.09.051
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of Soil Analysis Part I. Physical and Mineralogical Methods (pp. 425–442). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c17
  • Kidron, G. J., Karnieli, A., & Benenson, I. (2010). Degradation of soil fertility following cycles of cotton–cereal cultivation in Mali, West Africa: A first approximation to the problem. Soil and Tillage Research, 106(2), 254–262. https://doi.org/10.1016/j.still.2009.11.004
  • Lenka, N. K., Sudhishri, S., Dass, A., Choudhury, P. R., Lenka, S., & Patnaik, U. S. (2013). Soil carbon sequestration as affected by slope aspect under restoration treatments of a degraded Alfisol in the Indian sub-tropics. Geoderma, 204–205, 120–130. https://doi.org/10.1016/j.geoderma.2013.04.009
  • Leul, Y., Assen, M., Damene, S., & Legass, A. (2023). Effects of land use types on soil quality dynamics in a tropical sub-humid ecosystem, western Ethiopia. Ecological Indicators, 147, 110024. https://doi.org/10.1016/j.ecolind.2023.110024
  • Lorenz, K., Lal, R., & Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degradation & Development, 30(7), 824–838. https://doi.org/10.1002/ldr.3270
  • McLean, E. O. (1983). Soil pH and lime requirement. In A. L. Page (Ed.), Methods of Soil Analysis Part 2: Chemical and Microbiological Properties (pp. 199–224). Madison, WI, USA: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
  • Mo, L., Yang, H., Hou, R., Wu, W., Song, X., Yang, H., Yang, Z., Zheng, W., & Qi, D. (2023). Forest degradation caused by dwarf bamboo overabundance reduces soil C, N, and P stocks in giant panda habitat. CATENA, 231, 107377. https://doi.org/10.1016/j.catena.2023.107377
  • Moebius-Clune, B. N., van Es, H. M., Idowu, O. J., Schindelbeck, R. R., Kimetu, J. M., Ngoze, S., Lehmann, J., & Kinyangi, J. M. (2011). Long-term soil quality degradation along a cultivation chronosequence in Western Kenya. Agriculture, Ecosystems & Environment, 141, 86–99. https://doi.org/10.1016/j.agee.2011.02.018
  • Mujiyo Nariyanti, S., Suntoro, Herawati, A., Herdiansyah, G., Irianto, H., Riptanti, E. W., & Qonita, A. (2022). Soil fertility index based on altitude: A comprehensive assessment for the cassava development area in Indonesia. Annals of Agricultural Sciences, 67(2), 158–165. https://doi.org/10.1016/j.aoas.2022.10.001
  • Navarro Rau, M. F., Calamari, N. C., & Mosciaro, M. J. (2023). Dynamics of past forest cover changes and future scenarios with implications for soil degradation in Misiones rainforest, Argentina. Journal for Nature Conservation, 73, 126391. https://doi.org/10.1016/j.jnc.2023.126391
  • Nelson, D., & Sommers, L. E. (1983). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. Madison, WI, USA: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Pan, S., Shi, J., Peng, Y., Wang, Z., & Wang, X. (2023). Soil organic carbon pool distribution and stability with grazing and topography in a Mongolian grassland. Agriculture, Ecosystems & Environment, 348, 108431. https://doi.org/10.1016/j.agee.2023.108431
  • Poesen, J. (2018). Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43(1), 64–84. https://doi.org/10.1002/esp.4250
  • Qiao, X., Li, Z., Lin, J., Wang, H., Zheng, S., & Yang, S. (2023). Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2023.07.001
  • Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
  • Rhoades, J. D. (1983). Soluble salts. In A. L. Page (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 933–951). Madison, WI, USA: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c10
  • Roth, E. M., Karhu, K., Koivula, M., Helmisaari, H. S., & Tuittila, E. S. (2023). How do harvesting methods applied in continuous-cover forestry and rotation forest management impact soil carbon storage and degradability in boreal Scots pine forests? Forest Ecology and Management, 544, 121144. https://doi.org/10.1016/j.foreco.2023.121144
  • Sabogal, C. (2012). Site-level rehabilitation strategies for degraded forest lands. In J. Rietbergen-McCracken, S. Maginnis, & A. Sarbe (Eds.), The Forest Landscape Restoration Handbook (pp. 109–118). Earthscan, London, UK.
  • Scanes, C. G. (2018). Impact of agricultural animals on the environment. In C. G. Scanes (Ed.), Animals and human society (pp. 427–449). Academic Press. https://doi.org/10.1016/C2014-0-03860-9
  • Šamonil, P., Jaroš, J., Daněk, P., Tikhomirov, D., Novotný, V., Weiblen, G., Christl, M., & Egli, M. (2023). Soil erosion affected by trees in a tropical primary rainforest, Papua New Guinea. Geomorphology, 425, 108589. https://doi.org/10.1016/j.geomorph.2023.108589
  • Šmejda, L., Hejcman, M., Horák, J., & Shai, I. (2018). Multi-element mapping of anthropogenically modified soils and sediments at the Bronze to Iron Ages site of Tel Burna in the southern Levant. Quaternary International, 483, 111–123. https://doi.org/10.1016/j.quaint.2017.11.005
  • Tian, M., Whalley, W. R., Zhou, H., Ren, T., & Gao, W. (2023). Does no-tillage mitigate the negative effects of harvest compaction on soil pore characteristics in Northeast China? Soil and Tillage Research, 233, 105787. https://doi.org/10.1016/j.still.2023.105787
  • Turgut, B., & Ateş, M. (2017). Factors of soil diversity in the Batumi Delta (Georgia). Solid Earth, 8, 1–12. https://doi.org/10.5194/se-8-1-2017 Wang, J., Wei, H., Cheng, K., Ochir, A., Davaasuren, D., Li, P., Shun Chan, F. K., & Nasanbat, E. (2020). Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environmental Development, 100497. https://doi.org/10.1016/j.envdev.2020.100497
  • Wang, Q., Zhang, S., Zhang, M., Liu, P., McLaughlin, N. B., Jia, S., Chen, X., Zhang, Y., & Liang, A. (2023). Soil biotic associations play a key role in subsoil C mineralization: Evidence from long-term tillage trial in the black soil of Northeast China. Soil and Tillage Research, 234, 105859. https://doi.org/10.1016/j.still.2023.105859
  • Wilding, L. P., & Drees, L. R. (1983). Spatial variability and pedology. In L. P. Wilding, N. E. Smeck, & G. F. Hall (Eds.), Pedogenesis and soil taxonomy I: Concepts and interactions (pp. 83–116). Elsevier, Amsterdam.
  • Wiśniewski, P., & Märker, M. (2019). The role of soil-protecting forests in reducing soil erosion in young glacial landscapes of Northern-Central Poland. Geoderma, 337, 1227–1235. https://doi.org/10.1016/j.geoderma.2018.11.035
  • Yılmaz, M., & Dengiz, O. (2021). Bazı toprak özellikleri İle İlişkili olarak arazi kullanımı ve arazi örtüsünün toprak organik karbon stokuna etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 8(2), 154-167.
  • Yılmaz, R., & Korkanç, S. Y. (2021). Evaluation of soil degradation index and its relationship with land use and topography in Devrekani Basin. Anadolu University Journal of Science and Technology - C Life Sciences and Biotechnology, 11(2), 397–408.
  • Yıldız, O., Temizel, İ., & Günal, H. (2017). Determination of soil quality index in different land use types: A case from Black Sea region, Turkey. Catena, 156, 19–28. https://doi.org/10.1016/j.catena.2017.03.020
  • Yousefi, S., Moradi, H., Boll, J., & Schönbrodt-Stitt, S. (2016). Effects of road construction on soil degradation and nutrient transport in Caspian Hyrcanian mixed forests. Geoderma, 284, 103–112. https://doi.org/10.1016/j.geoderma.2016.09.002
  • Zahedifar, M. (2023). Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. CATENA, 222, 106807. https://doi.org/10.1016/j.catena.2022.106807
  • Zhang, Y., Zhang, G., Pan, J., Fan, Z., Chen, F., & Liu, Y. (2019). Soil organic carbon distribution in relation to terrain and land use: A case study in a small watershed of Danjiangkou Reservoir Area, China. Global Ecology and Conservation, 20, e00731. https://doi.org/10.1016/j.gecco.2019.e00731
  • Zhang, S., Sun, L., Jamshidi, A. H., Niu, Y., Fan, Z., Zhang, H., & Liu, X. (2022). Assessment of the degree of degradation of sloping cropland in a typical black soil region. Land Degradation and Development, 33(13), 2220–2230. https://doi.org/10.1002/ldr.4255
  • Zhang, W. C., Wu, W., Li, J. W., & Liu, H. B. (2023). Climate and topography controls on soil water-stable aggregates at regional scale: Independent and interactive effects. CATENA, 228, 107170. https://doi.org/10.1016/j.catena.2023.107170
  • Zhu, M., Yang, S., Ai, S., Ai, X., Jiang, X., Chen, J., Li, R., & Ai, Y. (2020). Artificial soil nutrient, aggregate stability, and soil quality index of restored cut slopes along altitude gradient in Southwest China. Chemosphere, 246, 125687. https://doi.org/10.1016/j.chemosphere.2019.125687

Toprak Bozulmasının Değerlendirilmesi: Godrahav Havzasında Toprak Bozulma İndeksi (SDI) Kullanılarak Yapılan Kapsamlı Bir Çalışma

Yıl 2025, , 141 - 154, 29.05.2025
https://doi.org/10.17097/agricultureatauni.1667680

Öz

Toprak bozulması, sınırları içinde tarımsal ve doğal alanlar bulunduran su havzaları için önemli bir sorundur. Bu çalışma, bir su havzasında toprak bozulma durumunu değerlendirmek amacıyla Toprak Bozulma İndeksi (SDI) adlı ampirik bir yöntem kullanılarak gerçekleştirilmiştir. Bu amaçla, havza kuzey-güney ve doğu-batı yönlerinde 500 m aralıklarla transektlere bölünmüştür. Topografya nedeniyle ulaşılması zor olan noktalar çıkarıldıktan sonra, transektlerin kesişim noktalarından 138 örnek noktasından bozulmuş ve bozulmamış toprak örnekleri alınmıştır. SDI hesaplamasında tanecik boyu dağılımı, agregat stabilitesi, agregasyon oranı, ağırlıklı ortalama çapı, dispersiyon oranı, hacim ağırlığı, porozite, tarla kapasitesi, solma noktası, organik madde içeriği, pH ve elektriksel iletkenlik gibi parametreler kullanılmıştır. Bu çalışma aynı zamanda bu parametrelerin mekânsal dağılımını belirlemiştir. Havzanın eğim, yükselti, bakı ve arazi kullanımı gibi bazı özellikleri Coğrafi Bilgi Sistemleri (CBS) tekniği kullanılarak haritalandırılmıştır. Jeoistatistiksel teknikler, bu özellikler ve SDI'nin enterpolasyonu için kullanılmıştır. Çalışmanın sonuçları, toprak bozulmasının bir indeks değeri ile ifade edilebileceğini ve temel toprak özelliklerinin bu indeks için parametre olarak kullanılabileceğini göstermiştir. Bu parametreler indeks değerlerini farklı ağırlıklarda etkilemekte olup, bu ağırlık değerleri korelasyon analizi ile hesaplanabilmektedir. Ayrıca, dağılım haritalarına göre SDI, arazi kullanımı, yükseklik ve bakıya bağlı olarak mekânsal değişkenlik göstermiştir; ancak eğime bağlı olarak düzenli bir değişim göstermemiştir. Elde edilen bulgular doğrultusunda, havza genelinde arazi kullanımına özgü toprak yönetim stratejilerinin uygulanması önerilmektedir. SDI temelli düzenli izleme ve mekânsal analizler, bozulmanın erken tespiti ile sürdürülebilir arazi kullanım planlamasına katkı sağlayabilir.

Kaynakça

  • Acir, N., Günal, H., Mutlu, N., Cankar, S., & Akyol, N. (2013) Drenaj Faaliyetleri Sonrası Kaz Gölü Çevresindeki Toprak Özellikleri ve Vejetasyonun Mesafeye Bağlı Değişimleri. III. National Soil and Water Resources Congress, 22-24 October 2013, Tokat, Türkiye.
  • Amundson, R., Berhe, A.A., Hopmans, J.W., Olson, C., Sztein, A.E & Sparks, D.L. (2015). Soil science. Soil and human security in the 21st century. Science, 348(126-1071). https://doi.org/10.1126/science.1261071
  • Asare, M.O., Ondřej, S., & Afriyie, J.O. (2021). Chemical properties and magnetic susceptibility as proxy indicators of past settlement activities on contemporary arable soil in the Czech Republic. Geoderma Regional, 24, e00357. https://doi.org/https://doi.org/10.1016/j.geodrs.2021.e00357
  • Aydın, A., & Kara, F. (2019). Spatial assessment of land degradation using soil quality index: A case study from the Middle Black Sea Region. Environmental Monitoring and Assessment, 191(5), 1–15. https://doi.org/10.1007/s10661-019-7390-3 Barcelos, J. P. de Q., de Souza, M., Nascimento, C. A. C. do, & Rosolem, C. A. (2022). Soil acidity amelioration improves N and C cycles in the short term in a system with soybean followed by maize-guinea grass intercropping. Geoderma, 421, 115909. https://doi.org/10.1016/j.geoderma.2022.115909
  • Baul, T. K., Chowdhury, A. I., Uddin, M. J., Hasan, M. K., Kilpeläinen, A., Nandi, R., Karmakar, S. , & Akhter, J. (2023). Effects of fragmentation and shifting cultivation on soil carbon and nutrients: A case study in Sitapahar forest, Bangladesh. Rhizosphere, 27, 100756. https://doi.org/10.1016/j.rhisph.2023.100756
  • Bax, V., & Francesconi, W. (2018). Environmental predictors of forest change: An analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Applied Geography, 91, 99–110. https://doi.org/10.1016/j.apgeog.2018.01.002
  • Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach. Springer, Boston, MA, USA. http://dx.doi.org/10.4236/ajor.2016.64030
  • Blake, G. R., & Hartge, K. H. (1986). Bulk Density. In: Klute A (ed.). Methods of Soil Analysis Part I. Physical and Mineralogical Methods. Madison, WI, USA pp: 363-375. https://doi.org/10.2136/sssabookser5.1.2ed.c13
  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis: Part I. Physical and mineralogical methods (pp. 363–375). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c13
  • Buraka, T., Elias, E., & Lelago, A. (2023). Effects of land-use-cover-changes on selected soil physicochemical properties along slope position, Coka watershed, Southern Ethiopia. Heliyon, 9(5), e16142. https://doi.org/10.1016/j.heliyon.2023.e16142
  • Cassel, D. K., & Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (Ed.), Methods of soil analysis. Part I. Physical and mineralogical methods (pp. 901–926). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c36
  • Cerretelli, S., Poggio, L., Gimona, A., Yakob, G., Boke, S., Habte, B., Coull, M., Peressotti, A., & Black, H. (2018). Spatial assessment of land degradation through key ecosystem services: The role of globally available data. Science of the Total Environment, 628–629, 539–555. https://doi.org/10.1016/j.scitotenv.2018.02.085
  • Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In A. Klute (Ed.), Methods of soil analysis. Part I. Physical and mineralogical methods (pp. 443–461). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c18
  • Erdoğan Yüksel, E., & Yavuz, G. (2024). Evaluating the Soil Properties of Different Land Use Types in the Deviskel Watershed in the Hilly Region of Northeast Türkiye. Sustainability (Switzerland), 16(22). https://doi.org/10.3390/su16229732
  • FAO (Food and Agriculture Organization). (2020). Soil degradation. FAOSTAT. FAO Database on food and agriculture. United Nations Food and Agriculture Organization, Rome, Italy. Retrieved July 2021, from https://www.fao.org/soils-portal/soil-degradation-restoration/en/
  • Fenger-Nielsen, R., Hollesen, J., Matthiesen, H., Andersen, E. A. S., Westergaard-Nielsen, A., Harmsen, H., Michelsen, A., & Elberling, B. (2019). Footprints from the past: The influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Science of the Total Environment, 654, 895–905. https://doi.org/10.1016/j.scitotenv.2018.11.018
  • Gee, G., & Bauder, J. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis, Part I. Physical and mineralogical methods (pp. 383–411). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  • Griffiths, R. P., Madritch, M. D., & Swanson, A. K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management, 257, 1–7. https://doi.org/10.1016/j.foreco.2008.08.010
  • Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., & He, H. (2019). Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations, and future challenges. Journal of Environmental Management, 250, 109403. https://doi.org/10.1016/j.jenvman.2019.109403
  • Gürsoy, S., & Şahin, U. (2020). Assessment of soil degradation in Arhavi watershed using a soil quality index approach. Turkish Journal of Agriculture - Food Science and Technology, 8(10), 2150–2157. https://doi.org/10.24925/turjaf.v8i10.2150-2157.3725
  • Güler, S. (2020). Godrahav Havasında toprak bozulma katsayısındaki değişimin belirlenmesi (Tez No: 636346). [Yüksek Lisans Tezi, Artvin Çoruh Üniversitesi]. YÖK Tez Merkezi.
  • Han, X., Liu, J., Shen, X., Liu, H., Li, X., Zhang, J., Wu, P., & Liu, Y. (2022). High relief yield strong topography-soil water-vegetation relationships in headwater catchments of southeastern China. Geoderma, 428, 116214. https://doi.org/10.1016/j.geoderma.2022.116214
  • Hatfield, J. L., Sauer, T. J., & Cruse, R. M. (2017). Soil: The forgotten piece of the water, food, energy nexus. In Advances in Agronomy (pp. 1–46). Academic Press, Oxford, UK. https://doi.org/10.1016/bs.agron.2017.02.001
  • Hattori, D., Kenzo, T., Shirahama, T., Harada, Y., Kendawang, J. J., Ninomiya, I., & Sakurai, K. (2019). Degradation of soil nutrients and slow recovery of biomass following shifting cultivation in the heath forests of Sarawak, Malaysia. Forest Ecology and Management, 432, 467–477. https://doi.org/10.1016/j.foreco.2018.09.051
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of Soil Analysis Part I. Physical and Mineralogical Methods (pp. 425–442). Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c17
  • Kidron, G. J., Karnieli, A., & Benenson, I. (2010). Degradation of soil fertility following cycles of cotton–cereal cultivation in Mali, West Africa: A first approximation to the problem. Soil and Tillage Research, 106(2), 254–262. https://doi.org/10.1016/j.still.2009.11.004
  • Lenka, N. K., Sudhishri, S., Dass, A., Choudhury, P. R., Lenka, S., & Patnaik, U. S. (2013). Soil carbon sequestration as affected by slope aspect under restoration treatments of a degraded Alfisol in the Indian sub-tropics. Geoderma, 204–205, 120–130. https://doi.org/10.1016/j.geoderma.2013.04.009
  • Leul, Y., Assen, M., Damene, S., & Legass, A. (2023). Effects of land use types on soil quality dynamics in a tropical sub-humid ecosystem, western Ethiopia. Ecological Indicators, 147, 110024. https://doi.org/10.1016/j.ecolind.2023.110024
  • Lorenz, K., Lal, R., & Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degradation & Development, 30(7), 824–838. https://doi.org/10.1002/ldr.3270
  • McLean, E. O. (1983). Soil pH and lime requirement. In A. L. Page (Ed.), Methods of Soil Analysis Part 2: Chemical and Microbiological Properties (pp. 199–224). Madison, WI, USA: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
  • Mo, L., Yang, H., Hou, R., Wu, W., Song, X., Yang, H., Yang, Z., Zheng, W., & Qi, D. (2023). Forest degradation caused by dwarf bamboo overabundance reduces soil C, N, and P stocks in giant panda habitat. CATENA, 231, 107377. https://doi.org/10.1016/j.catena.2023.107377
  • Moebius-Clune, B. N., van Es, H. M., Idowu, O. J., Schindelbeck, R. R., Kimetu, J. M., Ngoze, S., Lehmann, J., & Kinyangi, J. M. (2011). Long-term soil quality degradation along a cultivation chronosequence in Western Kenya. Agriculture, Ecosystems & Environment, 141, 86–99. https://doi.org/10.1016/j.agee.2011.02.018
  • Mujiyo Nariyanti, S., Suntoro, Herawati, A., Herdiansyah, G., Irianto, H., Riptanti, E. W., & Qonita, A. (2022). Soil fertility index based on altitude: A comprehensive assessment for the cassava development area in Indonesia. Annals of Agricultural Sciences, 67(2), 158–165. https://doi.org/10.1016/j.aoas.2022.10.001
  • Navarro Rau, M. F., Calamari, N. C., & Mosciaro, M. J. (2023). Dynamics of past forest cover changes and future scenarios with implications for soil degradation in Misiones rainforest, Argentina. Journal for Nature Conservation, 73, 126391. https://doi.org/10.1016/j.jnc.2023.126391
  • Nelson, D., & Sommers, L. E. (1983). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. Madison, WI, USA: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Pan, S., Shi, J., Peng, Y., Wang, Z., & Wang, X. (2023). Soil organic carbon pool distribution and stability with grazing and topography in a Mongolian grassland. Agriculture, Ecosystems & Environment, 348, 108431. https://doi.org/10.1016/j.agee.2023.108431
  • Poesen, J. (2018). Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43(1), 64–84. https://doi.org/10.1002/esp.4250
  • Qiao, X., Li, Z., Lin, J., Wang, H., Zheng, S., & Yang, S. (2023). Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2023.07.001
  • Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
  • Rhoades, J. D. (1983). Soluble salts. In A. L. Page (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 933–951). Madison, WI, USA: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c10
  • Roth, E. M., Karhu, K., Koivula, M., Helmisaari, H. S., & Tuittila, E. S. (2023). How do harvesting methods applied in continuous-cover forestry and rotation forest management impact soil carbon storage and degradability in boreal Scots pine forests? Forest Ecology and Management, 544, 121144. https://doi.org/10.1016/j.foreco.2023.121144
  • Sabogal, C. (2012). Site-level rehabilitation strategies for degraded forest lands. In J. Rietbergen-McCracken, S. Maginnis, & A. Sarbe (Eds.), The Forest Landscape Restoration Handbook (pp. 109–118). Earthscan, London, UK.
  • Scanes, C. G. (2018). Impact of agricultural animals on the environment. In C. G. Scanes (Ed.), Animals and human society (pp. 427–449). Academic Press. https://doi.org/10.1016/C2014-0-03860-9
  • Šamonil, P., Jaroš, J., Daněk, P., Tikhomirov, D., Novotný, V., Weiblen, G., Christl, M., & Egli, M. (2023). Soil erosion affected by trees in a tropical primary rainforest, Papua New Guinea. Geomorphology, 425, 108589. https://doi.org/10.1016/j.geomorph.2023.108589
  • Šmejda, L., Hejcman, M., Horák, J., & Shai, I. (2018). Multi-element mapping of anthropogenically modified soils and sediments at the Bronze to Iron Ages site of Tel Burna in the southern Levant. Quaternary International, 483, 111–123. https://doi.org/10.1016/j.quaint.2017.11.005
  • Tian, M., Whalley, W. R., Zhou, H., Ren, T., & Gao, W. (2023). Does no-tillage mitigate the negative effects of harvest compaction on soil pore characteristics in Northeast China? Soil and Tillage Research, 233, 105787. https://doi.org/10.1016/j.still.2023.105787
  • Turgut, B., & Ateş, M. (2017). Factors of soil diversity in the Batumi Delta (Georgia). Solid Earth, 8, 1–12. https://doi.org/10.5194/se-8-1-2017 Wang, J., Wei, H., Cheng, K., Ochir, A., Davaasuren, D., Li, P., Shun Chan, F. K., & Nasanbat, E. (2020). Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environmental Development, 100497. https://doi.org/10.1016/j.envdev.2020.100497
  • Wang, Q., Zhang, S., Zhang, M., Liu, P., McLaughlin, N. B., Jia, S., Chen, X., Zhang, Y., & Liang, A. (2023). Soil biotic associations play a key role in subsoil C mineralization: Evidence from long-term tillage trial in the black soil of Northeast China. Soil and Tillage Research, 234, 105859. https://doi.org/10.1016/j.still.2023.105859
  • Wilding, L. P., & Drees, L. R. (1983). Spatial variability and pedology. In L. P. Wilding, N. E. Smeck, & G. F. Hall (Eds.), Pedogenesis and soil taxonomy I: Concepts and interactions (pp. 83–116). Elsevier, Amsterdam.
  • Wiśniewski, P., & Märker, M. (2019). The role of soil-protecting forests in reducing soil erosion in young glacial landscapes of Northern-Central Poland. Geoderma, 337, 1227–1235. https://doi.org/10.1016/j.geoderma.2018.11.035
  • Yılmaz, M., & Dengiz, O. (2021). Bazı toprak özellikleri İle İlişkili olarak arazi kullanımı ve arazi örtüsünün toprak organik karbon stokuna etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 8(2), 154-167.
  • Yılmaz, R., & Korkanç, S. Y. (2021). Evaluation of soil degradation index and its relationship with land use and topography in Devrekani Basin. Anadolu University Journal of Science and Technology - C Life Sciences and Biotechnology, 11(2), 397–408.
  • Yıldız, O., Temizel, İ., & Günal, H. (2017). Determination of soil quality index in different land use types: A case from Black Sea region, Turkey. Catena, 156, 19–28. https://doi.org/10.1016/j.catena.2017.03.020
  • Yousefi, S., Moradi, H., Boll, J., & Schönbrodt-Stitt, S. (2016). Effects of road construction on soil degradation and nutrient transport in Caspian Hyrcanian mixed forests. Geoderma, 284, 103–112. https://doi.org/10.1016/j.geoderma.2016.09.002
  • Zahedifar, M. (2023). Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. CATENA, 222, 106807. https://doi.org/10.1016/j.catena.2022.106807
  • Zhang, Y., Zhang, G., Pan, J., Fan, Z., Chen, F., & Liu, Y. (2019). Soil organic carbon distribution in relation to terrain and land use: A case study in a small watershed of Danjiangkou Reservoir Area, China. Global Ecology and Conservation, 20, e00731. https://doi.org/10.1016/j.gecco.2019.e00731
  • Zhang, S., Sun, L., Jamshidi, A. H., Niu, Y., Fan, Z., Zhang, H., & Liu, X. (2022). Assessment of the degree of degradation of sloping cropland in a typical black soil region. Land Degradation and Development, 33(13), 2220–2230. https://doi.org/10.1002/ldr.4255
  • Zhang, W. C., Wu, W., Li, J. W., & Liu, H. B. (2023). Climate and topography controls on soil water-stable aggregates at regional scale: Independent and interactive effects. CATENA, 228, 107170. https://doi.org/10.1016/j.catena.2023.107170
  • Zhu, M., Yang, S., Ai, S., Ai, X., Jiang, X., Chen, J., Li, R., & Ai, Y. (2020). Artificial soil nutrient, aggregate stability, and soil quality index of restored cut slopes along altitude gradient in Southwest China. Chemosphere, 246, 125687. https://doi.org/10.1016/j.chemosphere.2019.125687
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Sümeyye Güler 0000-0003-0606-1085

Bülent Turgut 0000-0001-7443-1100

Erken Görünüm Tarihi 28 Mayıs 2025
Yayımlanma Tarihi 29 Mayıs 2025
Gönderilme Tarihi 28 Mart 2025
Kabul Tarihi 10 Mayıs 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Güler, S., & Turgut, B. (2025). Assessing Soil Degradation: A Comprehensive Study Using Soil Degradation Index (SDI) in Godrahav Watershed. Research in Agricultural Sciences, 56(2), 141-154. https://doi.org/10.17097/agricultureatauni.1667680

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License


29919