Derleme
BibTex RIS Kaynak Göster

Sinir Sistemi Üzerine Radyofrekans Elektromanyetik Radyasyonun Rolü

Yıl 2025, Cilt: 34 Sayı: 2, 162 - 173, 30.06.2025
https://doi.org/10.17827/aktd.1662839

Öz

İnsanlar intrauterin dönemden itibaren başlayıp ömür boyunca giderek artan miktarda devam eden çeşitli frekans ve tiplerde elektromanyetik radyasyonlara (EMR) yoğun olarak maruz kalmaktadırlar. Her ne kadar çevresel kaynaklı ve düşük frekanslı EMR kaynaklarının etkilerine dair araştırmalar çoğunlukta olsa da uzun süreli ve yüksek frekanslı EMR kaynaklarının yaratabileceği potansiyel etkiler hakkında çok az bilgi bilinmektedir.
Çevresel kaynaklı çeşitli uyaranlara hızlı bir şekilde yanıt verebilen sinir sistemi EMR’nin öncelikli hedefleri arasında yerini almaktadır. Günümüze kadar Radyofrekans-Elektromanyetik alan (RF-EMA) kaynaklı uyaranların sinir sistemine olası etkilerini belirleyebilmek amacıyla farklı anketler, insan-hayvan modelleri ve araştırma teknikleri kullanılarak çeşitli in vivo, in vitro ve epidemiyolojik araştırmalar gerçekleştirilmiştir. Özellikle düşük frekanslı ve pulslu tipteki EMA’lara maruz kalmak sinir rejenerasyonu, iletim bozukluğu, nöronal membran voltajı ve hücre apoptozu, miyelin ve iyon kanallarının işlevleri dâhil olmak üzere merkezi ve periferik sinir sistemi sinir hücrelerinde önemli değişikliklere neden olabileceği belirtilmiştir. Ayrıca, bu kaynakların tüm canlılarda ciddi bir stres kaynağı olabileceğinin kanaatine neredeyse varılmış durumdadır.
EMR kaynaklarının doğası gereği ve yaygın uygulama alanları göz önüne alındığında, maruziyet durumlarına ve zarar verme potansiyeline ilişkin etkilerinin tam olarak belirlenmesi kamuoyu için spesifik öneme sahiptir. Genel kitleyi korumak amacıyla bu doğrultuda çeşitli uluslararası ve ulusal kurumlar tarafından radyasyonun en uygun sınırları sınıflandırılmakta ve gözetilmektedir.
Bu çalışmada, insan ve deney hayvan modellemeleri kullanılarak sinir sistemi üzerine RF-EMR’lerin nasıl rol oynadığına dair bilgiler derlenip sunulmuştur.

Kaynakça

  • 1. Brodal P. The Central Nervous System: Structure and Function. 4 th ed. New York, Oxford University Press, 2010.
  • 2. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods, Acta Biomaterialia. 2020;106:54-69.
  • 3. Sharifi M, Salehi M, Ebrahimi-Barough S, Alizadeh M, Jahromi HK, Kamalabadi-Farahani M. Synergic effects of core-shell nanospheres and magnetic field for sciatic nerve regeneration in decellularized artery conduits with Schwann cells. J Nanobiotechnology. 2024;22:776.
  • 4. Jia Y, Liu X, Wei J, Li D, Wang C, Wang X, Liu H. Modulation of the corticomotor excitability by repetitive peripheral magnetic stimulation on the median nerve in healthy subjects. Front Neural Circuits. 2021;15:616084.
  • 5. Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S et al. Current status of therapeutic approaches against peripheral nerve injuries: A detailed story from injury to recovery. Int J Biol Sci. 2020;16:116-134.
  • 6. Reiter N, Paulsen F, Budday S. Mechanisms of mechanical load transfer through brain tissue. Sci. Rep. 2023;13:8703.
  • 7. Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve. 2000;23:863-873.
  • 8. Lapresle J, Lasjaunias P. Cranial nerve ischemic arterial syndromes. A review. Brain. 1986;109:207-216.
  • 9. Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87:381-385.
  • 10. Yutong C, Yan X, Seeram R. Electromagnetic-responsive targeted delivery scaffold technology has better potential to repair injured peripheral nerves: A narrative review. Advanced Technology in Neuroscience 2024;1:51-71.
  • 11. Juutilainen J, Lang S. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutat. Res.1997;387:165-171.
  • 12. Bortkiewicz, A. Health effects of Radiofrequency Electromagnetic Fields (RF EMF). Ind. Health. 2019; 57:403–405.
  • 13. Van Rongen E, Croft R, Juutilainen J, Lagrove I, Miyakoshi J, Saunders R er al. Effects of radiofrequency electromagnetic fields on the human nervous system. Journal of Toxicology and Environmental Health. 2009;12:572-597.
  • 14. Say F, Zuhal-Altunkaynak B, Coşkun S, Deniz ÖG, Yıldız Ç, Altun G et al. Controversies related to electromagnetic field exposure on peripheral nerves, Journal of Chemical Neuroanatomy. 2016; 75: 70-76.
  • 15. Omid MS, Deshmukh RK, Frotan MD. Investigating the Effective Factors of Radio Waves in the Disorder of the Human Nervous System. International Journal of Science and Research (IJSR). 2024;13: 696-700.
  • 16. Hei WH, Byun SH, Kim JS, Kim S, Seo YK, Park JC et al. Effects of Electromagnetic field (PEMF) exposure at different frequency and duration on the peripheral nerve regeneration: in vitro and in vivo study. İnternational journal of Neuroscience. 2015; 126:739-748.
  • 17. Emre M. The effects of radiofrequency and low frequency electromagnetic fields on the immune system. J Immunol Clin Microbiol. 2018;3:68-80.
  • 18. Miyakoshi J. Cellular and molecular responses to radio-frequency electromagnetic fields. proceedings of the IEEE. 2013;101:1492-1502.
  • 19. Kaplan AA, Yurt KK, Deniz ÖG, Altun G. Peripheral nerve and diclofenac sodium: Molecular and clinical approaches. J Chem Neuroanat. 2018;87:2-11.
  • 20. Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol. 2016;6:1239-1278.
  • 21. Waxenbaum JA, Reddy V, Varacallo MA. Anatomy, Autonomic Nervous System. In: StatPearls. Treasure Island, StatPearls Publishing, 2025.
  • 22. Saraçoğlu KT, Baygın Ö. Otonom Sinir Sistemi ve Anestezi. Journal of Anesthesia JARSS. 2015;23:194-200.
  • 23. DaSilva JK, Arezzo JC. Use of nerve conduction assessments to evaluate drug-induced peripheral neuropathy in nonclinical species-A Brief Review. Toxicologic Pathology. 2020;48:71-77.
  • 24. Apaydın N, Tatar İ. Merkezi ve çevresel (periferik) sinir sistemleri anatomisine genel bakış. In Fizyolojik Psikoloji, 1nd ed (Torun Yazıhan N): 91-152. Ankara, Nobel Yayın Dağıtım, 2021.
  • 25. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO et al. Neuroscience. 2nd ed. Sunderland, Sinauer Associates, 2001.
  • 26. Peters A. A fourth type of neuroglial cell in the adult central nervous system. J Neurocytol 2004;33:345–357.
  • 27. Soares EN, Costa ACdS, Ferrolho GdJ, Ureshino RP, Getachew B, Costa SL et al. Nicotinic acetylcholine receptors in glial cells as molecular target for parkinson’s disease. Cells. 2024;13:474.
  • 28. Pehlivan F. Biyofizik 9 th ed. Ankara, Pelikan Kitapevi, 2017.
  • 29. Hon K, Akter F, Emptage N. Synaptic transmission. Neuroscience for Neurosurgeons. 1nd ed. Cambridge, Cambridge University Press. 2024.
  • 30. Sontheimer H. Diseases of the Nervous System. 2nd ed. Cambridge, Academic Press, 2021.
  • 31. Korkmaz Ö, Mahiroğlu A. Beyin, bellek ve öğrenme. Kastamonu Eğitim Dergisi. 2007;15:93-104.
  • 32. Swanson PA, McGavern DB. Viral diseases of the central nervous system. Current Opinion in Virology. 2015;11:44-54.
  • 33. Sultanoğlu H. Düzce üniversitesi tıp fakültesi acil tıp anabilim dalı ve pandemi süreci. Konuralp Tıp Dergisi. 2020;12:372-373.
  • 34. LaFratta CW, Canestrari R. A comparison of sensory and motor nerve conduction velocities as related to age. Arch Phys Med Rehabil. 1966;47:286–90.
  • 35. Wagman IH, Lesse H. Maximum conduction velocities of motor fibers of ulnar nerve in human subjects of various ages and sizes. J Neurophysiol. 1952;15:235–44.
  • 36. Shelly S, Ramon-Gonen R, Paul P, Klein CJ, Klang E, Rahman N et al. Nerve conduction differences in a large clinical population: The Role of Age and Sex. J Neuromuscul Dis. 2023;10:925-935.
  • 37. International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources. Safety Series 115, IAEA, 1994.
  • 38. Karamazı Y, Emre M. elektromanyetik alanların kemik dokusu üzerine etkisi. Aktd. 2023;32:215-226.
  • 39. Serway RA, Jewett JW. Physics for Scientists and Engineer. 9nd ed (Çolakoğlu K): 904-937. İstanbul, Palme Yayıncılık, 2008.
  • 40. Arthur JW. The fundamentals of electromagnetic theory revisited. IEEE Antennas Propag Mag. 2008;50:19–65.
  • 41. Çimen B, Erdoğan M, Oğul R. İyonlaştırıcı radyasyon ve korunma yöntemleri. S.Ü. Fen Fakültesi Fen Dergisi. 2017;43:139-147.
  • 42. Coşkun Ö. İyonize radyasyonun biyolojik etkileri. Teknik Bilimler Dergisi. 2011;1:13-17.
  • 43. Abdel-Rassoul G, El-Fateh OA, Salem MA, Michael A, Farahat F, El-Batanouny M et al. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 2007;28:434–40.
  • 44. Wainwright P. Thermal effects of radiation from cellular telephones. Phys Med Biol. 2000;45:2363–2372.
  • 45. Wyde ME, Horn TL, Capstick MH, Ladbury JM, Koepke G, Wilson PF et al. Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system. Bioelectromagnetics. 2018;39:190–199.
  • 46. Rattan Y, Jhamb S, Kumar A. Nerve conduction study: A reliable approach to assess the effect of electromagnetic waves on median nerve. Natl J Physiol Pharm Pharmacol. 2024;14:841-847.
  • 47. Zou DF, Li ZH, Liu YB, Wang CZ. Progress in the study of the effects of Electromagnetic radiation on the mood and rhythm. Electromagnetic Biology and Medicine. 2025;44:212-227.
  • 48. Comelekoglu Ü, Aktas S, Demirbag B, Karagul MI, Yalin S, Yildirim M et al. Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol. Bioelectromagnetics. 2018;39:631-643.
  • 49. Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence. Journal of Chemical Neuroanatomy. 2018;91:1-7.
  • 50. Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol Ther (Seoul). 2019;27:265–75.
  • 51. Dabla K, Singh K. Effect of electromagnetic waves emitted from mobile phone on nerve conduction velocity of median nerve in adult males. International Journal of All Research Education and Scientific Methods (IJARESM). 2016;4:23-27.
  • 52. Danulescu R, Goiceanu C, Danulescu E, Reaboiu K. Possible neurological and cardiovascular effects in workers exposed to extremely low frequency electromagnetic fields. (2012 International Conference and Exposition on Electrical and Power Engineering):641-644. Romania, Iasi, 2012.
  • 53. Pakhomov AG. Prol HK. Mathur SP, Akyel Y, Campbell CBG. Search for frequency-specific effects of millimeter-wave radiation on isolated nerve function. Bioelectromagnetics. 1997;18:324-334.
  • 54. Hancı H, Yenilmez E, Demir S, Yıldırım M, Gedikli Ö, Kaya H. The effect on rat peripheral nerve morphology and function of a 900-MHz Electromagnetic field applied in the prenatal period. Electromagnetic Biology and Medicine. 2025;1-16.
  • 55. Eggert T, Dorn H, Sauter C, Schmid G, Danker-Hopfe H. RF-EMF exposure effects on sleep - Age doesn't matter in men! Environ Res. 2020;191:110173.
  • 56. Kim JH, Sohn UD, Kim HG, Kim HR. Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. Korean J Physiol Pharmacol. 2018;22:277-289.
  • 57. Zhu S, Ge J, Liu Z, Liu L, Jing D, Ran M et al. Circadian rhythm influences the promoting role of pulsed electromagnetic fields on sciatic nerve regeneration in rats. Front. Neurol. 2017;8:101.
  • 58. Kamel DM, Hamed NS, Abdel Raoof NA, Tantawy SA. Pulsed magnetic field versus ultrasound in the treatment of postnatal carpal tunnel syndrome: A randomized controlled trial in the women of an Egyptian population. J Adv Res. 2017;8:45-53.
  • 59. Battecha K. Efficacy of pulsed electromagnetic field on pain and nerve conduction velocity in patients with diabetic neuropathy. Bull Fac Phys Ther. 2017;22:9–14.
  • 60. Kolosova LI, Akoev GN, Avelev VD, Riabchikova OV, Babu KS. Effect of low-intensity millimeter wave electromagnetic radiation on regeneration of the sciatic nerve in rats. Bioelectromagnetic. 1996;17:44-47.
  • 61. Kolosova LI, Akoev GN, Ryabchikova OV, Avelev VD. Effect of low-intensity millimeter-range electromagnetic irradiation on the recovery of function in lesioned sciatic nerves in rats. Neurosci Behav Physiol. 1998;28:26-30.
  • 62. Ma S, Li Z, Gong S, Lu C, Li X, Li Y. High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sciences. 2023;13:686.
  • 63. Lin H, Wang C. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Applied Mathematics and Computation.2020;369:124840.

The Role of Radiofrequency Electromagnetic Radiation on Nervous System

Yıl 2025, Cilt: 34 Sayı: 2, 162 - 173, 30.06.2025
https://doi.org/10.17827/aktd.1662839

Öz

Humans are intensively exposed to electromagnetic radiation (EMR) of various frequencies and types, starting from the intrauterine period and continuing in increasing amounts throughout life. Although there is a large body of research on the effects of environmental and low-frequency EMR sources, little is known about the potential effects of long-term and high-frequency EMR sources.
The nervous system, which can respond rapidly to various environmental stimuli, is among the primary targets of EMR. Until the present day, various in vivo, in vitro and epidemiological studies have been conducted using different questionnaires, human-animal models and research techniques to determine the possible effects of radiofrequency-electromagnetic field (RF-EMF) induced stimuli on the nervous system. In particular, it has been reported that exposure to low-frequency and pulsed EMFs can cause significant changes in central and peripheral nervous system nervous cells, including nervous regeneration, conduction disturbance, neuronal membrane voltage and cell apoptosis, myelin and ion channel function. Moreover, it is almost universally recognized that these sources can be a serious source of stress for all living things.
Given the nature of EMR sources and their widespread application, it is of specific importance for the public to fully characterize their effects in relation to exposure situations and the potential for harm. In order to protect the general public, various international and national organizations classify and monitor the optimal limits of radiation.
In this study, we compile and present information on the role of RF-EMRs on the nervous system using human and experimental animal models.

Kaynakça

  • 1. Brodal P. The Central Nervous System: Structure and Function. 4 th ed. New York, Oxford University Press, 2010.
  • 2. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods, Acta Biomaterialia. 2020;106:54-69.
  • 3. Sharifi M, Salehi M, Ebrahimi-Barough S, Alizadeh M, Jahromi HK, Kamalabadi-Farahani M. Synergic effects of core-shell nanospheres and magnetic field for sciatic nerve regeneration in decellularized artery conduits with Schwann cells. J Nanobiotechnology. 2024;22:776.
  • 4. Jia Y, Liu X, Wei J, Li D, Wang C, Wang X, Liu H. Modulation of the corticomotor excitability by repetitive peripheral magnetic stimulation on the median nerve in healthy subjects. Front Neural Circuits. 2021;15:616084.
  • 5. Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S et al. Current status of therapeutic approaches against peripheral nerve injuries: A detailed story from injury to recovery. Int J Biol Sci. 2020;16:116-134.
  • 6. Reiter N, Paulsen F, Budday S. Mechanisms of mechanical load transfer through brain tissue. Sci. Rep. 2023;13:8703.
  • 7. Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve. 2000;23:863-873.
  • 8. Lapresle J, Lasjaunias P. Cranial nerve ischemic arterial syndromes. A review. Brain. 1986;109:207-216.
  • 9. Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87:381-385.
  • 10. Yutong C, Yan X, Seeram R. Electromagnetic-responsive targeted delivery scaffold technology has better potential to repair injured peripheral nerves: A narrative review. Advanced Technology in Neuroscience 2024;1:51-71.
  • 11. Juutilainen J, Lang S. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutat. Res.1997;387:165-171.
  • 12. Bortkiewicz, A. Health effects of Radiofrequency Electromagnetic Fields (RF EMF). Ind. Health. 2019; 57:403–405.
  • 13. Van Rongen E, Croft R, Juutilainen J, Lagrove I, Miyakoshi J, Saunders R er al. Effects of radiofrequency electromagnetic fields on the human nervous system. Journal of Toxicology and Environmental Health. 2009;12:572-597.
  • 14. Say F, Zuhal-Altunkaynak B, Coşkun S, Deniz ÖG, Yıldız Ç, Altun G et al. Controversies related to electromagnetic field exposure on peripheral nerves, Journal of Chemical Neuroanatomy. 2016; 75: 70-76.
  • 15. Omid MS, Deshmukh RK, Frotan MD. Investigating the Effective Factors of Radio Waves in the Disorder of the Human Nervous System. International Journal of Science and Research (IJSR). 2024;13: 696-700.
  • 16. Hei WH, Byun SH, Kim JS, Kim S, Seo YK, Park JC et al. Effects of Electromagnetic field (PEMF) exposure at different frequency and duration on the peripheral nerve regeneration: in vitro and in vivo study. İnternational journal of Neuroscience. 2015; 126:739-748.
  • 17. Emre M. The effects of radiofrequency and low frequency electromagnetic fields on the immune system. J Immunol Clin Microbiol. 2018;3:68-80.
  • 18. Miyakoshi J. Cellular and molecular responses to radio-frequency electromagnetic fields. proceedings of the IEEE. 2013;101:1492-1502.
  • 19. Kaplan AA, Yurt KK, Deniz ÖG, Altun G. Peripheral nerve and diclofenac sodium: Molecular and clinical approaches. J Chem Neuroanat. 2018;87:2-11.
  • 20. Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol. 2016;6:1239-1278.
  • 21. Waxenbaum JA, Reddy V, Varacallo MA. Anatomy, Autonomic Nervous System. In: StatPearls. Treasure Island, StatPearls Publishing, 2025.
  • 22. Saraçoğlu KT, Baygın Ö. Otonom Sinir Sistemi ve Anestezi. Journal of Anesthesia JARSS. 2015;23:194-200.
  • 23. DaSilva JK, Arezzo JC. Use of nerve conduction assessments to evaluate drug-induced peripheral neuropathy in nonclinical species-A Brief Review. Toxicologic Pathology. 2020;48:71-77.
  • 24. Apaydın N, Tatar İ. Merkezi ve çevresel (periferik) sinir sistemleri anatomisine genel bakış. In Fizyolojik Psikoloji, 1nd ed (Torun Yazıhan N): 91-152. Ankara, Nobel Yayın Dağıtım, 2021.
  • 25. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO et al. Neuroscience. 2nd ed. Sunderland, Sinauer Associates, 2001.
  • 26. Peters A. A fourth type of neuroglial cell in the adult central nervous system. J Neurocytol 2004;33:345–357.
  • 27. Soares EN, Costa ACdS, Ferrolho GdJ, Ureshino RP, Getachew B, Costa SL et al. Nicotinic acetylcholine receptors in glial cells as molecular target for parkinson’s disease. Cells. 2024;13:474.
  • 28. Pehlivan F. Biyofizik 9 th ed. Ankara, Pelikan Kitapevi, 2017.
  • 29. Hon K, Akter F, Emptage N. Synaptic transmission. Neuroscience for Neurosurgeons. 1nd ed. Cambridge, Cambridge University Press. 2024.
  • 30. Sontheimer H. Diseases of the Nervous System. 2nd ed. Cambridge, Academic Press, 2021.
  • 31. Korkmaz Ö, Mahiroğlu A. Beyin, bellek ve öğrenme. Kastamonu Eğitim Dergisi. 2007;15:93-104.
  • 32. Swanson PA, McGavern DB. Viral diseases of the central nervous system. Current Opinion in Virology. 2015;11:44-54.
  • 33. Sultanoğlu H. Düzce üniversitesi tıp fakültesi acil tıp anabilim dalı ve pandemi süreci. Konuralp Tıp Dergisi. 2020;12:372-373.
  • 34. LaFratta CW, Canestrari R. A comparison of sensory and motor nerve conduction velocities as related to age. Arch Phys Med Rehabil. 1966;47:286–90.
  • 35. Wagman IH, Lesse H. Maximum conduction velocities of motor fibers of ulnar nerve in human subjects of various ages and sizes. J Neurophysiol. 1952;15:235–44.
  • 36. Shelly S, Ramon-Gonen R, Paul P, Klein CJ, Klang E, Rahman N et al. Nerve conduction differences in a large clinical population: The Role of Age and Sex. J Neuromuscul Dis. 2023;10:925-935.
  • 37. International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources. Safety Series 115, IAEA, 1994.
  • 38. Karamazı Y, Emre M. elektromanyetik alanların kemik dokusu üzerine etkisi. Aktd. 2023;32:215-226.
  • 39. Serway RA, Jewett JW. Physics for Scientists and Engineer. 9nd ed (Çolakoğlu K): 904-937. İstanbul, Palme Yayıncılık, 2008.
  • 40. Arthur JW. The fundamentals of electromagnetic theory revisited. IEEE Antennas Propag Mag. 2008;50:19–65.
  • 41. Çimen B, Erdoğan M, Oğul R. İyonlaştırıcı radyasyon ve korunma yöntemleri. S.Ü. Fen Fakültesi Fen Dergisi. 2017;43:139-147.
  • 42. Coşkun Ö. İyonize radyasyonun biyolojik etkileri. Teknik Bilimler Dergisi. 2011;1:13-17.
  • 43. Abdel-Rassoul G, El-Fateh OA, Salem MA, Michael A, Farahat F, El-Batanouny M et al. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 2007;28:434–40.
  • 44. Wainwright P. Thermal effects of radiation from cellular telephones. Phys Med Biol. 2000;45:2363–2372.
  • 45. Wyde ME, Horn TL, Capstick MH, Ladbury JM, Koepke G, Wilson PF et al. Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system. Bioelectromagnetics. 2018;39:190–199.
  • 46. Rattan Y, Jhamb S, Kumar A. Nerve conduction study: A reliable approach to assess the effect of electromagnetic waves on median nerve. Natl J Physiol Pharm Pharmacol. 2024;14:841-847.
  • 47. Zou DF, Li ZH, Liu YB, Wang CZ. Progress in the study of the effects of Electromagnetic radiation on the mood and rhythm. Electromagnetic Biology and Medicine. 2025;44:212-227.
  • 48. Comelekoglu Ü, Aktas S, Demirbag B, Karagul MI, Yalin S, Yildirim M et al. Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol. Bioelectromagnetics. 2018;39:631-643.
  • 49. Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence. Journal of Chemical Neuroanatomy. 2018;91:1-7.
  • 50. Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol Ther (Seoul). 2019;27:265–75.
  • 51. Dabla K, Singh K. Effect of electromagnetic waves emitted from mobile phone on nerve conduction velocity of median nerve in adult males. International Journal of All Research Education and Scientific Methods (IJARESM). 2016;4:23-27.
  • 52. Danulescu R, Goiceanu C, Danulescu E, Reaboiu K. Possible neurological and cardiovascular effects in workers exposed to extremely low frequency electromagnetic fields. (2012 International Conference and Exposition on Electrical and Power Engineering):641-644. Romania, Iasi, 2012.
  • 53. Pakhomov AG. Prol HK. Mathur SP, Akyel Y, Campbell CBG. Search for frequency-specific effects of millimeter-wave radiation on isolated nerve function. Bioelectromagnetics. 1997;18:324-334.
  • 54. Hancı H, Yenilmez E, Demir S, Yıldırım M, Gedikli Ö, Kaya H. The effect on rat peripheral nerve morphology and function of a 900-MHz Electromagnetic field applied in the prenatal period. Electromagnetic Biology and Medicine. 2025;1-16.
  • 55. Eggert T, Dorn H, Sauter C, Schmid G, Danker-Hopfe H. RF-EMF exposure effects on sleep - Age doesn't matter in men! Environ Res. 2020;191:110173.
  • 56. Kim JH, Sohn UD, Kim HG, Kim HR. Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. Korean J Physiol Pharmacol. 2018;22:277-289.
  • 57. Zhu S, Ge J, Liu Z, Liu L, Jing D, Ran M et al. Circadian rhythm influences the promoting role of pulsed electromagnetic fields on sciatic nerve regeneration in rats. Front. Neurol. 2017;8:101.
  • 58. Kamel DM, Hamed NS, Abdel Raoof NA, Tantawy SA. Pulsed magnetic field versus ultrasound in the treatment of postnatal carpal tunnel syndrome: A randomized controlled trial in the women of an Egyptian population. J Adv Res. 2017;8:45-53.
  • 59. Battecha K. Efficacy of pulsed electromagnetic field on pain and nerve conduction velocity in patients with diabetic neuropathy. Bull Fac Phys Ther. 2017;22:9–14.
  • 60. Kolosova LI, Akoev GN, Avelev VD, Riabchikova OV, Babu KS. Effect of low-intensity millimeter wave electromagnetic radiation on regeneration of the sciatic nerve in rats. Bioelectromagnetic. 1996;17:44-47.
  • 61. Kolosova LI, Akoev GN, Ryabchikova OV, Avelev VD. Effect of low-intensity millimeter-range electromagnetic irradiation on the recovery of function in lesioned sciatic nerves in rats. Neurosci Behav Physiol. 1998;28:26-30.
  • 62. Ma S, Li Z, Gong S, Lu C, Li X, Li Y. High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sciences. 2023;13:686.
  • 63. Lin H, Wang C. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Applied Mathematics and Computation.2020;369:124840.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sinirbilim (Diğer)
Bölüm Derleme
Yazarlar

Yasin Karamazı 0000-0002-0352-5377

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 21 Mart 2025
Kabul Tarihi 19 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 34 Sayı: 2

Kaynak Göster

AMA Karamazı Y. Sinir Sistemi Üzerine Radyofrekans Elektromanyetik Radyasyonun Rolü. aktd. Haziran 2025;34(2):162-173. doi:10.17827/aktd.1662839