Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni Nesil Minimize Edilmiş Akış Dirençli Kelebek Vana Tasarımı

Yıl 2025, Cilt: 3 Sayı: 1, 15 - 34, 30.04.2025
https://doi.org/10.70988/ajeas.1591897

Öz

Kelebek vanalar, çalışma prensibine ait görselliğin bir kelebeğin kanat hareketine benzemesinden dolayı bu ismi almıştır. Bu sayede akış kontrolü daha ergonomik olmakla birlikte su tasarrufu da sağlanmış olur ancak bu avantajların yanı sıra akış direncini en aza indirmenin zorluğu da bir dezavantaj olarak görülmektedir. Döküm yöntemiyle üretilen ve montaj, kaynak gibi emek yoğun üretim aşamalarını içeren vana ürünlerinde yapılan tasarım iyileştirmelerinin maliyetleri oldukça yüksektir. Bu gibi durumlarda bilgisayar destekli tasarım ve test simülasyonu daha da önem kazanmaktadır. Bu çalışmada hesaplamalı akışkanlar dinamiği ve sonlu elemanlar yöntemleri kullanılarak ürünlerin tasarımları gerçekleştirilmiştir. Simülasyon ve tasarım doğrulama aşamalarının detaylarına yer verilmiş olup, tasarımlar Solidworks ile gerçekleştirilmiş ve bu veriler ANSYS ile geçerli kılınmıştır. Çalışma sonucunda mevcut ürünlere göre %26, sektör ortalamasına göre ise %32 iyileşme sağlayan bir gövde ve klape tasarımı elde edilmiştir. Son olarak ürünün geliştirme aşamasında elde edilen özgün kavisli gövde ve kademeli mil tasarımları için ulusal ve uluslararası patent başvuruları yapılmıştır.

Etik Beyan

Yazar, bu makalenin çalışması, yazarlığı ve/veya yayımlanmasıyla ilgili olarak herhangi bir çıkar çatışması bulunmadığını beyan etmiştir. Yazar, çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel izin gerektirmediğini beyan etmektedir.

Kaynakça

  • D. I. Pomoni, M. K. Koukou, M. G. Vrachopoulos, L. Vasiliadis, “A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use”, Energies 16:4 (2023) 1690. Doi: https://doi.org/10.3390/en16041690.
  • A. S. George, A. H. George, A. G. Martin, “The environmental impact of AI: a case study of water consumption by chat GPT”, Partners Universal International Innovation Journal 1:2 (2023) 97–104. Doi: https://doi.org/10.5281/zenodo.7855594.
  • D. Jaffee, “Unequal trust: Bottled water consumption, distrust in tap water, and economic and racial inequality in the United States”, Wiley Interdisciplinary Reviews: Water 11:2 (2024) e1700. Doi: https://doi.org/10.1002/wat2.1700.
  • J. Li, Z. Shen, G. Liu, Z. Jin, R. Liu, “The effect of social economy-water resources-water environment coupling system on water consumption and pollution emission based on input-output analysis in Changchun city, China”, Journal of Cleaner Production 423 (2023) 138719. Doi: https://doi.org/10.1016/j.jclepro.2023.138719.
  • N. Antonova, J. Mendoza-Jiménez, I. Ruiz-Rosa, “Determinants of water consumption in hotels: New insights obtained through a case study”, Water 15:17 (2023) 3049. Doi: https://doi.org/10.3390/w15173049.
  • R. Wang, X. Zhao, H. Qiu, X. Cheng, X. Liu, “Uncovering urban water consumption patterns through time series clustering and entropy analysis”, Water Research 262 (2024) 122085. Doi: https://doi.org/10.1016/j.watres.2024.122085.
  • L. Lai, X. Wang, G. Kefayati, E. Hu, K. C. Ng, “Optimisation of cooling performance and water consumption of a solid desiccant-assisted indirect evaporative cooling system using response surface methodology”, International Journal of Refrigeration 168 (2024) 376–388. Doi: https://doi.org/10.1016/j.ijrefrig.2024.09.023.
  • S. S. Abdujalilova, R. S. Zukhridinovna, “Measuring water consumption in fittings”, Central Asian Journal of Mathematical Theory and Computer Sciences 4:5 (2023) 29–33. Available: [No DOI provided].
  • M. Żyłka, N. Marszałek, W. Żyłka, “Numerical simulation of pneumatic throttle check valve using computational fluid dynamics (CFD)”, Scientific Reports 13:1 (2023) 2475. Doi: https://doi.org/10.1038/s41598-023-29457-4.
  • S. Li, G. Deng, Y. Hu, M. Yu, T. Ma, “Optimization of structural parameters of pilot-operated control valve based on CFD and orthogonal method”, Results in Engineering 21 (2024) 101914. Doi: https://doi.org/10.1016/j.rineng.2024.101914.
  • M. K. Neyestanaki, G. Dunca, P. Jonsson, M. J. Cervantes, “A Comparison of Different Methods for Modelling Water Hammer Valve Closure with CFD”, Water 15:8 (2023) 1510. Doi: https://doi.org/10.3390/w15081510.
  • H. Yao, Q. Ye, C. Wang, P. Yuan, “CFD Dynamic Mesh-Based Simulation and Performance Investigation of Combined Guided Float Valve Tray”, Chemical Engineering and Processing-Process Intensification 193 (2023) 109523. Doi: https://doi.org/10.1016/j.cep.2023.109523.
  • Q. Wu, J. Xue, N. Hu, Y. Lai, H. Zhao, Q. Li, J. Gu, “Open Balance Point and Dry Pressure Drop of a Rectangular Float Valve Tray: Experiment and CFD Simulation”, Industrial & Engineering Chemistry Research 62:48 (2023) 20844–20858.
  • S. Evangelista, G. Tortora, G. Viccione, “Experimental and Numerical CFD Modelling of the Hydrodynamic Effects Induced by a Ram Pump Waste Valve”, Sustainability 15:17 (2023) 13104. Doi: https://doi.org/10.3390/su151713104.
  • S. D. Khamankar, N. K. Ade, P. H. Sahare, M. A. Kumbhalkar, K. S. Rambhad, S. A. Choudhari, M. M. Sardeshmukh, “CFD Analysis of a Butterfly Valve to Optimize Its Design”, AIP Conference Proceedings 2839:1 (2023). Doi: https://doi.org/10.1063/5.0167691.
  • M. M. Said, H. AbdelMeguid, L. Hassan Rabie Sakr, “A Comparison Study between 3-D CFD and Experimental Data of Butterfly Valve Coefficients”, MEJ-Mansoura Engineering Journal 39:3 (2020) 10–22.
  • S. W. Choi, H. S. Seo, H. S. Kim, “Analysis of Flow Characteristics and Effects of Turbulence Models for the Butterfly Valve”, Applied Sciences 11:14 (2021) 6319. Doi: https://doi.org/10.3390/app11146319.
  • K. Alkhulaifi, A. Alharbi, M. Alardhi, J. Alrajhi, H. H. Almutairi, “Comparative Analysis of the Performance Characteristics of Butterfly and Pinch Valves”, Processes 11:7 (2023) 1897. Doi: https://doi.org/10.3390/pr11071897.
  • L. Wang, S. Zheng, X. Liu, H. Xie, J. Dou, “Flow Resistance Optimization of Link Lever Butterfly Valve Based on Combined Surrogate Model”, Structural and Multidisciplinary Optimization 64:6 (2021) 4255–4270. Doi: https://doi.org/10.1007/s00158-017-1694-4.
  • Z. Lin, D. Yin, J. Tao, Y. Li, J. Sun, Z. Zhu, “Effect of Shaft Diameter on the Hydrodynamic Torque of Butterfly Valve Disk”, Journal of Fluids Engineering 142:11 (2020) 111202. Doi: https://doi.org/10.1115/1.4047795
  • Q. Wen, Y. Liu, Z. Chen, W. Wang, “Numerical Simulation and Experimental Validation of Flow Characteristics for a Butterfly Check Valve in Small Modular Reactor”, Nuclear Engineering and Design 391 (2022) 111732. Doi: https://doi.org/10.1016/j.nucengdes.2022.111732.
  • B. Xu, Z. Zhu, Z. Lin, D. Wang, G. Ma, “Numerical and Experimental Research on the Erosion of Solid-Liquid Two-Phase Flow in Transport Butterfly Valve Based on DEM Method”, Industrial Lubrication and Tribology 73:4 (2021) 606–613. Doi: https://doi.org/10.1108/ILT-12-2020-0454.
  • G. Su, J. Zhang, L. Yan, “Study on the Occurrence and Development Mechanism of Pipeline Corrosion Behind Butterfly Valve”, CIESC Journal 73:12 (2022) 5504. Doi: 10.11949/0438-1157.20221209.
  • S. Li, B. Zhang, L. Yang, J. Zhang, Y. Wang, W. Kang, “Study on Wear Properties of the Graphite-Sealing Surfaces in a Triple Eccentric Butterfly Valve Based on EDEM-Fluent Coupling”, Machines 11:4 (2023) 463. Doi: https://doi.org/10.3390/machines11040463.
  • J. Tao, Z. Lin, G. Zhang, J. Su, Z. Zhu, “A Numerical and Experimental Study of the Time-Averaged and Transient Flow Downstream of a Butterfly Valve”, Journal of Fluids Engineering 144:5 (2022) 051202. Doi: https://doi.org/10.1115/1.4052632.
  • G. L. Kyriakopoulos, Y. Aminpour, O. A. Yamini, A. Movahedi, S. H. Mousavi, M. R. Kavianpour, “Hydraulic Performance of Howell–Bunger and Butterfly Valves Used for Bottom Outlet in Large Dams under Flood Hazards”, Applied Sciences 12:21 (2022) 10971. Doi: https://doi.org/10.3390/app122110971.
  • K. Kumar, S. Komble, S. Thorat, P. Korgaonkar, V. Bartakke, P. Sonje, K. Kavire, “Validation of Installation Effects of an Ultrasonic Flow Meter on Butterfly Valve Using Numerical Analysis”, Materials Today: Proceedings 46 (2021) 6692–6699. Doi: https://doi.org/10.1016/j.matpr.2021.04.164.
  • S. J. Oh, J. H. Yoon, S. P. Kim, “A Study on the Flow Characteristics of Butterfly Valve with Baffles”, Journal of Mechanical Science and Technology 35 (2021) 1065–1073. Doi: https://doi.org/10.1007/s12206-021-0220-1.
  • Q. K. Nguyen, K. H. Jung, G. N. Lee, S. B. Park, J. M. Kim, S. B. Suh, J. Lee, “Experimental Study on Pressure Characteristics and Flow Coefficient of Butterfly Valve”, International Journal of Naval Architecture and Ocean Engineering 15 (2023) 100495. Doi: https://doi.org/10.1016/j.ijnaoe.2022.100495.
  • S. Wen, Y. A. Wei, H. W. Wang, “Optimization of Flow Characteristics of Superheated Steam Triple-Eccentric Butterfly Valve”, Journal of Xihua University (Natural Science Edition) 41:3 (2022) 15–20. Doi: 10.12198/j.issn.1673-159X.4067.
  • S. B. Lee, “A Study on Reduction of Cavitation with Orifice on High Differential Pressure Control Butterfly Valve”, Journal of the Korean Society of Industry Convergence 25:1 (2022) 131–139. Doi: https://doi.org/10.21289/KSIC.2022.25.1.131.
  • S. H. Yu, S. H. Park, J. G. Hwang, H. J. Yang, “A Study on the Fluid Flow According to the Opening Angle of a Butterfly Valve with High Control Performance”, Journal of the Korean Society of Industry Convergence 24:5 (2021) 617–623. Doi: https://doi.org/10.21289/KSIC.2021.24.5.617.
  • M. S. Kim, W. L. Seong, W. C. Sung, “Effect of the Turbulence Model in the Flow Analysis of Triple Offset Butterfly Valve”, Journal of Advanced Marine Engineering and Technology 46 (2022) 356–361. Doi: https://doi.org/10.5916/jamet.2022.46.6.356.
  • W. Wu, B. Qiu, G. Tian, X. Liao, T. Wang, “CFD-Based Cavitation Research and Structure Optimization of Relief Valve for Noise Reduction”, IEEE Access 10 (2022) 66356–66373. Doi: 10.1109/ACCESS.2022.3184449.

New Generation Minimized Flow Resistance Butterfly Valve Design

Yıl 2025, Cilt: 3 Sayı: 1, 15 - 34, 30.04.2025
https://doi.org/10.70988/ajeas.1591897

Öz

Butterfly valves get this name because the visual of their working principle resembles the wing movements of a butterfly. In this way, flow control is more ergonomic, and it becomes possible to save water. However, in addition to these advantages, the difficulty of minimizing flow resistance is observed as a disadvantage. The costs of design improvements made in valve products, which are produced by the casting method and involve labour-intensive production stages such as assembly and welding, are quite high. In these cases, computer-aided design and test simulation become more important. In this study, the designs of the products were carried out by using computational fluid dynamics and finite element methods. Details of the simulations and design verification stages were included, the designs were made with Solidworks and these data were validated by ANSYS. As a result of the study, a body and ring designs were achieved with an improvement of 26% compared to existing products and 32% compared to the industry average. Finally, national and international patent applications have been made for the unique curved body and gradual shaft designs obtained during the development phase of the product.

Etik Beyan

The author declared no potential conflicts of interest with respect to the study, authorship, and/or publication of this article. The author of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission

Kaynakça

  • D. I. Pomoni, M. K. Koukou, M. G. Vrachopoulos, L. Vasiliadis, “A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use”, Energies 16:4 (2023) 1690. Doi: https://doi.org/10.3390/en16041690.
  • A. S. George, A. H. George, A. G. Martin, “The environmental impact of AI: a case study of water consumption by chat GPT”, Partners Universal International Innovation Journal 1:2 (2023) 97–104. Doi: https://doi.org/10.5281/zenodo.7855594.
  • D. Jaffee, “Unequal trust: Bottled water consumption, distrust in tap water, and economic and racial inequality in the United States”, Wiley Interdisciplinary Reviews: Water 11:2 (2024) e1700. Doi: https://doi.org/10.1002/wat2.1700.
  • J. Li, Z. Shen, G. Liu, Z. Jin, R. Liu, “The effect of social economy-water resources-water environment coupling system on water consumption and pollution emission based on input-output analysis in Changchun city, China”, Journal of Cleaner Production 423 (2023) 138719. Doi: https://doi.org/10.1016/j.jclepro.2023.138719.
  • N. Antonova, J. Mendoza-Jiménez, I. Ruiz-Rosa, “Determinants of water consumption in hotels: New insights obtained through a case study”, Water 15:17 (2023) 3049. Doi: https://doi.org/10.3390/w15173049.
  • R. Wang, X. Zhao, H. Qiu, X. Cheng, X. Liu, “Uncovering urban water consumption patterns through time series clustering and entropy analysis”, Water Research 262 (2024) 122085. Doi: https://doi.org/10.1016/j.watres.2024.122085.
  • L. Lai, X. Wang, G. Kefayati, E. Hu, K. C. Ng, “Optimisation of cooling performance and water consumption of a solid desiccant-assisted indirect evaporative cooling system using response surface methodology”, International Journal of Refrigeration 168 (2024) 376–388. Doi: https://doi.org/10.1016/j.ijrefrig.2024.09.023.
  • S. S. Abdujalilova, R. S. Zukhridinovna, “Measuring water consumption in fittings”, Central Asian Journal of Mathematical Theory and Computer Sciences 4:5 (2023) 29–33. Available: [No DOI provided].
  • M. Żyłka, N. Marszałek, W. Żyłka, “Numerical simulation of pneumatic throttle check valve using computational fluid dynamics (CFD)”, Scientific Reports 13:1 (2023) 2475. Doi: https://doi.org/10.1038/s41598-023-29457-4.
  • S. Li, G. Deng, Y. Hu, M. Yu, T. Ma, “Optimization of structural parameters of pilot-operated control valve based on CFD and orthogonal method”, Results in Engineering 21 (2024) 101914. Doi: https://doi.org/10.1016/j.rineng.2024.101914.
  • M. K. Neyestanaki, G. Dunca, P. Jonsson, M. J. Cervantes, “A Comparison of Different Methods for Modelling Water Hammer Valve Closure with CFD”, Water 15:8 (2023) 1510. Doi: https://doi.org/10.3390/w15081510.
  • H. Yao, Q. Ye, C. Wang, P. Yuan, “CFD Dynamic Mesh-Based Simulation and Performance Investigation of Combined Guided Float Valve Tray”, Chemical Engineering and Processing-Process Intensification 193 (2023) 109523. Doi: https://doi.org/10.1016/j.cep.2023.109523.
  • Q. Wu, J. Xue, N. Hu, Y. Lai, H. Zhao, Q. Li, J. Gu, “Open Balance Point and Dry Pressure Drop of a Rectangular Float Valve Tray: Experiment and CFD Simulation”, Industrial & Engineering Chemistry Research 62:48 (2023) 20844–20858.
  • S. Evangelista, G. Tortora, G. Viccione, “Experimental and Numerical CFD Modelling of the Hydrodynamic Effects Induced by a Ram Pump Waste Valve”, Sustainability 15:17 (2023) 13104. Doi: https://doi.org/10.3390/su151713104.
  • S. D. Khamankar, N. K. Ade, P. H. Sahare, M. A. Kumbhalkar, K. S. Rambhad, S. A. Choudhari, M. M. Sardeshmukh, “CFD Analysis of a Butterfly Valve to Optimize Its Design”, AIP Conference Proceedings 2839:1 (2023). Doi: https://doi.org/10.1063/5.0167691.
  • M. M. Said, H. AbdelMeguid, L. Hassan Rabie Sakr, “A Comparison Study between 3-D CFD and Experimental Data of Butterfly Valve Coefficients”, MEJ-Mansoura Engineering Journal 39:3 (2020) 10–22.
  • S. W. Choi, H. S. Seo, H. S. Kim, “Analysis of Flow Characteristics and Effects of Turbulence Models for the Butterfly Valve”, Applied Sciences 11:14 (2021) 6319. Doi: https://doi.org/10.3390/app11146319.
  • K. Alkhulaifi, A. Alharbi, M. Alardhi, J. Alrajhi, H. H. Almutairi, “Comparative Analysis of the Performance Characteristics of Butterfly and Pinch Valves”, Processes 11:7 (2023) 1897. Doi: https://doi.org/10.3390/pr11071897.
  • L. Wang, S. Zheng, X. Liu, H. Xie, J. Dou, “Flow Resistance Optimization of Link Lever Butterfly Valve Based on Combined Surrogate Model”, Structural and Multidisciplinary Optimization 64:6 (2021) 4255–4270. Doi: https://doi.org/10.1007/s00158-017-1694-4.
  • Z. Lin, D. Yin, J. Tao, Y. Li, J. Sun, Z. Zhu, “Effect of Shaft Diameter on the Hydrodynamic Torque of Butterfly Valve Disk”, Journal of Fluids Engineering 142:11 (2020) 111202. Doi: https://doi.org/10.1115/1.4047795
  • Q. Wen, Y. Liu, Z. Chen, W. Wang, “Numerical Simulation and Experimental Validation of Flow Characteristics for a Butterfly Check Valve in Small Modular Reactor”, Nuclear Engineering and Design 391 (2022) 111732. Doi: https://doi.org/10.1016/j.nucengdes.2022.111732.
  • B. Xu, Z. Zhu, Z. Lin, D. Wang, G. Ma, “Numerical and Experimental Research on the Erosion of Solid-Liquid Two-Phase Flow in Transport Butterfly Valve Based on DEM Method”, Industrial Lubrication and Tribology 73:4 (2021) 606–613. Doi: https://doi.org/10.1108/ILT-12-2020-0454.
  • G. Su, J. Zhang, L. Yan, “Study on the Occurrence and Development Mechanism of Pipeline Corrosion Behind Butterfly Valve”, CIESC Journal 73:12 (2022) 5504. Doi: 10.11949/0438-1157.20221209.
  • S. Li, B. Zhang, L. Yang, J. Zhang, Y. Wang, W. Kang, “Study on Wear Properties of the Graphite-Sealing Surfaces in a Triple Eccentric Butterfly Valve Based on EDEM-Fluent Coupling”, Machines 11:4 (2023) 463. Doi: https://doi.org/10.3390/machines11040463.
  • J. Tao, Z. Lin, G. Zhang, J. Su, Z. Zhu, “A Numerical and Experimental Study of the Time-Averaged and Transient Flow Downstream of a Butterfly Valve”, Journal of Fluids Engineering 144:5 (2022) 051202. Doi: https://doi.org/10.1115/1.4052632.
  • G. L. Kyriakopoulos, Y. Aminpour, O. A. Yamini, A. Movahedi, S. H. Mousavi, M. R. Kavianpour, “Hydraulic Performance of Howell–Bunger and Butterfly Valves Used for Bottom Outlet in Large Dams under Flood Hazards”, Applied Sciences 12:21 (2022) 10971. Doi: https://doi.org/10.3390/app122110971.
  • K. Kumar, S. Komble, S. Thorat, P. Korgaonkar, V. Bartakke, P. Sonje, K. Kavire, “Validation of Installation Effects of an Ultrasonic Flow Meter on Butterfly Valve Using Numerical Analysis”, Materials Today: Proceedings 46 (2021) 6692–6699. Doi: https://doi.org/10.1016/j.matpr.2021.04.164.
  • S. J. Oh, J. H. Yoon, S. P. Kim, “A Study on the Flow Characteristics of Butterfly Valve with Baffles”, Journal of Mechanical Science and Technology 35 (2021) 1065–1073. Doi: https://doi.org/10.1007/s12206-021-0220-1.
  • Q. K. Nguyen, K. H. Jung, G. N. Lee, S. B. Park, J. M. Kim, S. B. Suh, J. Lee, “Experimental Study on Pressure Characteristics and Flow Coefficient of Butterfly Valve”, International Journal of Naval Architecture and Ocean Engineering 15 (2023) 100495. Doi: https://doi.org/10.1016/j.ijnaoe.2022.100495.
  • S. Wen, Y. A. Wei, H. W. Wang, “Optimization of Flow Characteristics of Superheated Steam Triple-Eccentric Butterfly Valve”, Journal of Xihua University (Natural Science Edition) 41:3 (2022) 15–20. Doi: 10.12198/j.issn.1673-159X.4067.
  • S. B. Lee, “A Study on Reduction of Cavitation with Orifice on High Differential Pressure Control Butterfly Valve”, Journal of the Korean Society of Industry Convergence 25:1 (2022) 131–139. Doi: https://doi.org/10.21289/KSIC.2022.25.1.131.
  • S. H. Yu, S. H. Park, J. G. Hwang, H. J. Yang, “A Study on the Fluid Flow According to the Opening Angle of a Butterfly Valve with High Control Performance”, Journal of the Korean Society of Industry Convergence 24:5 (2021) 617–623. Doi: https://doi.org/10.21289/KSIC.2021.24.5.617.
  • M. S. Kim, W. L. Seong, W. C. Sung, “Effect of the Turbulence Model in the Flow Analysis of Triple Offset Butterfly Valve”, Journal of Advanced Marine Engineering and Technology 46 (2022) 356–361. Doi: https://doi.org/10.5916/jamet.2022.46.6.356.
  • W. Wu, B. Qiu, G. Tian, X. Liao, T. Wang, “CFD-Based Cavitation Research and Structure Optimization of Relief Valve for Noise Reduction”, IEEE Access 10 (2022) 66356–66373. Doi: 10.1109/ACCESS.2022.3184449.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Araştırma Makalesi
Yazarlar

Erhan Özkan 0000-0002-3849-6713

Erken Görünüm Tarihi 29 Nisan 2025
Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 3 Aralık 2024
Kabul Tarihi 22 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE E. Özkan, “New Generation Minimized Flow Resistance Butterfly Valve Design”, AJEAS, c. 3, sy. 1, ss. 15–34, 2025, doi: 10.70988/ajeas.1591897.

Alpha Journal of Engineering and Applied Sciences © 2023 is licensed under the Creative Commons Attribution 4.0 International License (CC BY)