Araştırma Makalesi
BibTex RIS Kaynak Göster

COMPARISON OF TWO DIFFERENT BONE GRAFTS TO IMMEDIATE LOADING OF DENTAL IMPLANT WITH FINITE ELEMENT ANALYSIS METHOD

Yıl 2025, Cilt: 7 Sayı: 1, 13 - 29, 30.04.2025

Öz

Purpose: The aim of study, to evaluate the stresses on bovine sourced Cerabone graft materials with a new synthetic bone graft, TiO2, by using a three dimensional (3D) finite element analysis method.
Methods: After the dental implant was placed in the maxilla, 2 separate defect models (2 mm vertical 2 mm horizontal defect and 3 mm vertical 3 mm horizontol defect) were supported with the above-mentioned bone grafts. Dental implants, abutments and bone grafts are used for modeling. In order to compare the stress distribution of two different grafts in a virtual environment, the maxilla model, implant model and bone graft model were created in three dimensions. Finite Element Analysis was performed on the models and their stress distribution properties were evaluated according to the results.
Results: There is no difference between the synthetic bone graft TiO2 and bovine sourced Cerabone in terms of stress distribution according to the 3D Finite Element Analysis Method.
Conclusion: It has been found that the stress on the implant is reduced when the graft is not placed. If possible, applying implants directly without grafting is more advantageous in terms of stress distribution.

Destekleyen Kurum

This research was supported by the Ege University Research Fund, Scientific Research Foundation (BAP).

Teşekkür

We are grateful to Ege University Planning and Monitoring Coordination of Organizational Development and Directorate of Library and Documentation for their support in editing and proofreading service of this study.

Kaynakça

  • Birmingham, E., Kreipke , T. C., Dolan, E. B., Coughlin, T. R., Owens, P., Mcnamara, L. M., Mchugh, P. E. (2015). Mechanical Stimulation of Bone Marrow In Situ Induces Bone Formation in Trabecular Explants. Annals of Biomedical Engineering, 43(4), 1036-1050. doi:10.1007/s10439-014-1135-0
  • Bölükbaşı, N., Koçak, A., & Özdemir, T. (2012). Evaluation of the effect of implant localization on the anterior maxilla. Journal of Istanbul University Faculty of Dentistry, 46(3), 15-28.
  • Büyükakyüz, N., & Öztürk , M. (2012). The solution of aesthetic problems by hard and soft tissue grafts in oral ımplantology. Journal of Istanbul University Faculty of Dentistry, 46(2), 74-82.
  • Cinel , S., Celik , E., Sagirkaya, E., & Sahin , O. (2018). Experimental evaluation of stress distribution with narrow diameter implants: A finite element analysis. The Journal of Prosthetic Dentistry, 119(3), 417-425. https://doi.org/10.1016/j.prosdent.2017.04.024 adresinden alındı
  • Dursun , C. K., Dursun, E., Eratalay, K., Orhan , K., Tatar , I., Baris , E., & Tözüm , T. F. (2016). Effect of porous titanium granules on bone regeneration and primary stability in maxillary sinus: a human clinical, histomorphometric, and microcomputed tomography analyses. Journal of Craniofacial Surgery, 27(2), 391-397. doi:10.1097/SCS.0000000000002421
  • Ebrahimian-Hosseinabadi, M., Ashrafizadeh , F., Etemadifar, M., & Venkatraman, S. S. (2011). Evaluating and modeling the mechanical properties of the prepared PLGA/nano-BCP composite scaffolds for bone tissue engineering. Journal of Materials Science & Technology, 27(12), 1105-1112. https://doi.org/10.1016/S1005-0302(12)60004-8 adresinden alındı
  • Fostad , G., Hafell, B., Førde , A., Dittmann, R., Sabetrasekh, R., Will , J., Haugen , H. (2009). TiO2 Scaffolds—a correlation study between processing parameters, micro ct analysis and mechanical strength. Journal Of The European Ceramic Society, 29(13), 2773-2781. https://doi.org/10.1016/j.jeurceramsoc.2009.03.017 adresinden alındı
  • Geng , J. P., Tan, K. B., & Liu, G. R. (2001). Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent., 85(6), 585-598. https://doi.org/10.1067/mpr.2001.115251 adresinden alındı
  • Hammack, B. L., & Enneking, W. F. (1960). Comparative vascularization of autogenous and homogenous-bone transplants. The Journal of Bone & Joint Surgery, 42(5), 811-817.
  • Haugen, H. J., Monjo, M., Rubert, M., Verket , A., Lyngstadaas , S. P., Ellingsen , J. E.,Wohlfahrt , J. C. (2013). Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomaterialia, 9, 5390–5399. https://doi.org/10.1016/j.actbio.2012.09.009 adresinden alındı
  • Hsu, M. L., Chen , F. C., Kao , H. C., & Cheng , C. K. (2007). Influence of off-axis loading of an anterior maxillary implant: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 22(2), 301-309.
  • Isaksson, H., Wilson , W., Van Donkelaar, C. C., Huiskes, R., & Ito, K. (2006). Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Journal of Biomechanics, 39(8), 1507-1516. https://doi.org/10.1016/j.jbiomech.2005.01.037 adresinden alındı
  • Juodzbalys , G., & Wang, H. L. (2007). Soft and hard tissue assessment of immediate implant placement: a case series. Clin Oral Impl Res. , 18, 237-243. https://doi.org/10.1111/j.1600-0501.2006.01312.x adresinden alındı
  • Kwon , B. G., & Kim , S. G. (2006). Finite element analysis of different bone substitutes in the bone defects around dental implants. Implant Dentistry, 15(3), 254-264. doi:10.1097/01.id.0000219864.33618.8b
  • Lacroix, D., Prendergast , P. J., Li , G., & Marsh, D. (2002). Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Medical and Biological Engineering and Computing, 40(1), 14-21.
  • Marcián, P., Wolff, J., Horáčková, L., Kaiser, J., Zikmund , T., & Borák , L. (2018). Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med., 96, 157-165. https://doi.org/10.1016/j.compbiomed.2018.03.012 adresinden alındı
  • Meijer, H. A., Starmans, F. J., Steen, W. H., & Bosman , F. (1996). Loading conditions of endosseous implants in an edentulous human mandible: A three‐dimensional, finite‐element study. J Oral Rehabil., 23(11), 757-763. https://doi.org/10.1046/j.1365-2842.1996.d01-185.x adresinden alındı
  • Peng , L., Bai , J., Zeng, X., & Zhou, Y. (2006). Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Medical Engineering & Physics, 28(3), 227-233. https://doi.org/10.1016/j.medengphy.2005.06.003 adresinden alındı
  • Sabetrasekh, R., Tiainen , H., Lyngstadaas, S. P., Reseland, J., & Haugen , H. A. (2011). Novel ultra-porous titanium dioxide ceramic with excellent biocompatibility. J Biomater Appl, 25(6), 559-580. https://doi.org/10.1177/0885328209354925 adresinden alındı
  • Steigenga, J., al-Shammari , K., Nociti, F., Misch , C., & Wang, H. (2003). Dental implant design and its relationship to long-term implant success. Implant Dent, 12(4), 306-317. doi:10.1097/01.ID.0000091140.76130.A1
  • Tiainen, H., Wiedmer, D., & Haugen, H. J. (2013). Processing of highly porous TiO2 bone scaffolds with improved compressive strength. Journal of the European Ceramic Society, 33(1), 15-24. https://doi.org/10.1016/j.jeurceramsoc.2012.08.016 adresinden alındı
  • Verket , A., Müller , B., Wohlfahrt , J. C., Lyngstadaas , S. P., Ellingsen , J. E., Haugen, H. J., & Tiainen , H. (2016). TiO2 scaffolds in peri‐implant dehiscence defects: an experimental pilot study. Clinical Oral İmplants Research, 27(10), 1200-1206. https://doi.org/10.1111/clr.12725 adresinden alındı
  • Zhang X, T. H. (2019). Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput. , 57(1), 311-324. https://doi.org/10.1007/s11517-018-1884-2 adresinden alındı

DENTAL İMPLANTIN İMMEDİAT YÜKLENMESİNDE İKİ FARKLI KEMİK GREFTİNİN SONLU ELEMANLAR ANALİZ YÖNTEMİNE GÖRE KARŞILAŞTIRILMASI

Yıl 2025, Cilt: 7 Sayı: 1, 13 - 29, 30.04.2025

Öz

Amaç: Çalışmanın amacı, üç boyutlu (3D) sonlu elemanlar analiz yöntemi kullanılarak yeni bir sentetik kemik grefti olan TiO2 ile sığır kaynaklı Cerabone greft materyalleri üzerindeki stresleri değerlendirmektir.
Yöntemler: Dental implant maksillaya yerleştirildikten sonra, 2 ayrı defekt modeli (2 mm dikey 2 mm yatay defekt ve 3 mm dikey 3 mm yatay defekt) yukarıda belirtilen kemik greftleriyle desteklendi. Modelleme için dental implant, abutment ve kemik grefti kullanıldı. Sanal ortamda iki farklı greftin stres dağılımını karşılaştırmak için maksilla modeli, implant modeli ve kemik greft modeli üç boyutlu olarak oluşturuldu. Modeller üzerinde Sonlu Elemanlar Analizi yapıldı ve sonuçlara göre stres dağılım özellikleri değerlendirildi.
Sonuçlar: 3D Sonlu Elemanlar Analiz Yöntemine göre sentetik kemik grefti TiO2 ile sığır kaynaklı Cerabone arasında stres dağılımı açısından bir fark yoktur.
Sonuç: Greft yerleştirilmediğinde implant üzerindeki stresin azaldığı bulunmuştur. Mümkünse, greftlemeden doğrudan implant uygulamak stres dağılımı açısından daha avantajlıdır.

Kaynakça

  • Birmingham, E., Kreipke , T. C., Dolan, E. B., Coughlin, T. R., Owens, P., Mcnamara, L. M., Mchugh, P. E. (2015). Mechanical Stimulation of Bone Marrow In Situ Induces Bone Formation in Trabecular Explants. Annals of Biomedical Engineering, 43(4), 1036-1050. doi:10.1007/s10439-014-1135-0
  • Bölükbaşı, N., Koçak, A., & Özdemir, T. (2012). Evaluation of the effect of implant localization on the anterior maxilla. Journal of Istanbul University Faculty of Dentistry, 46(3), 15-28.
  • Büyükakyüz, N., & Öztürk , M. (2012). The solution of aesthetic problems by hard and soft tissue grafts in oral ımplantology. Journal of Istanbul University Faculty of Dentistry, 46(2), 74-82.
  • Cinel , S., Celik , E., Sagirkaya, E., & Sahin , O. (2018). Experimental evaluation of stress distribution with narrow diameter implants: A finite element analysis. The Journal of Prosthetic Dentistry, 119(3), 417-425. https://doi.org/10.1016/j.prosdent.2017.04.024 adresinden alındı
  • Dursun , C. K., Dursun, E., Eratalay, K., Orhan , K., Tatar , I., Baris , E., & Tözüm , T. F. (2016). Effect of porous titanium granules on bone regeneration and primary stability in maxillary sinus: a human clinical, histomorphometric, and microcomputed tomography analyses. Journal of Craniofacial Surgery, 27(2), 391-397. doi:10.1097/SCS.0000000000002421
  • Ebrahimian-Hosseinabadi, M., Ashrafizadeh , F., Etemadifar, M., & Venkatraman, S. S. (2011). Evaluating and modeling the mechanical properties of the prepared PLGA/nano-BCP composite scaffolds for bone tissue engineering. Journal of Materials Science & Technology, 27(12), 1105-1112. https://doi.org/10.1016/S1005-0302(12)60004-8 adresinden alındı
  • Fostad , G., Hafell, B., Førde , A., Dittmann, R., Sabetrasekh, R., Will , J., Haugen , H. (2009). TiO2 Scaffolds—a correlation study between processing parameters, micro ct analysis and mechanical strength. Journal Of The European Ceramic Society, 29(13), 2773-2781. https://doi.org/10.1016/j.jeurceramsoc.2009.03.017 adresinden alındı
  • Geng , J. P., Tan, K. B., & Liu, G. R. (2001). Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent., 85(6), 585-598. https://doi.org/10.1067/mpr.2001.115251 adresinden alındı
  • Hammack, B. L., & Enneking, W. F. (1960). Comparative vascularization of autogenous and homogenous-bone transplants. The Journal of Bone & Joint Surgery, 42(5), 811-817.
  • Haugen, H. J., Monjo, M., Rubert, M., Verket , A., Lyngstadaas , S. P., Ellingsen , J. E.,Wohlfahrt , J. C. (2013). Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomaterialia, 9, 5390–5399. https://doi.org/10.1016/j.actbio.2012.09.009 adresinden alındı
  • Hsu, M. L., Chen , F. C., Kao , H. C., & Cheng , C. K. (2007). Influence of off-axis loading of an anterior maxillary implant: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 22(2), 301-309.
  • Isaksson, H., Wilson , W., Van Donkelaar, C. C., Huiskes, R., & Ito, K. (2006). Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Journal of Biomechanics, 39(8), 1507-1516. https://doi.org/10.1016/j.jbiomech.2005.01.037 adresinden alındı
  • Juodzbalys , G., & Wang, H. L. (2007). Soft and hard tissue assessment of immediate implant placement: a case series. Clin Oral Impl Res. , 18, 237-243. https://doi.org/10.1111/j.1600-0501.2006.01312.x adresinden alındı
  • Kwon , B. G., & Kim , S. G. (2006). Finite element analysis of different bone substitutes in the bone defects around dental implants. Implant Dentistry, 15(3), 254-264. doi:10.1097/01.id.0000219864.33618.8b
  • Lacroix, D., Prendergast , P. J., Li , G., & Marsh, D. (2002). Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Medical and Biological Engineering and Computing, 40(1), 14-21.
  • Marcián, P., Wolff, J., Horáčková, L., Kaiser, J., Zikmund , T., & Borák , L. (2018). Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med., 96, 157-165. https://doi.org/10.1016/j.compbiomed.2018.03.012 adresinden alındı
  • Meijer, H. A., Starmans, F. J., Steen, W. H., & Bosman , F. (1996). Loading conditions of endosseous implants in an edentulous human mandible: A three‐dimensional, finite‐element study. J Oral Rehabil., 23(11), 757-763. https://doi.org/10.1046/j.1365-2842.1996.d01-185.x adresinden alındı
  • Peng , L., Bai , J., Zeng, X., & Zhou, Y. (2006). Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Medical Engineering & Physics, 28(3), 227-233. https://doi.org/10.1016/j.medengphy.2005.06.003 adresinden alındı
  • Sabetrasekh, R., Tiainen , H., Lyngstadaas, S. P., Reseland, J., & Haugen , H. A. (2011). Novel ultra-porous titanium dioxide ceramic with excellent biocompatibility. J Biomater Appl, 25(6), 559-580. https://doi.org/10.1177/0885328209354925 adresinden alındı
  • Steigenga, J., al-Shammari , K., Nociti, F., Misch , C., & Wang, H. (2003). Dental implant design and its relationship to long-term implant success. Implant Dent, 12(4), 306-317. doi:10.1097/01.ID.0000091140.76130.A1
  • Tiainen, H., Wiedmer, D., & Haugen, H. J. (2013). Processing of highly porous TiO2 bone scaffolds with improved compressive strength. Journal of the European Ceramic Society, 33(1), 15-24. https://doi.org/10.1016/j.jeurceramsoc.2012.08.016 adresinden alındı
  • Verket , A., Müller , B., Wohlfahrt , J. C., Lyngstadaas , S. P., Ellingsen , J. E., Haugen, H. J., & Tiainen , H. (2016). TiO2 scaffolds in peri‐implant dehiscence defects: an experimental pilot study. Clinical Oral İmplants Research, 27(10), 1200-1206. https://doi.org/10.1111/clr.12725 adresinden alındı
  • Zhang X, T. H. (2019). Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput. , 57(1), 311-324. https://doi.org/10.1007/s11517-018-1884-2 adresinden alındı
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Research Article
Yazarlar

Elif Ezgi Oğuz 0000-0002-6555-4800

Banu Özveri Koyuncu 0000-0002-0074-0055

Musa Güngörürler 0000-0002-5137-6919

Övül Kümbüloğlu 0000-0002-4041-7308

Makbule Heval Şahan 0000-0003-0825-8914

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 17 Ocak 2025
Kabul Tarihi 28 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Oğuz, E. E., Özveri Koyuncu, B., Güngörürler, M., Kümbüloğlu, Ö., vd. (2025). COMPARISON OF TWO DIFFERENT BONE GRAFTS TO IMMEDIATE LOADING OF DENTAL IMPLANT WITH FINITE ELEMENT ANALYSIS METHOD. Aurum Journal of Health Sciences, 7(1), 13-29.