Derleme
BibTex RIS Kaynak Göster

Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi)

Yıl 2025, , 131 - 144, 30.06.2025
https://doi.org/10.18615/anadolu.1605478

Öz

Climate change significantly affects agriculture, particularly fruit cultivation, by causing issues such as rising temperatures, droughts, excessive rainfall, pest infestations, and the spread of diseases. The aim of this study was to examine the impacts of climate change on fruit production and discuss key modern biotechnological solutions in plant breeding, which have been increasingly implemented both nationally and internationally, to address these challenges. Fruit species are highly sensitive to temperature fluctuations, water stress, and pests. Therefore, the development of climate-resilient fruit varieties is of paramount importance. Genetic engineering techniques, such as CRISPR/Cas9, which have revolutionized plant biotechnology, can be used to enhance heat tolerance, drought resistance, and pest resistance in fruit trees. Additionally, genetic modifications that increase photosynthetic efficiency and optimize water usage contribute to the sustainability of fruit production. Moreover, RNA interference (RNAi) technology can regulate genes related to disease resistance and water efficiency, helping to create pest-resistant plants while reducing water consumption. The widespread adoption of these modern biotechnological methods will not only enrich scientific knowledge but also contribute to the development of sustainable solutions in applied agriculture. Particularly, multidisciplinary research that delves deeper into the effects of climate change and explores the field applicability of biotechnological innovations is crucial. Such studies will help create more resilient and sustainable systems in vital sectors like fruit production, ensuring their adaptation to the challenges posed by climate change.

Kaynakça

  • Adams, S. R., K. E. Cockshull, and C. R. J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits. Annals of Botany 88 (5): 869-877.
  • Al-Salman, Y., F. J. Cano, E. Mace, D. Jordan, M. Groszmann, and O. Ghannoum. 2024. High water use efficiency due to maintenance of photosynthetic capacity in sorghum under water stress. Journal of Experimental Botany 75 (21): 6778-6795.
  • Arias, P.A., N. Bellouin, E. Coppola, R. G. Jones, G. Krinner, J. Marotzke, et al. 2021. Technical Summary. pp. 33−144. In Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.). Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi:10.1017/9781009157896.002.
  • Babcock, B. A., and D. A. Hennessy. 1996. Input demand under yield and revenue insurance. American Journal of Agricultural Economics 78 (2): 416-427.
  • Behera, B., A. Haldar, and N. Sethi. 2024. Agriculture, food security, and climate change in South Asia: a new perspective on sustainable development. Environment, Development and Sustainability 26 (9): 22319-2234 4. Bowen, A., S. Cochrane, and S.Fankhauser. 2012. Climate change, adaptation and economic growth. Climatic Change 113: 95-106.
  • Branca, G., L. Lipper, N. McCarthy, and M. C. Jolejole. 2013. Food security, climate change, and sustainable land management. A review. Agronomy for Sustainable Development 33: 635-650.
  • Brown, J., and Ogle, H. 1997. Plant pathogens and plant diseases. Australasian Plant Pathology Society Toowoomba 382-383.
  • Brown, M. E., and C. C. Funk. 2008. Food security under climate change. Science 319 (5863): 580-581.
  • Butt, H., and K. K. Bastas. 2025. CRISPR/Cas9-based genome engineering in plants for enhancing disease resistance. pp. 143-154. In Kumar, A. and M.K Solanki (Eds). Microbial Biocontrol Techniques: Importance in Ensuring Food Security.
  • Chawla, R., A. Sheokand, M. R. Rai, and R. Kumar. 2011. Impact of climate change on fruit production and various approaches to mitigate these impacts. Tropical Fruits 26.
  • Chen, A. Y., and P. W. Newacheck. 2006. Insurance coverage and financial burden for families of children with special health care needs. Ambulatory Pediatrics 6 (4): 204-209.
  • Cimen, B., and T. Yeşiloğlu. 2016. Rootstock breeding for abiotic stress tolerance in citrus. Abiotic and biotic stress in plants-recent advances and future perspectives.
  • D’Odorico, P., J. A. Carr, K. F. Davis, J. Dell’Angelo, and D. A. Seekell. 2019. Food inequality, injustice, and rights. BioScience 69 (3): 180-190.
  • Dağeri, A., N. Güz, and M. Gürkan. 2013. Böceklerle mücadelede yeni bir strateji: RNA interferans. Türkiye Entomoloji Bülteni 2(3): 223-230.
  • Ding, H., A. Chiabai, S.Silvestri, and P. A. Nunes. 2016. Valuing climate change impacts on European forest ecosystems. Ecosystem Services 18: 141-153.
  • Donovan, L. A., and J. R. Ehleringer. 1994. Water stress and use of summer precipitation in a Great Basin shrub community. Functional Ecology 289-297.
  • Drake, D. M. 2024. Food Shortage Crisis: Origins and Global Impact. Bloomsbury Publishing USA.
  • Elad, Y., and I. Pertot. 2014. Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement 28 (1): 99-139.
  • FAO. 2018. The State of Agricultural Commodity Markets: Agricultural Trade, Climate Change, and Food Security. Rome, Italy.
  • Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana 34 (2): 190-199.
  • FOOD, O. 2016. The state of food and agriculture. Climate change, Agriculture and Food Security 78.
  • Gebremichael, D. E., Z. M. Haile, F. Negrini, S.Sabbadini, L. Capriotti, B. Mezzetti, and E.Baraldi, 2021. RNA interference strategies for future management of plant pathogenic fungi: Prospects and challenges. Plants 10 (4): 650.
  • Ho, L. C., and J. D. Hewitt. 1986. Fruit development. pp. 201-239. In J. G. Atherton and J. Rudich (Eds.). The tomato crop: a scientific basis for improvement Dordrecht: Springer Netherlands.
  • Jones, H. 2004. What is water use efficiency. Water Use Efficiency in Plant biology 27-41.
  • Kanth, K., R. S. Mane, B. D. Prasad, S. Sahni, P. Kumari, Quaiyum, S. Kumar, A. Singh, R. K. Chaudhary. 2025. Editing the future: CRISPR/Cas9 for climate-resilient crops. IntechOpen. doi: 10.5772/intechopen.1009023
  • Lahlali, R., M. Taoussi, S. E. Laasli, G. Gachara, R. Ezzouggari, Z. Belabess, and E. A. Barka. 2024. Effects of climate change on plant pathogens and host-pathogen interactions. Crop and Environment 3 (3): 159-170.
  • Lamichhane, J. R., and V. Venturi. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science 6: 385.
  • Lawson, T., R. Emmerson, M. Battle, J. Pullin, S. Wall, and T. A. Hofmann. 2022. Carbon fixation. In Photosynthesis in action (pp. 31-58) Academic Press.
  • Li, Y., H. Xu, W. He, H. Rong, S. Li, D. S. Kim, and J. Zhang.2023. Silencing of insect dsRNase genes enhances the plastid-mediated RNAi effect on the Colorado potato beetle. Entomologia Generalis 43 (1).
  • Liang, C. 2016. Genetically modified crops with drought tolerance: achievements, challenges, and perspectives. Drought stress tolerance in plants, Vol 2: Molecular and Genetic Perspectives 531-547.
  • Liebenguth, J., and Gricius, G. 2024. The nutritional turn towards crisis: a critical perspective. Critical Studies on Security, 12 (3): 269-281.
  • Light, A., and E. Higgs. 1993. The politics of ecological restoration. Sciences 1: 25-51.
  • Lihua, L. 1999. Pathogenesis-related proteins and plant disease resistance. Fujian Nongye Xuebao (China). Medda, S., A. Fadda, and M. Mulas. 2022. Influence of climate change on metabolism and biological characteristics in perennial woody fruit crops in the Mediterranean environment. Horticulturae 8 (4): 273.
  • Mendelsohn, R., and A. Dinar. 2009. Climate change and agriculture: an economic analysis of global impacts, adaptation and distributional effects. In Climate Change and Agriculture. Edward Elgar Publishing.
  • Menzel, C. M. 2023. A review of fruit development in strawberry: high temperatures accelerate flower development and decrease the size of the flowers and fruit. The Journal of Horticultural Science and Biotechnology 98 (4): 409-431.
  • Motha, R. P. 2011. The impact of extreme weather events on agriculture in the United States. Challenges and Opportunities in Agrometeorology 397-407.
  • Munaweera, T. I. K., N. U. Jayawardana, R. Rajaratnam, and N. Dissanayake. 2022.Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture and Food Security 11 (1): 1-28.
  • Nakashima, K., K. Yamaguchi-Shinozaki, K. Shinozaki. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5: 170.
  • Nie, H., X. Yang, S. Zheng, and L. Hou. 2024. Gene-Based developments in improving quality of tomato: focus on firmness, shelf life, and pre-and post-harvest stress adaptations. Horticulturae 10 (6): 641.
  • Nnadi, F. N., J. Chikaire, J. A. Echetama, R. A. Ihenacho, P. C. Umunnakwe, and C. O. Utazi. 2013. Agricultural insurance: a strategic tool for climate change adaptation in the agricultural sector.
  • Osakabe, Y., K. Osakabe, K. Shinozaki, L.S.P. Tran. 2014. Response of plants to water stress. Front. Plant Sci. 5: 86. Paavola, J. 2017. Health impacts of climate change and health and social inequalities in the UK. Environmental Health 16: 61-68.
  • Panesar, P. S., and S. S. Marwaha, 2013. Biotechnology in agriculture and food processing: Opportunities and challenges. CRC Press. Boca Raton.
  • Penella, C., and A. Calatayud.2018. Pepper crop under climate change: grafting as an environmental friendly strategy. Climate resilient agriculture: strategies and perspectives. IntechOpen, London 129-155.
  • Prasad, G., D. Chauhan, H. Pandey, D. Singh, V. K. Dhiman, and V. K. Dhiman. 2024. Recent Advances in CRISPR-Cas for Climate-Resilient Horticulture in Fruits Crops. Climate-Resilient Agriculture 415-431.
  • Priyadarshi, R. 2024. Observation of post-yield supply chain impediments for spoilage mitigation and revenue generation opportunities at countryside. Journal of Global Operations and Strategic Sourcing 17 (1): 127-145.
  • Rai, G. K., D. M. Khanday, P. Kumar, I. Magotra, S. M. Choudhary, R. Kosser, and S. Pandey. 2023.Enhancing crop resilience to drought stress through CRISPR-Cas9 genome editing. Plants 12 (12): 2306.
  • Raza, A., S. Charagh, A. Razzaq, R. Javed, and A. R. S. Khan. 2020. Hasanuzzaman, M. Brassicaceae plants response and tolerance to drought stress: Physiological and molecular interventions. In The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Berlin/Heidelberg, Germany, pp. 229–261.
  • Razzaq, A., and A. Masood. 2018. CRISPR/Cas9 system: a breakthrough in genome editing. Mol Biol. 7 (210): 2. Satterthwaite, D., G. McGranahan, and C. Tacoli. 2010. Urbanization and its implications for food and farming. Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1554): 2809-2820.
  • Schmidhuber, J., and F. N. Tubiello. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences 104 (50): 19703-19708.
  • Shingade, D. M., and R. Khatri. 2024. The Role of Biotechnology in the Future of Fruit Crop Production: A Review 27 (9): 967-987.
  • Shinozaki, K., and K. Yamaguchi-Shinozaki. 1996. Molecular responses to drought and cold stress. Current Opinion in Biotechnology 7 (2): 161-167.
  • Villanueva, A. B., M. Halewood, and I. L. Noriega. 2017. Agricultural biodiversity in climate change adaptation planning. European Journal of Sustainable Development 6 (2): 1-1.
  • Vonshak, A., and G. Torzillo. 2003. Environmental stress physiology. Handbook of Microalgal Culture: Biotechnology and Applied Phycology 57-82. Wan, L., Z. Wang, M. Tang, D. Hong, Y. Sun, J. Ren, and H. Zeng. 2021. CRISPR-Cas9 gene editing for fruit and vegetable crops: strategies and prospects. Horticulturae 7 (7): 193.
  • Wang, X., X.Wang, X. Zhang, J. Zhou, Z. Jia, J. Ma, and Y. Wei. 2024. Ecological barriers: An approach to ecological conservation and restoration in China. Ambio 1-15.
  • Winqvist, C., J. Ahnström, and J. Bengtsson. 2012. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Annals of the New York Academy of Science 1249 (1): 191-203.
  • Yoshida, T., Y. Fujita, H. Sayama, S. Kidokoro, K. Maruyama, J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant J. 61: 672–685.
  • Zeppel, M. J. B., J. V. Wilks, and J. D. Lewis. 2014. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11 (11): 3083-3093.

Meyve Yetiştiriciliğinin İklim Değişikliğinden Etkilenebilirliği ve Çözüm Önerileri: Modern Biyoteknolojik Yaklaşımlar (CRISPR/Cas9 ve RNAi)

Yıl 2025, , 131 - 144, 30.06.2025
https://doi.org/10.18615/anadolu.1605478

Öz

İklim değişikliği, özellikle meyve yetiştiriciliğini önemli ölçüde etkileyerek sıcaklık artışları, kuraklık, aşırı yağışlar, zararlılar ve hastalıkların yayılması gibi sorunlara yol açmaktadır. Bu çalışmanın amacı, iklim değişikliğinin meyve üretimi üzerindeki etkilerini incelemek ve bu zorluklarla başa çıkmak için ulusal ve uluslararası alanda kullanılmaya başlanılan bitki ıslahı açısından önemli modern biyoteknolojik çözümleri tartışmaktır. Meyve türleri, sıcaklık dalgalanmalarına, su stresine ve zararlılara karşı oldukça hassastır. Bu nedenle, iklim değişikliklerine dayanıklı meyve çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Kullanımlarının başlanmasıyla bitki biyoteknolojisinde çığır açan CRISPR/Cas9 gibi genetik mühendislik yöntemleri, meyve ağaçlarında sıcaklık toleransını, kuraklık direncini ve zararlılara karşı dayanıklılığı artırmak için kullanılabilmektedir. Ayrıca, fotosentez verimliliğini artıran ve su kullanımını optimize eden genetik modifikasyonlar, meyve üretiminin sürdürülebilirliğine katkı sağlamaktadır. Buna ek olarak, RNA interferansı (RNAi) tekniği, hastalıklar ve su verimliliği ile ilgili genlerin düzenlenmesini sağlayarak, zararlılara karşı direnç oluşturmakta ve su tüketimini azaltabilmektedir. Bu modern biyoteknolojik yöntemlerin kullanılmalarının yaygınlaşması, hem bilimsel bilgi birikimini zenginleştirecek hem de uygulamalı tarımda sürdürülebilir çözümler geliştirilmesine katkı sağlayacaktır. Özellikle iklim değişikliğinin etkilerini daha derinlemesine inceleyen ve biyoteknolojik yeniliklerin sahada uygulanabilirliğini araştıran multidisipliner çalışmaların hayata geçirilmesi büyük önem taşımaktadır. Böylece, meyve üretimi gibi hayati sektörlerde iklim değişikliğine karşı daha dirençli ve sürdürülebilir sistemlerin oluşturulması mümkün olacaktır.

Kaynakça

  • Adams, S. R., K. E. Cockshull, and C. R. J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits. Annals of Botany 88 (5): 869-877.
  • Al-Salman, Y., F. J. Cano, E. Mace, D. Jordan, M. Groszmann, and O. Ghannoum. 2024. High water use efficiency due to maintenance of photosynthetic capacity in sorghum under water stress. Journal of Experimental Botany 75 (21): 6778-6795.
  • Arias, P.A., N. Bellouin, E. Coppola, R. G. Jones, G. Krinner, J. Marotzke, et al. 2021. Technical Summary. pp. 33−144. In Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.). Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi:10.1017/9781009157896.002.
  • Babcock, B. A., and D. A. Hennessy. 1996. Input demand under yield and revenue insurance. American Journal of Agricultural Economics 78 (2): 416-427.
  • Behera, B., A. Haldar, and N. Sethi. 2024. Agriculture, food security, and climate change in South Asia: a new perspective on sustainable development. Environment, Development and Sustainability 26 (9): 22319-2234 4. Bowen, A., S. Cochrane, and S.Fankhauser. 2012. Climate change, adaptation and economic growth. Climatic Change 113: 95-106.
  • Branca, G., L. Lipper, N. McCarthy, and M. C. Jolejole. 2013. Food security, climate change, and sustainable land management. A review. Agronomy for Sustainable Development 33: 635-650.
  • Brown, J., and Ogle, H. 1997. Plant pathogens and plant diseases. Australasian Plant Pathology Society Toowoomba 382-383.
  • Brown, M. E., and C. C. Funk. 2008. Food security under climate change. Science 319 (5863): 580-581.
  • Butt, H., and K. K. Bastas. 2025. CRISPR/Cas9-based genome engineering in plants for enhancing disease resistance. pp. 143-154. In Kumar, A. and M.K Solanki (Eds). Microbial Biocontrol Techniques: Importance in Ensuring Food Security.
  • Chawla, R., A. Sheokand, M. R. Rai, and R. Kumar. 2011. Impact of climate change on fruit production and various approaches to mitigate these impacts. Tropical Fruits 26.
  • Chen, A. Y., and P. W. Newacheck. 2006. Insurance coverage and financial burden for families of children with special health care needs. Ambulatory Pediatrics 6 (4): 204-209.
  • Cimen, B., and T. Yeşiloğlu. 2016. Rootstock breeding for abiotic stress tolerance in citrus. Abiotic and biotic stress in plants-recent advances and future perspectives.
  • D’Odorico, P., J. A. Carr, K. F. Davis, J. Dell’Angelo, and D. A. Seekell. 2019. Food inequality, injustice, and rights. BioScience 69 (3): 180-190.
  • Dağeri, A., N. Güz, and M. Gürkan. 2013. Böceklerle mücadelede yeni bir strateji: RNA interferans. Türkiye Entomoloji Bülteni 2(3): 223-230.
  • Ding, H., A. Chiabai, S.Silvestri, and P. A. Nunes. 2016. Valuing climate change impacts on European forest ecosystems. Ecosystem Services 18: 141-153.
  • Donovan, L. A., and J. R. Ehleringer. 1994. Water stress and use of summer precipitation in a Great Basin shrub community. Functional Ecology 289-297.
  • Drake, D. M. 2024. Food Shortage Crisis: Origins and Global Impact. Bloomsbury Publishing USA.
  • Elad, Y., and I. Pertot. 2014. Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement 28 (1): 99-139.
  • FAO. 2018. The State of Agricultural Commodity Markets: Agricultural Trade, Climate Change, and Food Security. Rome, Italy.
  • Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana 34 (2): 190-199.
  • FOOD, O. 2016. The state of food and agriculture. Climate change, Agriculture and Food Security 78.
  • Gebremichael, D. E., Z. M. Haile, F. Negrini, S.Sabbadini, L. Capriotti, B. Mezzetti, and E.Baraldi, 2021. RNA interference strategies for future management of plant pathogenic fungi: Prospects and challenges. Plants 10 (4): 650.
  • Ho, L. C., and J. D. Hewitt. 1986. Fruit development. pp. 201-239. In J. G. Atherton and J. Rudich (Eds.). The tomato crop: a scientific basis for improvement Dordrecht: Springer Netherlands.
  • Jones, H. 2004. What is water use efficiency. Water Use Efficiency in Plant biology 27-41.
  • Kanth, K., R. S. Mane, B. D. Prasad, S. Sahni, P. Kumari, Quaiyum, S. Kumar, A. Singh, R. K. Chaudhary. 2025. Editing the future: CRISPR/Cas9 for climate-resilient crops. IntechOpen. doi: 10.5772/intechopen.1009023
  • Lahlali, R., M. Taoussi, S. E. Laasli, G. Gachara, R. Ezzouggari, Z. Belabess, and E. A. Barka. 2024. Effects of climate change on plant pathogens and host-pathogen interactions. Crop and Environment 3 (3): 159-170.
  • Lamichhane, J. R., and V. Venturi. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science 6: 385.
  • Lawson, T., R. Emmerson, M. Battle, J. Pullin, S. Wall, and T. A. Hofmann. 2022. Carbon fixation. In Photosynthesis in action (pp. 31-58) Academic Press.
  • Li, Y., H. Xu, W. He, H. Rong, S. Li, D. S. Kim, and J. Zhang.2023. Silencing of insect dsRNase genes enhances the plastid-mediated RNAi effect on the Colorado potato beetle. Entomologia Generalis 43 (1).
  • Liang, C. 2016. Genetically modified crops with drought tolerance: achievements, challenges, and perspectives. Drought stress tolerance in plants, Vol 2: Molecular and Genetic Perspectives 531-547.
  • Liebenguth, J., and Gricius, G. 2024. The nutritional turn towards crisis: a critical perspective. Critical Studies on Security, 12 (3): 269-281.
  • Light, A., and E. Higgs. 1993. The politics of ecological restoration. Sciences 1: 25-51.
  • Lihua, L. 1999. Pathogenesis-related proteins and plant disease resistance. Fujian Nongye Xuebao (China). Medda, S., A. Fadda, and M. Mulas. 2022. Influence of climate change on metabolism and biological characteristics in perennial woody fruit crops in the Mediterranean environment. Horticulturae 8 (4): 273.
  • Mendelsohn, R., and A. Dinar. 2009. Climate change and agriculture: an economic analysis of global impacts, adaptation and distributional effects. In Climate Change and Agriculture. Edward Elgar Publishing.
  • Menzel, C. M. 2023. A review of fruit development in strawberry: high temperatures accelerate flower development and decrease the size of the flowers and fruit. The Journal of Horticultural Science and Biotechnology 98 (4): 409-431.
  • Motha, R. P. 2011. The impact of extreme weather events on agriculture in the United States. Challenges and Opportunities in Agrometeorology 397-407.
  • Munaweera, T. I. K., N. U. Jayawardana, R. Rajaratnam, and N. Dissanayake. 2022.Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture and Food Security 11 (1): 1-28.
  • Nakashima, K., K. Yamaguchi-Shinozaki, K. Shinozaki. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5: 170.
  • Nie, H., X. Yang, S. Zheng, and L. Hou. 2024. Gene-Based developments in improving quality of tomato: focus on firmness, shelf life, and pre-and post-harvest stress adaptations. Horticulturae 10 (6): 641.
  • Nnadi, F. N., J. Chikaire, J. A. Echetama, R. A. Ihenacho, P. C. Umunnakwe, and C. O. Utazi. 2013. Agricultural insurance: a strategic tool for climate change adaptation in the agricultural sector.
  • Osakabe, Y., K. Osakabe, K. Shinozaki, L.S.P. Tran. 2014. Response of plants to water stress. Front. Plant Sci. 5: 86. Paavola, J. 2017. Health impacts of climate change and health and social inequalities in the UK. Environmental Health 16: 61-68.
  • Panesar, P. S., and S. S. Marwaha, 2013. Biotechnology in agriculture and food processing: Opportunities and challenges. CRC Press. Boca Raton.
  • Penella, C., and A. Calatayud.2018. Pepper crop under climate change: grafting as an environmental friendly strategy. Climate resilient agriculture: strategies and perspectives. IntechOpen, London 129-155.
  • Prasad, G., D. Chauhan, H. Pandey, D. Singh, V. K. Dhiman, and V. K. Dhiman. 2024. Recent Advances in CRISPR-Cas for Climate-Resilient Horticulture in Fruits Crops. Climate-Resilient Agriculture 415-431.
  • Priyadarshi, R. 2024. Observation of post-yield supply chain impediments for spoilage mitigation and revenue generation opportunities at countryside. Journal of Global Operations and Strategic Sourcing 17 (1): 127-145.
  • Rai, G. K., D. M. Khanday, P. Kumar, I. Magotra, S. M. Choudhary, R. Kosser, and S. Pandey. 2023.Enhancing crop resilience to drought stress through CRISPR-Cas9 genome editing. Plants 12 (12): 2306.
  • Raza, A., S. Charagh, A. Razzaq, R. Javed, and A. R. S. Khan. 2020. Hasanuzzaman, M. Brassicaceae plants response and tolerance to drought stress: Physiological and molecular interventions. In The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Berlin/Heidelberg, Germany, pp. 229–261.
  • Razzaq, A., and A. Masood. 2018. CRISPR/Cas9 system: a breakthrough in genome editing. Mol Biol. 7 (210): 2. Satterthwaite, D., G. McGranahan, and C. Tacoli. 2010. Urbanization and its implications for food and farming. Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1554): 2809-2820.
  • Schmidhuber, J., and F. N. Tubiello. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences 104 (50): 19703-19708.
  • Shingade, D. M., and R. Khatri. 2024. The Role of Biotechnology in the Future of Fruit Crop Production: A Review 27 (9): 967-987.
  • Shinozaki, K., and K. Yamaguchi-Shinozaki. 1996. Molecular responses to drought and cold stress. Current Opinion in Biotechnology 7 (2): 161-167.
  • Villanueva, A. B., M. Halewood, and I. L. Noriega. 2017. Agricultural biodiversity in climate change adaptation planning. European Journal of Sustainable Development 6 (2): 1-1.
  • Vonshak, A., and G. Torzillo. 2003. Environmental stress physiology. Handbook of Microalgal Culture: Biotechnology and Applied Phycology 57-82. Wan, L., Z. Wang, M. Tang, D. Hong, Y. Sun, J. Ren, and H. Zeng. 2021. CRISPR-Cas9 gene editing for fruit and vegetable crops: strategies and prospects. Horticulturae 7 (7): 193.
  • Wang, X., X.Wang, X. Zhang, J. Zhou, Z. Jia, J. Ma, and Y. Wei. 2024. Ecological barriers: An approach to ecological conservation and restoration in China. Ambio 1-15.
  • Winqvist, C., J. Ahnström, and J. Bengtsson. 2012. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Annals of the New York Academy of Science 1249 (1): 191-203.
  • Yoshida, T., Y. Fujita, H. Sayama, S. Kidokoro, K. Maruyama, J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant J. 61: 672–685.
  • Zeppel, M. J. B., J. V. Wilks, and J. D. Lewis. 2014. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11 (11): 3083-3093.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyoteknolojisi, Meyve Yetiştirme ve Islahı
Bölüm Derlemeler
Yazarlar

Çağlar Kaya 0000-0002-7054-3081

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 22 Aralık 2024
Kabul Tarihi 16 Nisan 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Kaya, Ç. (2025). Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 35(1), 131-144. https://doi.org/10.18615/anadolu.1605478
AMA Kaya Ç. Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi). ANADOLU. Haziran 2025;35(1):131-144. doi:10.18615/anadolu.1605478
Chicago Kaya, Çağlar. “Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 35, sy. 1 (Haziran 2025): 131-44. https://doi.org/10.18615/anadolu.1605478.
EndNote Kaya Ç (01 Haziran 2025) Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 35 1 131–144.
IEEE Ç. Kaya, “Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi)”, ANADOLU, c. 35, sy. 1, ss. 131–144, 2025, doi: 10.18615/anadolu.1605478.
ISNAD Kaya, Çağlar. “Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 35/1 (Haziran 2025), 131-144. https://doi.org/10.18615/anadolu.1605478.
JAMA Kaya Ç. Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi). ANADOLU. 2025;35:131–144.
MLA Kaya, Çağlar. “Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, c. 35, sy. 1, 2025, ss. 131-44, doi:10.18615/anadolu.1605478.
Vancouver Kaya Ç. Vulnerability of Fruit Cultivation to Climate Change and Suggested Solutions: Modern Biotechnological Approaches (CRISPR/Cas9 and RNAi). ANADOLU. 2025;35(1):131-44.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016