Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF HYPER-PERSONALIZATION APPLICATIONS ON CONSUMER'S CONTINUATION TO ONLINE INTERACTION BEHAVIOR

Yıl 2025, , 1 - 41, 30.06.2025
https://doi.org/10.53443/anadoluibfd.1532705

Öz

The aim of this study is to examine the relationship of hyper-personalization applications with online privacy within the framework of privacy calculus theory and to measure their impact on the consumer's continuation to interaction behavior. The data obtained through an online survey from 400 consumers aged 18 and over in Turkey were selected by convenience sampling method and who regularly shop online, use social media accounts and entertainment platforms were analyzed by partial least squares structural equation modelling. When the findings obtained as a result of the analysis were evaluated, it was seen that hyper-personalization applications had a positive and significant effect on consumers’ benefit and risk perceptions within the framework of privacy calculus theory. Perceived benefit and risk have a significant positive effect on perceived value and perceived value has a significant positive effect on willingness to use personal information. It has been found that previous privacy violation experience does not have a significant effect on the variables of perceived risk and willingness to use personal information, while the element of trust in the business and/or platform has a positive significant effect on the willingness to use personal information. It has been found that willingness to use personal information has a positive and significant effect on continuation to online interaction behavior.

Proje Numarası

SBA-2023-1880

Kaynakça

  • Ackermann, K. A., Burkhalter, L., Mildenberger, T., Frey, M. & Bearth, A. (2022). Willingness to share data: Contextual determinants of consumers’ decisions to share private data with companies. Journal of Consumer Behaviour, 21(2), 375–386. https://doi.org/10.1002/cb.2012
  • Acquisti, A. (2004). Privacy in electronic commerce and the economics of immediate gratification. In Proceedings of the 5th ACM Electronic Commerce Conference (pp. 21-29). New York, NY: ACM. http://dx.doi.org/10.1145/988772.988777
  • Acquisti, A., Brandimarte, L. & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509–514. https://doi.org/10.1126/science.aaa1465
  • Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K. & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of Retailing, 91(1), 34–49. https://doi.org/10.1016/j.jretai.2014.09.005
  • Aguirre-Urreta, M. I., & Hu, J. (2019). Detecting common method bias: Performance of the Harman’s single-factor test. Data Base for Advances in Information Systems, 50(2), 45–70. https://doi.org/10.1145/3330472.3330477
  • Aldoseri, A., Al-Khalifa, K. N. & Hamouda, A. M. (2024). AI-Powered Innovation in Digital Transformation: Key Pillars and Industry Impact. Sustainability, 16(5), 1790. https://doi.org/10.3390/su16051790
  • Al-Jabri, I. M., Eid, M. I. & Abed, A. (2019). The willingness to disclose personal information. Information and Computer Security, 28(2), 161–181. https://doi.org/10.1108/ics-01-2018-0012
  • Amin, M. a. S., Johnson, V. L., Prybutok, V. & Koh, C. E. (2024). An investigation into factors affecting the willingness to disclose personal health information when using AI-enabled caregiver robots. Industrial Management & Data Systems, 124(4), 1677–1699. https://doi.org/10.1108/imds-09-2023-0608
  • Ampong, G., Mensah, A., Adu, A., Addae, J., Omoregie, O. & Ofori, K. (2018). Examining Self-Disclosure on Social Networking Sites: A Flow Theory and Privacy Perspective. Behavioral Sciences, 8(6), 58. https://doi.org/10.3390/bs8060058
  • Anderson, C. L. & Agarwal, R. (2011). The digitization of healthcare: boundary risks, emotion, and consumer willingness to disclose personal health information. Information Systems Research, 22(3), 469–490. https://doi.org/10.1287/isre.1100.0335
  • Arora, N., Dreze, X., Ghose, A., Hess, J. D., Iyengor, R., Jing, B, Joshi,Y., Kumar, V. Lurie, N., Neslin, S. Sajeeh, S., Su, M., Thomas, J. & Zhang, Z. J. (2020). Putting one-to-one marketing to work: Personalization, customization, and choice. Marketing Letters, 31(3), 367-380. https://doi.org/10.1007/s11002-008-9056-z
  • Bandara, R., Fernando, M. & Akter, S. (2020). Explicating the privacy paradox: A qualitative inquiry of online shopping consumers. Journal of Retailing and Consumer Services, 52. https://doi.org/10.1016/j.jretconser.2019.101947
  • Bansal, G., Zahedi, F. M. & Gefen, D. (2016). Do context and personality matter? Trust and privacy concerns in disclosing private information online. Information & Management 53(1), 1–21. https://offcampus.anadolu.edu.tr:2206/10.1016/j.im.2015.08.001
  • Baek, Y. M., Kim, E. M. & Bae, Y. (2014). My privacy is okay, but theirs is endangered: Why comparative optimism matters in online privacy concerns. Computers in Human Behavior, 31, 48-56. https://doi.org/10.1016/j.chb.2013.10.010
  • Barnes, S. B. (2006). Privacy paradox: Social networking in the United States. First Monday, 11(9). https://doi.org/10.5210/fm.v11i9.1394
  • Bastos, J. A., & Bernardes, M. I. (2024). Understanding online purchases with explainable machine learning. Information, 15(10), 587. https://doi.org/10.3390/info15100587
  • Beke, F. T., Eggers, F., Verhoef, P. C. & Wieringa, J. E. (2022). Consumers’ privacy calculus: The PRICAL index development and validation. International Journal of Research in Marketing (39)1, 20-41. https://doi.org/10.1016/j.ijresmar.2021.05.005
  • Bélanger, F. & James, T. L. (2020). A Theory of Multilevel Information Privacy Management for the Digital Era. Information Systems Research 31(2), 510-536. https://doi.org/10.1287/isre.2019.0900
  • Bilgihan, A., Kandampully, J. & Zhang, T. (2016). Towards a unified customer experience in online shopping environments: Antecedents and outcomes. International Journal of Quality and Service Sciences, 8(1), 102–119. https://doi.org/10.1108/IJQSS-07-2015-0054
  • Bitkina, O. V., Jeong, H., Lee, B. C., Park, J., Park, J. & Kim, H. K. (2020). Perceived trust in artificial intelligence technologies: A preliminary study. Human Factors and Ergonomics in Manufacturing & Service Industries, 30(4), 282–290. https://doi.org/10.1002/hfm.20839
  • Bleier, A. & Eisenbeiss, M. (2015). The Importance of Trust for Personalized Online Advertising. Journal of Retailing, 91(3), 390-409. https://doi.org/10.1016/j.jretai.2015.04.001
  • Bleier, A., Goldfarb, A. & Tucker, C. (2020). Consumer privacy and the future of data-based innovation and marketing. International Journal of Research in Marketing, 37(3), 466–480. https://doi.org/10.1016/j.ijresmar.2020.03.006
  • Boerman, S. C., Kruikemeier, S. & Borgesius, F. J. Z. (2018). Exploring Motivations for Online privacy Protection Behavior: Insights from panel data. Communication Research, 48(7), 953–977. https://doi.org/10.1177/0093650218800915
  • Brown, B. (2001). Studying the internet experience. HP laboratories technical report HPL, 49. https://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2001/HPL-2001-49.pdf (Erişim tarihi: 15.03.2024).
  • Bornschein, R., Schmidt, L. & Maier, E. (2020). The Effect of Consumers’ Perceived Power and Risk in Digital Information Privacy: The Example of Cookie Notices. Journal of Public Policy & Marketing, 39(2), 135–154. https://doi.org/10.1177/0743915620902143
  • Brandimarte, L., Acquisti, A. & Loewenstein, G. (2013). Misplaced Confidences: Privacy and the Control Paradox. Social Psychological and Personality Science 4(3), 340–347. https://doi.org/10.1177/1948550612455931
  • BTK. (2021). Bilgi ve İletişim Teknolojilerinde Gelişmeler, Yenilikler ve Örnek Çalışmalar. 01.06.2023 tarihinde https://www.btk.gov.tr/uploads/pages/gelismeler-yenilikler-ve-ornek-calismalar-bulteni/belgev2-21-04.pdf adlı adresten alınmıştır.
  • Budak, H. & Gümüştaş, E. (2022). Kişiselleştirilmiş ürün öneri sistemi için kullanıcı bazlı işbirlikçi filtreleme ve kümeleme kullanan hibrit bir yaklaşım. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 21(43), 253-268. https://doi.org/10.46928/iticusbe.1055162
  • Chaudoir, S. R. & Fisher, J. D. (2010). The disclosure processes model: Understanding disclosure decision making and postdisclosure outcomes among people living with a concealable stigmatized identity. Psychological Bulletin, 136(2), 236–256. https://doi.org/10.1037/a0018193
  • Chen, M., Huang, X. & Qi, X. (2024). To disclose or to protect? Predicting social media users’ behavioral intention toward privacy. Industrial Management & Data Systems, 124(6), 2091–2119. https://doi.org/10.1108/imds-05-2023-0337
  • Chen, Y., Prentice, C., Weaven, S. & Hisao, A. (2022). The influence of customer trust and artificial intelligence on customer engagement and loyalty – The case of the home-sharing industry. Frontiers in Psychology, 13, 912339. https://doi.org/10.3389/fpsyg.2022.912339
  • Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modelling. G. A. Marcoulides (Ed.), Modern Methods for Business Research (s. 295-336) içinde. London: Lawrence Erlbaum Associates.
  • Choi, H., Park, J. & Jung, Y. (2018). The role of privacy fatigue in online privacy behavior. Computers In Human Behavior, 81, 42-51. https://doi.org/10.1016/j.chb.2017.12.001
  • Chiasson, S., Abdelaziz, Y. & Chanchary, F. (2018). Privacy concerns amidst OBA and the need for alternative models. IEEE Internet Computing, 22(2), 52–61. https://doi.org/10.1109/mic.2017.3301625
  • Cohen, J.,Cohen, P., West, S. G. & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale, NJ: Erlbaum.
  • Craig, V. S., Shim, J. T., Johnson, R. & Jiang, J. (2006). Concern for information privacy and online consumer Purchasing. Journal of the Association for Information Systems, 7(6), 415-431, 433-443. https://doi.org/10.17705/1jais.00092
  • Culnan, M. J., & Armstrong, P. K. (1999). Information privacy concerns, procedural fairness and impersonal trust: an empirical investigation. Organization Science 10(1), 104–115. https://doi.org/10.1287/orsc.10.1.104
  • Culnan, M. J. & Bies, R. J. (2003). Consumer privacy: Balancing economic and justice considerations. Journal of Social Issues, 59(2), 323-342. https://doi.org/10.1111/1540-4560.00067
  • Çakır, F. S. (2019). Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesi (PLS-SEM) ve Bir Uygulama. Sosyal Araştırmalar ve Davranış Bilimleri Dergisi, 5(9), 111-128.
  • Davenport, T., Guha, A., Grewal, D. & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24–42. https://doi.org/10.1007/s11747-019-00696-0
  • Deloitte. (2020). Connecting with Meaning-Hyper Personalizing the Customer Experience Using Data, Analytics and AI. 27.05.2020 tarihinde https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/deloitte-analytics/ca-en-omnia-ai-marketing-pov-fin-jun24-aoda.pdf adlı adresten alınmıştır.
  • Dienlin, T. & Trepte, S. (2015). Is the privacy paradox a relic of the past? An in-depth analysis of privacy attitudes and privacy behaviors. European Journal of Social Psychology, 45(3), 285–297. https://doi.org/10.1002/ejsp.2049
  • Dinev, T. & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61–80. https://doi.org/10.1287/isre.1060.0080
  • Do, Q. & Trang, T. (2020). An approach based on machine learning techniques for forecasting Vietnamese consumers’ purchase behaviour.Decision Science Letters , 9(3), 313-322. http://dx.doi.org/10.5267/j.dsl.2020.5.004
  • Doğan K. & Arslantekin S. (2016). Büyük veri: önemi, yapısı ve günümüzdeki durum. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 56(1), 16. https://doi.org/10.1501/Dtcfder_0000001461
  • Dotcms. (2018). Hyper-Personalization: It's Time to Truly Meet Your Customers. 27.05.2023 tarihinde https://www.dotcms.com/reports/hyper-personalization-it-s-time-to-truly-meet-your-customers adlı adresten alınmıştır.
  • Dunakhe, K. & Panse, C. (2022). Impact of digital marketing – a bibliometric review. International Journal of Innovation Science, 14(3/4), 506-518. https://doi.org/10.1108/IJIS-11-2020-0263
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C. & Crick, T. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Estrada-Jiménez, J., Parra-Arnau, J., Rodríguez-Hoyos, A. & Forné, J. (2016). Online advertising: Analysis of privacy threats and protection approaches. Computer Communications, 100, 32–51. https://doi.org/10.1016/j.comcom.2016.12.016
  • Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A. & Kashef, R. (2020). Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Applied Sciences, 10(21):7748. https://doi.org/10.3390/app10217748
  • Ferreyra, N. E. D., Kroll, T., Aïmeur, E., Stieglitz, S. & Heisel, M. (2020). Preventative Nudges: Introducing risk cues for supporting online Self-Disclosure decisions. Information, 11(8), 399. https://doi.org/10.3390/info11080399
  • Fornell, C. & Larcker, D.F.(1981). Structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of Marketing Research,18(3), 382–388. https://doi.org/10.2307/3150980
  • Fu, J., Zhang, J. & Li, X. (2023). How do risks and benefits affect user’ privacy decisions? An event-related potential study on privacy calculus process. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1052782
  • Gudivada, V., Apon, A. & Ding, J. (2017). Data quality considerations for big data and machine-learning: Going beyond data cleaning and transformations. International Journal on Advances in Software, 10(1), 1–20.
  • Hair, J. F., Ringle, C. M. & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
  • Hair, J. F., Hult, T., Ringle, C., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications, Inc.
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of compositebased structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632. https://doi:10.1007/s11747-017-0517-x
  • Hallam, C. & Zanella, G. (2017). Online self-disclosure: The privacy paradox explained as a temporally discounted balance between concerns and rewards. Computers in Human Behavior, 68, 217-227. https://doi.org/10.1016/j.chb.2016.11.033
  • Harris, L. C. & Goode, M. M. H. (2010). Online serviscapes, trust, and purchase intentions. Journal of Service Marketing. 24(3), 230-243. https://doi.org/10.1108/08876041011040631
  • Hayes, J. L., Brinson, N. H., Bott, G. J. & Moeller, C. M. (2021). The influence of consumer–brand relationship on the personalized advertising privacy calculus in social media. Journal of Interactive Marketing, 55(1), 16–30. https://doi.org/10.1016/j.intmar.2021.01.001
  • Helweg-Larsen, M. & Shepperd, J. A. (2001). Do moderators of the optimistic bias affect personal or target risk estimates? A review of the literature. Personality and Social Psychology Bulletin, 5(1), 75-95. https://doi.org/10.1207/S15327957PSPR0501_5
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
  • Ho, F. N., Ho-Dac, N. & Huang, J. S. (2023). The effects of privacy and data breaches on consumers’ online Self-Disclosure, protection behavior, and message valence. SAGE Open, 13(3). https://doi.org/10.1177/21582440231181395
  • Hoffmann, C. P., Lutz, C. & Ranzini, G. (2016). Privacy cynicism: A new approach to the privacy paradox. Cyberpsychology Journal of Psychosocial Research on Cyberspace, 10(4). https://doi.org/10.5817/cp2016-4-7
  • Hu, L. T. & Bentler, P.M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modelling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Huang, M. & Rust, R. (2017). Technology-driven Service Strategy. Journal of the Academy of Marketing Science, 45(6), 906-924. https://doi.org/10.1007/s11747-017-0545-6
  • Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies, Strategic Management Journal, 20(2), 195-204.
  • Ioannou, A., Tussyadiah, I. & Lu, Y. (2020). Privacy concerns and disclosure of biometric and behavioral data for travel. International Journal of Information Management, 54, 102122. https://doi.org/10.1016/j.ijinfomgt.2020.102122
  • Jahari, S. A., Hass, A., Hass, D. & Joseph, M. (2022). Navigating privacy concerns through societal benefits: A case of digital contact tracing applications. Journal of Consumer Behaviour, 21(3), 625–638. https://doi.org/10.1002/cb.2029
  • Jensen, C., Potts, C. & Jensen, C. (2005). Privacy practices of Internet users: Self-reports versus observed behavior. International Journal of Human-Computer Studies, 63(1–2), 203-227, https://doi.org/10.1016/j.ijhcs.2005.04.019
  • Kaplan, A. & Haenlein, M. (2019). Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1): 15-25. https://doi.org/10.1016/j.bushor.2018.08.004
  • Karim, M. & Rahman, R. (2013). Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing. Journal of Software Engineering and Applications, 6(4), 196-206. https://doi.org/10.4236/jsea.2013.64025
  • Kim, H. W., Chan, H. C. & Gupta, S. (2007). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43, 111-126.
  • Kim, D., Park, K., Park, Y. & Ahn, J. (2019). Willingness to provide personal information: Perspective of privacy calculus in IoT services. Computers in Human Behavior, 92, 273–281. https://doi.org/10.1016/j.chb.2018.11.022
  • Kim, S. & Baek, T. H. (2017). Examining the antecedents and consequences of mobile app engagement. Telematics and Informatics, 35(1), 148–158. https://doi.org/10.1016/j.tele.2017.10.008
  • Klein, C. T. F. & Helweg-Larsen, M. (2002). Perceived control and the optimistic bias: A meta-analytic review. Psychology and Health, 17, 437-446. https://doi.org/10.1080/0887044022000004920
  • Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 1-10. https://doi.org/10.1016/j.tourman.2021.104330
  • Komiak, S. Y. & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents, MIS Quarterly, 941–960. https://doi.org/10.2307/25148760
  • Kotler, P. (2021). Pazarlama 5.0: İnsan için Teknoloji. Nişanstaşı Üniversitesi Yayınları.
  • Krishnan, C., Gupta, A., Gupta, A. & Singh, G. (2022). Impact of Artificial Intelligence-Based Chatbots on customer engagement and business growth. In Studies in big data (pp. 195–210). https://doi.org/10.1007/978-3-031-10869-3_11
  • Laufer, R. S. & Wolfe, M. (1977). Privacy as a concept and a social issue: a multidimensional developmental theory. Journal of Social Issues, 33(3), 22–42. https://doi.org/10.1111/j.1540-4560.1977.tb01880.x
  • Lee, J. M. & Rha, J. Y. (2016). Personalization–privacy paradox and consumer conflict with the use of location-based mobile commerce. Computers in Human Behavior, 63, 453–462. https://doi.org/10.1016/j.chb.2016.05.056
  • Leon, P. G., Ur, B., Shay, R., Wang, Y., Balebako, R. & Cranor, L. (2012). Why Johnny can't opt out: A usability evaluation of tools to limit online behavioral advertising. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp 589-598).
  • Li, Y. (2012). Theories in online information privacy research: A critical review and an integrated framework. Decision Support Systems, 54(1), 471-481, https://doi.org/10.1016/j.dss.2012.06.010
  • Liu, Y., Zhao, H. & Yang, B. (2022). Research on customer churn prediction and model interpretability using GA-XGBoost algorithm. PLOS ONE, 17(8), e0289724. https://doi.org/10.1371/journal.pone.0289724
  • Mach-Król, M. & Hadasik, B. (2021). On a certain research gap in big data mining for customer insights. Applied Sciences, 11(15), 6993. https://doi.org/10.3390/app11156993
  • Maheswari, K. & Priya, P. P. A. (2017). Predicting customer behavior in online shopping using SVM classifier. In: 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputtur, India. 1-5. https://doi.org/10.1109/ITCOSP.2017.8303085
  • Malhotra, N. K., Kim, S. S. & Agarwal, J. (2004). Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336–355. https://doi.org/10.1287/isre.1040.0032
  • Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J. & Cusimano, C. (2015). Sacrifice one for the good of many? People apply different moral norms to human and robot agents. In: 10th ACM/IEEE international conference on human-robot interaction (HRI). Mart, 2015. pp. 117-124. IEEE.
  • Martin, K. D., Borah, A. & Palmatier, R. W. (2017). Data privacy: Effects on customer and firm performance. Journal of Marketing, 81(1), 36–58. https://doi.org/10.1509/jm.15.0497
  • Martin, K. D. & Murphy, P. E. (2017). The role of data privacy in marketing: A review and research agenda. Journal of the Academy of Marketing Science, 45(2), 135-155. https://doi.org/10.1007/s11747-016-0495-4
  • Massara, F., Raggiotto, F. & Voss, W. G. (2021). Unpacking the privacy paradox of consumers: A psychological perspective. Psychology and Marketing, 38(10), 1814–1827. https://doi.org/10.1002/mar.21534
  • McKnight, D. H., Choudhury, V. & Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3), 334–359. http://www.jstor.org/stable/23015741
  • Metzger, M. J. (2007). Communication Privacy Management in Electronic Commerce. Journal of Computer-Mediated Communication, 12(2), 335–361, https://doi.org/10.1111/j.1083-6101.2007.00328.x
  • Milne, G. R., Rohm, A.J. & Bahl, S. (2004). Consumers’ Protection of Online Privacy and Identity. Journal of Consumer Affairs, 38, 217-232. https://doi.org/10.1111/j.1745-6606.2004.tb00865.x
  • Mousavi, R., Chen, R., Kim, D. J., & Chen, K. (2020). Effectiveness of privacy assurance mechanisms in users’ privacy protection on social networking sites from the perspective of protection motivation theory. Decision Support Systems, 135, 113323. https://doi.org/10.1016/j.dss.2020.113323
  • Nobile, T. H. & Kalbaska, N. (2020). An Exploration of Personalization in Digital Communication. Insights in Fashion. 456-473. In: Nah, FH., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2020. Lecture Notes in Computer Science, vol 12204. Springer, Cham. https://doi.org/10.1007/978-3-030-50341-3_35
  • Norberg, P. A., Horne, D. R. & Horne, D. A. (2007). The privacy paradox: Personal information disclosure intentions versus behaviors. Journal of Consumer Affairs, 41(1), 100–126. https://doi.org/10.1111/j.1745-6606.2006.00070.x
  • Omarzu, J. (2000). A disclosure decision model: Determining how and when individuals will Self-Disclose. Personality and Social Psychology Review, 4(2), 174–185. https://doi.org/10.1207/s15327957pspr0402_05
  • Osatuyi, B., Passerini, K., Ravarini, A. & Grandhi, S. A. (2018). “ Fool me once, shame on you . . . then, I learn.” An examination of information disclosure in social networking sites. Computers in Human Behavior, 83, 73–86. https://doi.org/10.1016/j.chb.2018.01.018
  • Paschen, J., Kietzmann, J. & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410–1419. https://doi.org/10.1108/JBIM-10-2018-0295
  • Plangger, K., Grewal, D., de Ruyter, K. & Tucker, C. (2022). The future of digital technologies in marketing: A conceptual framework and an overview. Journal of the Academy of Marketing Science 50, 1125–1134. https://doi.org/10.1007/s11747-022-00906-2
  • Princi, E. & Krämer, N. C. (2020). Out of control – Privacy calculus and the effect of perceived control and moral considerations on the usage of IoT healthcare devices. Frontiers in Psychology, 11, 582054. https://doi.org/10.3389/fpsyg.2020.582054
  • Podsakoff, P., MacKenzie, S., & Podsakoff, N. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review Psychology, 63, 539-569. http://dx.doi.org/10.1146/annurev-psych-120710-100452
  • Punj, G. N. (2018). Understanding individuals’ intentions to limit online personal information disclosures to protect their privacy: implications for organizations and public policy. Information Technology and Management, 20(3), 139–151. https://doi.org/10.1007/s10799-018-0295-2
  • Quinn, K. (2014). An ecological approach to privacy: “Doing” online privacy at Midlife. Journal of Broadcasting & Electronic Media, 58(4), 562–580. https://doi.org/10.1080/08838151.2014.966357
  • Rust, R. T. & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206–221. https://doi.org/10.1287/mksc.2013.0836
  • Sabharwal, R. & Miah, S. J. (2021). A new theoretical understanding of big data analytics capabilities in organizations: A thematic analysis. Journal of Big Data, 8(1), 1-17. https://doi.org/10.1186/s40537-021-00543-6
  • Saponaro, M., Le Gal, D., Gao, M., Guisiano, M. & Maniere, I. C. (2018). Challenges and opportunities of artificial intelligence in the fashion world. In: International Conference on Intelligent and Innovative Computing Applications (ICONIC). Aralık, 2018. pp. 1–5. IEEE. https://doi.org/10.1109/ICONIC.2018.8601258
  • Shank, D. B., Graves, C., Gott, A., Gamez, P. & Rodriguez, S. (2019). Feeling our way to machine minds: people’s emotions when perceiving mind in artificial intelligence. Computers in Human Behavior, 98, 256–266. https://doi.org/10.1016/j.chb.2019.04.001
  • Smit, E. G., Van Noort, G. & Voorveld, H. A. (2014). Understanding online behavioural advertising: User knowledge, privacy concerns and online coping behaviour in Europe. Computers in Human Behavior, 32, 15–22. https://doi.org/10.1016/j.chb.2013.11.008
  • Smith, H. J., Milberg, J. S. & Burke, J. S. (1996). Information privacy: measuring individuals' concerns about organizational practices. MIS Quarterly 20 (2), 167–196. https://doi.org/10.2307/249477
  • Smith, H. J., Dinev, T. & Xu, H. (2011). Information Privacy Research: An Interdisciplinary Review. MIS Quarterly. 35, 989-1016.
  • Sun, X., Pelet, J., Dai, S. & Ma, Y. (2023). The effects of trust, perceived risk, innovativeness, and deal proneness on consumers’ purchasing behavior in the livestreaming social commerce context. Sustainability, 15(23), 16320. https://doi.org/10.3390/su152316320
  • Tam, K. Y. & Ho, S. Y. (2006). Understanding the Impact of Web Personalization on User Information Processing and Decision Outcomes. MIS Quarterly, 30(4), 865–890. https://doi.org/10.2307/25148757
  • Tang, J., Zhang, B. & Xiao, S. (2022). Examining the intention of authorization via apps: Personality traits and expanded privacy calculus perspectives. Behavioral Sciences, 12(7), 218. https://doi.org/10.3390/bs12070218
  • Tenenhaus, M., Vinzi, V. E. Chatelin, Y-M. & Lauro, C. (2004). PLS Path Modeling. Computational Statistics and Data Analysis, 48(1), 159-205. https://doi.org/10.1016/j.csda.2004.03.005
  • Tiago, M. T. P. M. B. & Veríssimo, J. M. C. (2014). Digital marketing and social media: Why bother? Business Horizons, Elsevier, 57(6), 703-708. https://doi.org/10.1016/j.bushor.2014.07.002
  • Tian, X., Chen, L. & Zhang, X. (2022). The Role of Privacy Fatigue in Privacy Paradox: A PSM and Heterogeneity Analysis. Applied Sciences, 12, 9702. https://doi.org/10.3390/app12199702
  • Tiihonen, J. & Felfernig, A. (2017). An introduction to personalization and mass customization. Journal of Intelligent Information Systems, 49, 1–7. https://doi.org/10.1007/s10844-017-0465-4
  • Toch, E., Wang, Y. & Cranor, L. F. (2012). Personalization and privacy: a survey of privacy risks and remedies in personalization-based systems. User Modeling and User-Adapted Interaction 22(1-2), 203-220. https://doi.org/10.1007/s11257-011-9110-z
  • Trepte, S. (2020). The social media privacy model: Privacy and communication in the light of social media affordances. Communication Theory, 31(4), 549-570.
  • Tsohou, A. & Papaioannou, T. (2021). Impacts of information privacy violations. In Springer eBooks (pp. 1–4). https://doi.org/10.1007/978-3-642-27739-9_1614-1
  • Tufekci, Z. (2008). Grooming, gossip, Facebook and MySpace: What can we learn about these sites from those who won't assimilate? Information, Communication & Society, 11, 544–564. http://dx.doi.org/10.1080/13691180801999050
  • Tyrväinen, O., Karjaluoto, H. & Saarijärvi, H. (2020). Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. Journal of Retailing and Consumer Services, 57, 102233. https://doi.org/10.1016/j.jretconser.2020.102233
  • Unni, R. & Harmon, R. (2007). Perceived Effectiveness of Push vs. Pull Mobile Location-based Advertising, Journal of Interactive Advertising 7(2), 28-40.
  • Van Der Schyff, K. & Flowerday, S. (2023). The mediating role of perceived risks and benefits when self-disclosing: A study of social media trust and FoMO. Computers & Security, 126, 103071. https://doi.org/10.1016/j.cose.2022.103071
  • Veltri, G. A., Lupiáñez-Villanueva, F., Folkvord, F., Theben, A. & Gaskell, G. (2020). The impact of online platform transparency of information on consumers’ choices. Behavioural Public Policy, 7(1), 55–82. https://doi.org/10.1017/bpp.2020.11
  • Vimalkumar, M., Sharma, S. K., Singh, J. B. & Dwivedi, Y. K. (2021). ‘Okay google, what about my privacy?’: User's privacy perceptions and acceptance of voice based digital assistants. Computers in Human Behavior, 120, 106763. https://doi.org/10.1016/j.chb.2021.106763
  • Wang, J., Cao, Q. & Zhu, X. (2024). Privacy disclosure on social media: the role of platform features, group effects, trust and privacy concern. Library Hi Tech. https://doi.org/10.1108/lht-06-2023-0253
  • Wang, N., Zhao, Y., Zhou, R. & Li, Y. (2022). Factors influencing users’ online information disclosure intention and the moderating effect of cultural background and platform type. Aslib Journal of Information Management, 75(6), 1178–1208. https://doi.org/10.1108/ajim-04-2022-0218
  • Westin, A. F. (1967). Privacy and Freedom. Atheneum.
  • Wetzels, M., Odekerken-Schröder, G., & van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177- 195. https://doi.org/10.2307/20650284
  • White, T. B. (2004). Consumer Disclosure and Disclosure Avoidance: A Motivational Framework. Journal of Consumer Psychology, 14(1–2): 41–51. https://doi.org/10.1207/s15327663jcp1401&2_6
  • Wilson, D. W. & Valacich, J. S. (2012). Unpacking the Privacy Paradox: Irrational Decision-Making within the Privacy Calculus. Proceedings of the 33rd International Conference on Information Systems, 41, 114–125.
  • Wong, K. K. (2013). Partial least square structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24, 1-32.
  • Wu X., Zhu X., Wu G. Q. & Ding W. (2014). Data mining with big data, IEEE transactions on knowledge and data engineering, 26 (1), 97-107. https://doi.org/10.1109/TKDE.2013.109
  • Xu, H. (2007). The Effects of Self-Construal and Perceived Control on Privacy Concerns. In: Twenty Eighth International Conference on Information Systems (ICIS).
  • Xu, H., Luo, X. (Robert), Carroll, John M. & Rosson M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems 51, 42-52. https://doi.org/10.1016/j.dss.2010.11.017
  • Yıldız, E. (2021). SmartPLS ile Yapısal Eşitlik Modellemsi, Reflektif ve Formatif Yapılar. Seçkin Yayıncılık.
  • Yılmaz, V. & Kinaş, Y. (2021). Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesiyle Mobil Bankacılık Kullanımının Araştırılması, Gazi İktisat ve İşletme Dergisi, 7(2), 133-149. https://doi.org/10.30855/gjeb.2021.7.2.004
  • Young, A. & Quan-Haase, A. (2013). Privacy protection strategies on Facebook: The Internet privacy paradox revisited. Information, Communication & Society, 16, 479–500. http://dx.doi.org/10.1080/1369118x.2013.777757
  • Zanker, M., Rook, L. & Jannach, D. (2019). Measuring the impact of online personalisation: Past, present and future. International Journal of Human-Computer Studies, 131, 160–168. https://doi.org/10.1016/j.ijhcs.2019.06.006
  • Zhou H, Xiong, F. & Chen H. (2023). A Comprehensive Survey of Recommender Systems Based on Deep Learning. Applied Sciences, 13(20), 11378. https://doi.org/10.3390/app132011378
  • Zhu, X., Cao, Q. & Liu, C. (2022). Mechanism of platform interaction on social media users’ intention to disclose privacy: A case study of TikTok APP. Information, 13(10), 461. https://doi.org/10.3390/info13100461

HİPER-KİŞİSELLEŞTİRME UYGULAMALARININ TÜKETİCİNİN ÇEVRİMİÇİ ETKİLEŞİME DEVAM ETME DAVRANIŞINA ETKİSİ

Yıl 2025, , 1 - 41, 30.06.2025
https://doi.org/10.53443/anadoluibfd.1532705

Öz

Bu çalışmanın amacı, hiper-kişiselleştirme uygulamalarının çevrimiçi mahremiyetle ilişkisini mahremiyet hesabı teorisi çerçevesinde incelemek ve tüketicinin etkileşime devam etme davranışına etkisini ölçmektir. Kolayda örnekleme yöntemi ile seçilen Türkiye’deki 18 yaş ve üzeri düzenli olarak çevrimiçi alışveriş yapan, sosyal medya hesaplarını ve eğlence platformlarını kullanan 400 tüketiciden çevrimiçi anket yoluyla elde edilen veriler kısmi en küçük kareler yapısal eşitlik modellemesi ile analiz edilmiştir. Analiz sonucunda elde edilen bulgular değerlendirildiğinde, mahremiyet hesabı teorisi çerçevesinde hiper-kişiselleştirme uygulamalarının tüketicilerin fayda ve risk algıları üzerinde pozitif yönde anlamlı bir etkisi olduğu görülmüştür. Algılanan faydanın ve riskin algılanan değer üzerinde ve algılanan değerin kişisel bilginin kullanımına isteklilik üzerinde pozitif yönde anlamlı etkisi vardır. Daha önce yaşanmış mahremiyet ihlali deneyiminin algılanan risk ve kişisel bilginin kullanımına isteklilik değişkenleri üzerinde anlamlı bir etkisi bulunmamakta, ancak işletmeye ve/veya platforma duyulan güven unsuru kişisel bilginin kullanımına isteklilik üzerinde pozitif yönde anlamlı bir etkiye sahiptir. Kişisel bilginin kullanımına istekliliğin çevrimiçi etkileşime devam etme davranışı üzerinde pozitif yönde anlamlı bir etkisi olduğu bulunmuştur.

Etik Beyan

Bu çalışma için Anadolu Üniversitesi Etik Kurulunun 30.05.2023 tarihli ve 524149 nolu kararı ile etik kurul onayı alınmıştır.

Destekleyen Kurum

Anadolu Üniversitesi BAP Komisyonu

Proje Numarası

SBA-2023-1880

Teşekkür

Bu çalışma Anadolu Üniversitesi Bilimsel Araştırma Projeleri Komisyonu’nun Sosyal Bilimler Alanı 1880 nolu projesi tarafından desteklenmiştir. Projenin gerçekleştirilmesinde sağlamış oldukları destekten dolayı Anadolu Üniversitesi Yönetimine ve BAP Komisyonuna teşekkür ederiz.

Kaynakça

  • Ackermann, K. A., Burkhalter, L., Mildenberger, T., Frey, M. & Bearth, A. (2022). Willingness to share data: Contextual determinants of consumers’ decisions to share private data with companies. Journal of Consumer Behaviour, 21(2), 375–386. https://doi.org/10.1002/cb.2012
  • Acquisti, A. (2004). Privacy in electronic commerce and the economics of immediate gratification. In Proceedings of the 5th ACM Electronic Commerce Conference (pp. 21-29). New York, NY: ACM. http://dx.doi.org/10.1145/988772.988777
  • Acquisti, A., Brandimarte, L. & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509–514. https://doi.org/10.1126/science.aaa1465
  • Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K. & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of Retailing, 91(1), 34–49. https://doi.org/10.1016/j.jretai.2014.09.005
  • Aguirre-Urreta, M. I., & Hu, J. (2019). Detecting common method bias: Performance of the Harman’s single-factor test. Data Base for Advances in Information Systems, 50(2), 45–70. https://doi.org/10.1145/3330472.3330477
  • Aldoseri, A., Al-Khalifa, K. N. & Hamouda, A. M. (2024). AI-Powered Innovation in Digital Transformation: Key Pillars and Industry Impact. Sustainability, 16(5), 1790. https://doi.org/10.3390/su16051790
  • Al-Jabri, I. M., Eid, M. I. & Abed, A. (2019). The willingness to disclose personal information. Information and Computer Security, 28(2), 161–181. https://doi.org/10.1108/ics-01-2018-0012
  • Amin, M. a. S., Johnson, V. L., Prybutok, V. & Koh, C. E. (2024). An investigation into factors affecting the willingness to disclose personal health information when using AI-enabled caregiver robots. Industrial Management & Data Systems, 124(4), 1677–1699. https://doi.org/10.1108/imds-09-2023-0608
  • Ampong, G., Mensah, A., Adu, A., Addae, J., Omoregie, O. & Ofori, K. (2018). Examining Self-Disclosure on Social Networking Sites: A Flow Theory and Privacy Perspective. Behavioral Sciences, 8(6), 58. https://doi.org/10.3390/bs8060058
  • Anderson, C. L. & Agarwal, R. (2011). The digitization of healthcare: boundary risks, emotion, and consumer willingness to disclose personal health information. Information Systems Research, 22(3), 469–490. https://doi.org/10.1287/isre.1100.0335
  • Arora, N., Dreze, X., Ghose, A., Hess, J. D., Iyengor, R., Jing, B, Joshi,Y., Kumar, V. Lurie, N., Neslin, S. Sajeeh, S., Su, M., Thomas, J. & Zhang, Z. J. (2020). Putting one-to-one marketing to work: Personalization, customization, and choice. Marketing Letters, 31(3), 367-380. https://doi.org/10.1007/s11002-008-9056-z
  • Bandara, R., Fernando, M. & Akter, S. (2020). Explicating the privacy paradox: A qualitative inquiry of online shopping consumers. Journal of Retailing and Consumer Services, 52. https://doi.org/10.1016/j.jretconser.2019.101947
  • Bansal, G., Zahedi, F. M. & Gefen, D. (2016). Do context and personality matter? Trust and privacy concerns in disclosing private information online. Information & Management 53(1), 1–21. https://offcampus.anadolu.edu.tr:2206/10.1016/j.im.2015.08.001
  • Baek, Y. M., Kim, E. M. & Bae, Y. (2014). My privacy is okay, but theirs is endangered: Why comparative optimism matters in online privacy concerns. Computers in Human Behavior, 31, 48-56. https://doi.org/10.1016/j.chb.2013.10.010
  • Barnes, S. B. (2006). Privacy paradox: Social networking in the United States. First Monday, 11(9). https://doi.org/10.5210/fm.v11i9.1394
  • Bastos, J. A., & Bernardes, M. I. (2024). Understanding online purchases with explainable machine learning. Information, 15(10), 587. https://doi.org/10.3390/info15100587
  • Beke, F. T., Eggers, F., Verhoef, P. C. & Wieringa, J. E. (2022). Consumers’ privacy calculus: The PRICAL index development and validation. International Journal of Research in Marketing (39)1, 20-41. https://doi.org/10.1016/j.ijresmar.2021.05.005
  • Bélanger, F. & James, T. L. (2020). A Theory of Multilevel Information Privacy Management for the Digital Era. Information Systems Research 31(2), 510-536. https://doi.org/10.1287/isre.2019.0900
  • Bilgihan, A., Kandampully, J. & Zhang, T. (2016). Towards a unified customer experience in online shopping environments: Antecedents and outcomes. International Journal of Quality and Service Sciences, 8(1), 102–119. https://doi.org/10.1108/IJQSS-07-2015-0054
  • Bitkina, O. V., Jeong, H., Lee, B. C., Park, J., Park, J. & Kim, H. K. (2020). Perceived trust in artificial intelligence technologies: A preliminary study. Human Factors and Ergonomics in Manufacturing & Service Industries, 30(4), 282–290. https://doi.org/10.1002/hfm.20839
  • Bleier, A. & Eisenbeiss, M. (2015). The Importance of Trust for Personalized Online Advertising. Journal of Retailing, 91(3), 390-409. https://doi.org/10.1016/j.jretai.2015.04.001
  • Bleier, A., Goldfarb, A. & Tucker, C. (2020). Consumer privacy and the future of data-based innovation and marketing. International Journal of Research in Marketing, 37(3), 466–480. https://doi.org/10.1016/j.ijresmar.2020.03.006
  • Boerman, S. C., Kruikemeier, S. & Borgesius, F. J. Z. (2018). Exploring Motivations for Online privacy Protection Behavior: Insights from panel data. Communication Research, 48(7), 953–977. https://doi.org/10.1177/0093650218800915
  • Brown, B. (2001). Studying the internet experience. HP laboratories technical report HPL, 49. https://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2001/HPL-2001-49.pdf (Erişim tarihi: 15.03.2024).
  • Bornschein, R., Schmidt, L. & Maier, E. (2020). The Effect of Consumers’ Perceived Power and Risk in Digital Information Privacy: The Example of Cookie Notices. Journal of Public Policy & Marketing, 39(2), 135–154. https://doi.org/10.1177/0743915620902143
  • Brandimarte, L., Acquisti, A. & Loewenstein, G. (2013). Misplaced Confidences: Privacy and the Control Paradox. Social Psychological and Personality Science 4(3), 340–347. https://doi.org/10.1177/1948550612455931
  • BTK. (2021). Bilgi ve İletişim Teknolojilerinde Gelişmeler, Yenilikler ve Örnek Çalışmalar. 01.06.2023 tarihinde https://www.btk.gov.tr/uploads/pages/gelismeler-yenilikler-ve-ornek-calismalar-bulteni/belgev2-21-04.pdf adlı adresten alınmıştır.
  • Budak, H. & Gümüştaş, E. (2022). Kişiselleştirilmiş ürün öneri sistemi için kullanıcı bazlı işbirlikçi filtreleme ve kümeleme kullanan hibrit bir yaklaşım. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 21(43), 253-268. https://doi.org/10.46928/iticusbe.1055162
  • Chaudoir, S. R. & Fisher, J. D. (2010). The disclosure processes model: Understanding disclosure decision making and postdisclosure outcomes among people living with a concealable stigmatized identity. Psychological Bulletin, 136(2), 236–256. https://doi.org/10.1037/a0018193
  • Chen, M., Huang, X. & Qi, X. (2024). To disclose or to protect? Predicting social media users’ behavioral intention toward privacy. Industrial Management & Data Systems, 124(6), 2091–2119. https://doi.org/10.1108/imds-05-2023-0337
  • Chen, Y., Prentice, C., Weaven, S. & Hisao, A. (2022). The influence of customer trust and artificial intelligence on customer engagement and loyalty – The case of the home-sharing industry. Frontiers in Psychology, 13, 912339. https://doi.org/10.3389/fpsyg.2022.912339
  • Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modelling. G. A. Marcoulides (Ed.), Modern Methods for Business Research (s. 295-336) içinde. London: Lawrence Erlbaum Associates.
  • Choi, H., Park, J. & Jung, Y. (2018). The role of privacy fatigue in online privacy behavior. Computers In Human Behavior, 81, 42-51. https://doi.org/10.1016/j.chb.2017.12.001
  • Chiasson, S., Abdelaziz, Y. & Chanchary, F. (2018). Privacy concerns amidst OBA and the need for alternative models. IEEE Internet Computing, 22(2), 52–61. https://doi.org/10.1109/mic.2017.3301625
  • Cohen, J.,Cohen, P., West, S. G. & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale, NJ: Erlbaum.
  • Craig, V. S., Shim, J. T., Johnson, R. & Jiang, J. (2006). Concern for information privacy and online consumer Purchasing. Journal of the Association for Information Systems, 7(6), 415-431, 433-443. https://doi.org/10.17705/1jais.00092
  • Culnan, M. J., & Armstrong, P. K. (1999). Information privacy concerns, procedural fairness and impersonal trust: an empirical investigation. Organization Science 10(1), 104–115. https://doi.org/10.1287/orsc.10.1.104
  • Culnan, M. J. & Bies, R. J. (2003). Consumer privacy: Balancing economic and justice considerations. Journal of Social Issues, 59(2), 323-342. https://doi.org/10.1111/1540-4560.00067
  • Çakır, F. S. (2019). Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesi (PLS-SEM) ve Bir Uygulama. Sosyal Araştırmalar ve Davranış Bilimleri Dergisi, 5(9), 111-128.
  • Davenport, T., Guha, A., Grewal, D. & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24–42. https://doi.org/10.1007/s11747-019-00696-0
  • Deloitte. (2020). Connecting with Meaning-Hyper Personalizing the Customer Experience Using Data, Analytics and AI. 27.05.2020 tarihinde https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/deloitte-analytics/ca-en-omnia-ai-marketing-pov-fin-jun24-aoda.pdf adlı adresten alınmıştır.
  • Dienlin, T. & Trepte, S. (2015). Is the privacy paradox a relic of the past? An in-depth analysis of privacy attitudes and privacy behaviors. European Journal of Social Psychology, 45(3), 285–297. https://doi.org/10.1002/ejsp.2049
  • Dinev, T. & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61–80. https://doi.org/10.1287/isre.1060.0080
  • Do, Q. & Trang, T. (2020). An approach based on machine learning techniques for forecasting Vietnamese consumers’ purchase behaviour.Decision Science Letters , 9(3), 313-322. http://dx.doi.org/10.5267/j.dsl.2020.5.004
  • Doğan K. & Arslantekin S. (2016). Büyük veri: önemi, yapısı ve günümüzdeki durum. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 56(1), 16. https://doi.org/10.1501/Dtcfder_0000001461
  • Dotcms. (2018). Hyper-Personalization: It's Time to Truly Meet Your Customers. 27.05.2023 tarihinde https://www.dotcms.com/reports/hyper-personalization-it-s-time-to-truly-meet-your-customers adlı adresten alınmıştır.
  • Dunakhe, K. & Panse, C. (2022). Impact of digital marketing – a bibliometric review. International Journal of Innovation Science, 14(3/4), 506-518. https://doi.org/10.1108/IJIS-11-2020-0263
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C. & Crick, T. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Estrada-Jiménez, J., Parra-Arnau, J., Rodríguez-Hoyos, A. & Forné, J. (2016). Online advertising: Analysis of privacy threats and protection approaches. Computer Communications, 100, 32–51. https://doi.org/10.1016/j.comcom.2016.12.016
  • Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A. & Kashef, R. (2020). Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Applied Sciences, 10(21):7748. https://doi.org/10.3390/app10217748
  • Ferreyra, N. E. D., Kroll, T., Aïmeur, E., Stieglitz, S. & Heisel, M. (2020). Preventative Nudges: Introducing risk cues for supporting online Self-Disclosure decisions. Information, 11(8), 399. https://doi.org/10.3390/info11080399
  • Fornell, C. & Larcker, D.F.(1981). Structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of Marketing Research,18(3), 382–388. https://doi.org/10.2307/3150980
  • Fu, J., Zhang, J. & Li, X. (2023). How do risks and benefits affect user’ privacy decisions? An event-related potential study on privacy calculus process. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1052782
  • Gudivada, V., Apon, A. & Ding, J. (2017). Data quality considerations for big data and machine-learning: Going beyond data cleaning and transformations. International Journal on Advances in Software, 10(1), 1–20.
  • Hair, J. F., Ringle, C. M. & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
  • Hair, J. F., Hult, T., Ringle, C., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications, Inc.
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of compositebased structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632. https://doi:10.1007/s11747-017-0517-x
  • Hallam, C. & Zanella, G. (2017). Online self-disclosure: The privacy paradox explained as a temporally discounted balance between concerns and rewards. Computers in Human Behavior, 68, 217-227. https://doi.org/10.1016/j.chb.2016.11.033
  • Harris, L. C. & Goode, M. M. H. (2010). Online serviscapes, trust, and purchase intentions. Journal of Service Marketing. 24(3), 230-243. https://doi.org/10.1108/08876041011040631
  • Hayes, J. L., Brinson, N. H., Bott, G. J. & Moeller, C. M. (2021). The influence of consumer–brand relationship on the personalized advertising privacy calculus in social media. Journal of Interactive Marketing, 55(1), 16–30. https://doi.org/10.1016/j.intmar.2021.01.001
  • Helweg-Larsen, M. & Shepperd, J. A. (2001). Do moderators of the optimistic bias affect personal or target risk estimates? A review of the literature. Personality and Social Psychology Bulletin, 5(1), 75-95. https://doi.org/10.1207/S15327957PSPR0501_5
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
  • Ho, F. N., Ho-Dac, N. & Huang, J. S. (2023). The effects of privacy and data breaches on consumers’ online Self-Disclosure, protection behavior, and message valence. SAGE Open, 13(3). https://doi.org/10.1177/21582440231181395
  • Hoffmann, C. P., Lutz, C. & Ranzini, G. (2016). Privacy cynicism: A new approach to the privacy paradox. Cyberpsychology Journal of Psychosocial Research on Cyberspace, 10(4). https://doi.org/10.5817/cp2016-4-7
  • Hu, L. T. & Bentler, P.M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modelling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Huang, M. & Rust, R. (2017). Technology-driven Service Strategy. Journal of the Academy of Marketing Science, 45(6), 906-924. https://doi.org/10.1007/s11747-017-0545-6
  • Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies, Strategic Management Journal, 20(2), 195-204.
  • Ioannou, A., Tussyadiah, I. & Lu, Y. (2020). Privacy concerns and disclosure of biometric and behavioral data for travel. International Journal of Information Management, 54, 102122. https://doi.org/10.1016/j.ijinfomgt.2020.102122
  • Jahari, S. A., Hass, A., Hass, D. & Joseph, M. (2022). Navigating privacy concerns through societal benefits: A case of digital contact tracing applications. Journal of Consumer Behaviour, 21(3), 625–638. https://doi.org/10.1002/cb.2029
  • Jensen, C., Potts, C. & Jensen, C. (2005). Privacy practices of Internet users: Self-reports versus observed behavior. International Journal of Human-Computer Studies, 63(1–2), 203-227, https://doi.org/10.1016/j.ijhcs.2005.04.019
  • Kaplan, A. & Haenlein, M. (2019). Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1): 15-25. https://doi.org/10.1016/j.bushor.2018.08.004
  • Karim, M. & Rahman, R. (2013). Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing. Journal of Software Engineering and Applications, 6(4), 196-206. https://doi.org/10.4236/jsea.2013.64025
  • Kim, H. W., Chan, H. C. & Gupta, S. (2007). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43, 111-126.
  • Kim, D., Park, K., Park, Y. & Ahn, J. (2019). Willingness to provide personal information: Perspective of privacy calculus in IoT services. Computers in Human Behavior, 92, 273–281. https://doi.org/10.1016/j.chb.2018.11.022
  • Kim, S. & Baek, T. H. (2017). Examining the antecedents and consequences of mobile app engagement. Telematics and Informatics, 35(1), 148–158. https://doi.org/10.1016/j.tele.2017.10.008
  • Klein, C. T. F. & Helweg-Larsen, M. (2002). Perceived control and the optimistic bias: A meta-analytic review. Psychology and Health, 17, 437-446. https://doi.org/10.1080/0887044022000004920
  • Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 1-10. https://doi.org/10.1016/j.tourman.2021.104330
  • Komiak, S. Y. & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents, MIS Quarterly, 941–960. https://doi.org/10.2307/25148760
  • Kotler, P. (2021). Pazarlama 5.0: İnsan için Teknoloji. Nişanstaşı Üniversitesi Yayınları.
  • Krishnan, C., Gupta, A., Gupta, A. & Singh, G. (2022). Impact of Artificial Intelligence-Based Chatbots on customer engagement and business growth. In Studies in big data (pp. 195–210). https://doi.org/10.1007/978-3-031-10869-3_11
  • Laufer, R. S. & Wolfe, M. (1977). Privacy as a concept and a social issue: a multidimensional developmental theory. Journal of Social Issues, 33(3), 22–42. https://doi.org/10.1111/j.1540-4560.1977.tb01880.x
  • Lee, J. M. & Rha, J. Y. (2016). Personalization–privacy paradox and consumer conflict with the use of location-based mobile commerce. Computers in Human Behavior, 63, 453–462. https://doi.org/10.1016/j.chb.2016.05.056
  • Leon, P. G., Ur, B., Shay, R., Wang, Y., Balebako, R. & Cranor, L. (2012). Why Johnny can't opt out: A usability evaluation of tools to limit online behavioral advertising. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp 589-598).
  • Li, Y. (2012). Theories in online information privacy research: A critical review and an integrated framework. Decision Support Systems, 54(1), 471-481, https://doi.org/10.1016/j.dss.2012.06.010
  • Liu, Y., Zhao, H. & Yang, B. (2022). Research on customer churn prediction and model interpretability using GA-XGBoost algorithm. PLOS ONE, 17(8), e0289724. https://doi.org/10.1371/journal.pone.0289724
  • Mach-Król, M. & Hadasik, B. (2021). On a certain research gap in big data mining for customer insights. Applied Sciences, 11(15), 6993. https://doi.org/10.3390/app11156993
  • Maheswari, K. & Priya, P. P. A. (2017). Predicting customer behavior in online shopping using SVM classifier. In: 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputtur, India. 1-5. https://doi.org/10.1109/ITCOSP.2017.8303085
  • Malhotra, N. K., Kim, S. S. & Agarwal, J. (2004). Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336–355. https://doi.org/10.1287/isre.1040.0032
  • Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J. & Cusimano, C. (2015). Sacrifice one for the good of many? People apply different moral norms to human and robot agents. In: 10th ACM/IEEE international conference on human-robot interaction (HRI). Mart, 2015. pp. 117-124. IEEE.
  • Martin, K. D., Borah, A. & Palmatier, R. W. (2017). Data privacy: Effects on customer and firm performance. Journal of Marketing, 81(1), 36–58. https://doi.org/10.1509/jm.15.0497
  • Martin, K. D. & Murphy, P. E. (2017). The role of data privacy in marketing: A review and research agenda. Journal of the Academy of Marketing Science, 45(2), 135-155. https://doi.org/10.1007/s11747-016-0495-4
  • Massara, F., Raggiotto, F. & Voss, W. G. (2021). Unpacking the privacy paradox of consumers: A psychological perspective. Psychology and Marketing, 38(10), 1814–1827. https://doi.org/10.1002/mar.21534
  • McKnight, D. H., Choudhury, V. & Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3), 334–359. http://www.jstor.org/stable/23015741
  • Metzger, M. J. (2007). Communication Privacy Management in Electronic Commerce. Journal of Computer-Mediated Communication, 12(2), 335–361, https://doi.org/10.1111/j.1083-6101.2007.00328.x
  • Milne, G. R., Rohm, A.J. & Bahl, S. (2004). Consumers’ Protection of Online Privacy and Identity. Journal of Consumer Affairs, 38, 217-232. https://doi.org/10.1111/j.1745-6606.2004.tb00865.x
  • Mousavi, R., Chen, R., Kim, D. J., & Chen, K. (2020). Effectiveness of privacy assurance mechanisms in users’ privacy protection on social networking sites from the perspective of protection motivation theory. Decision Support Systems, 135, 113323. https://doi.org/10.1016/j.dss.2020.113323
  • Nobile, T. H. & Kalbaska, N. (2020). An Exploration of Personalization in Digital Communication. Insights in Fashion. 456-473. In: Nah, FH., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2020. Lecture Notes in Computer Science, vol 12204. Springer, Cham. https://doi.org/10.1007/978-3-030-50341-3_35
  • Norberg, P. A., Horne, D. R. & Horne, D. A. (2007). The privacy paradox: Personal information disclosure intentions versus behaviors. Journal of Consumer Affairs, 41(1), 100–126. https://doi.org/10.1111/j.1745-6606.2006.00070.x
  • Omarzu, J. (2000). A disclosure decision model: Determining how and when individuals will Self-Disclose. Personality and Social Psychology Review, 4(2), 174–185. https://doi.org/10.1207/s15327957pspr0402_05
  • Osatuyi, B., Passerini, K., Ravarini, A. & Grandhi, S. A. (2018). “ Fool me once, shame on you . . . then, I learn.” An examination of information disclosure in social networking sites. Computers in Human Behavior, 83, 73–86. https://doi.org/10.1016/j.chb.2018.01.018
  • Paschen, J., Kietzmann, J. & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410–1419. https://doi.org/10.1108/JBIM-10-2018-0295
  • Plangger, K., Grewal, D., de Ruyter, K. & Tucker, C. (2022). The future of digital technologies in marketing: A conceptual framework and an overview. Journal of the Academy of Marketing Science 50, 1125–1134. https://doi.org/10.1007/s11747-022-00906-2
  • Princi, E. & Krämer, N. C. (2020). Out of control – Privacy calculus and the effect of perceived control and moral considerations on the usage of IoT healthcare devices. Frontiers in Psychology, 11, 582054. https://doi.org/10.3389/fpsyg.2020.582054
  • Podsakoff, P., MacKenzie, S., & Podsakoff, N. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review Psychology, 63, 539-569. http://dx.doi.org/10.1146/annurev-psych-120710-100452
  • Punj, G. N. (2018). Understanding individuals’ intentions to limit online personal information disclosures to protect their privacy: implications for organizations and public policy. Information Technology and Management, 20(3), 139–151. https://doi.org/10.1007/s10799-018-0295-2
  • Quinn, K. (2014). An ecological approach to privacy: “Doing” online privacy at Midlife. Journal of Broadcasting & Electronic Media, 58(4), 562–580. https://doi.org/10.1080/08838151.2014.966357
  • Rust, R. T. & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206–221. https://doi.org/10.1287/mksc.2013.0836
  • Sabharwal, R. & Miah, S. J. (2021). A new theoretical understanding of big data analytics capabilities in organizations: A thematic analysis. Journal of Big Data, 8(1), 1-17. https://doi.org/10.1186/s40537-021-00543-6
  • Saponaro, M., Le Gal, D., Gao, M., Guisiano, M. & Maniere, I. C. (2018). Challenges and opportunities of artificial intelligence in the fashion world. In: International Conference on Intelligent and Innovative Computing Applications (ICONIC). Aralık, 2018. pp. 1–5. IEEE. https://doi.org/10.1109/ICONIC.2018.8601258
  • Shank, D. B., Graves, C., Gott, A., Gamez, P. & Rodriguez, S. (2019). Feeling our way to machine minds: people’s emotions when perceiving mind in artificial intelligence. Computers in Human Behavior, 98, 256–266. https://doi.org/10.1016/j.chb.2019.04.001
  • Smit, E. G., Van Noort, G. & Voorveld, H. A. (2014). Understanding online behavioural advertising: User knowledge, privacy concerns and online coping behaviour in Europe. Computers in Human Behavior, 32, 15–22. https://doi.org/10.1016/j.chb.2013.11.008
  • Smith, H. J., Milberg, J. S. & Burke, J. S. (1996). Information privacy: measuring individuals' concerns about organizational practices. MIS Quarterly 20 (2), 167–196. https://doi.org/10.2307/249477
  • Smith, H. J., Dinev, T. & Xu, H. (2011). Information Privacy Research: An Interdisciplinary Review. MIS Quarterly. 35, 989-1016.
  • Sun, X., Pelet, J., Dai, S. & Ma, Y. (2023). The effects of trust, perceived risk, innovativeness, and deal proneness on consumers’ purchasing behavior in the livestreaming social commerce context. Sustainability, 15(23), 16320. https://doi.org/10.3390/su152316320
  • Tam, K. Y. & Ho, S. Y. (2006). Understanding the Impact of Web Personalization on User Information Processing and Decision Outcomes. MIS Quarterly, 30(4), 865–890. https://doi.org/10.2307/25148757
  • Tang, J., Zhang, B. & Xiao, S. (2022). Examining the intention of authorization via apps: Personality traits and expanded privacy calculus perspectives. Behavioral Sciences, 12(7), 218. https://doi.org/10.3390/bs12070218
  • Tenenhaus, M., Vinzi, V. E. Chatelin, Y-M. & Lauro, C. (2004). PLS Path Modeling. Computational Statistics and Data Analysis, 48(1), 159-205. https://doi.org/10.1016/j.csda.2004.03.005
  • Tiago, M. T. P. M. B. & Veríssimo, J. M. C. (2014). Digital marketing and social media: Why bother? Business Horizons, Elsevier, 57(6), 703-708. https://doi.org/10.1016/j.bushor.2014.07.002
  • Tian, X., Chen, L. & Zhang, X. (2022). The Role of Privacy Fatigue in Privacy Paradox: A PSM and Heterogeneity Analysis. Applied Sciences, 12, 9702. https://doi.org/10.3390/app12199702
  • Tiihonen, J. & Felfernig, A. (2017). An introduction to personalization and mass customization. Journal of Intelligent Information Systems, 49, 1–7. https://doi.org/10.1007/s10844-017-0465-4
  • Toch, E., Wang, Y. & Cranor, L. F. (2012). Personalization and privacy: a survey of privacy risks and remedies in personalization-based systems. User Modeling and User-Adapted Interaction 22(1-2), 203-220. https://doi.org/10.1007/s11257-011-9110-z
  • Trepte, S. (2020). The social media privacy model: Privacy and communication in the light of social media affordances. Communication Theory, 31(4), 549-570.
  • Tsohou, A. & Papaioannou, T. (2021). Impacts of information privacy violations. In Springer eBooks (pp. 1–4). https://doi.org/10.1007/978-3-642-27739-9_1614-1
  • Tufekci, Z. (2008). Grooming, gossip, Facebook and MySpace: What can we learn about these sites from those who won't assimilate? Information, Communication & Society, 11, 544–564. http://dx.doi.org/10.1080/13691180801999050
  • Tyrväinen, O., Karjaluoto, H. & Saarijärvi, H. (2020). Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. Journal of Retailing and Consumer Services, 57, 102233. https://doi.org/10.1016/j.jretconser.2020.102233
  • Unni, R. & Harmon, R. (2007). Perceived Effectiveness of Push vs. Pull Mobile Location-based Advertising, Journal of Interactive Advertising 7(2), 28-40.
  • Van Der Schyff, K. & Flowerday, S. (2023). The mediating role of perceived risks and benefits when self-disclosing: A study of social media trust and FoMO. Computers & Security, 126, 103071. https://doi.org/10.1016/j.cose.2022.103071
  • Veltri, G. A., Lupiáñez-Villanueva, F., Folkvord, F., Theben, A. & Gaskell, G. (2020). The impact of online platform transparency of information on consumers’ choices. Behavioural Public Policy, 7(1), 55–82. https://doi.org/10.1017/bpp.2020.11
  • Vimalkumar, M., Sharma, S. K., Singh, J. B. & Dwivedi, Y. K. (2021). ‘Okay google, what about my privacy?’: User's privacy perceptions and acceptance of voice based digital assistants. Computers in Human Behavior, 120, 106763. https://doi.org/10.1016/j.chb.2021.106763
  • Wang, J., Cao, Q. & Zhu, X. (2024). Privacy disclosure on social media: the role of platform features, group effects, trust and privacy concern. Library Hi Tech. https://doi.org/10.1108/lht-06-2023-0253
  • Wang, N., Zhao, Y., Zhou, R. & Li, Y. (2022). Factors influencing users’ online information disclosure intention and the moderating effect of cultural background and platform type. Aslib Journal of Information Management, 75(6), 1178–1208. https://doi.org/10.1108/ajim-04-2022-0218
  • Westin, A. F. (1967). Privacy and Freedom. Atheneum.
  • Wetzels, M., Odekerken-Schröder, G., & van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177- 195. https://doi.org/10.2307/20650284
  • White, T. B. (2004). Consumer Disclosure and Disclosure Avoidance: A Motivational Framework. Journal of Consumer Psychology, 14(1–2): 41–51. https://doi.org/10.1207/s15327663jcp1401&2_6
  • Wilson, D. W. & Valacich, J. S. (2012). Unpacking the Privacy Paradox: Irrational Decision-Making within the Privacy Calculus. Proceedings of the 33rd International Conference on Information Systems, 41, 114–125.
  • Wong, K. K. (2013). Partial least square structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24, 1-32.
  • Wu X., Zhu X., Wu G. Q. & Ding W. (2014). Data mining with big data, IEEE transactions on knowledge and data engineering, 26 (1), 97-107. https://doi.org/10.1109/TKDE.2013.109
  • Xu, H. (2007). The Effects of Self-Construal and Perceived Control on Privacy Concerns. In: Twenty Eighth International Conference on Information Systems (ICIS).
  • Xu, H., Luo, X. (Robert), Carroll, John M. & Rosson M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems 51, 42-52. https://doi.org/10.1016/j.dss.2010.11.017
  • Yıldız, E. (2021). SmartPLS ile Yapısal Eşitlik Modellemsi, Reflektif ve Formatif Yapılar. Seçkin Yayıncılık.
  • Yılmaz, V. & Kinaş, Y. (2021). Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesiyle Mobil Bankacılık Kullanımının Araştırılması, Gazi İktisat ve İşletme Dergisi, 7(2), 133-149. https://doi.org/10.30855/gjeb.2021.7.2.004
  • Young, A. & Quan-Haase, A. (2013). Privacy protection strategies on Facebook: The Internet privacy paradox revisited. Information, Communication & Society, 16, 479–500. http://dx.doi.org/10.1080/1369118x.2013.777757
  • Zanker, M., Rook, L. & Jannach, D. (2019). Measuring the impact of online personalisation: Past, present and future. International Journal of Human-Computer Studies, 131, 160–168. https://doi.org/10.1016/j.ijhcs.2019.06.006
  • Zhou H, Xiong, F. & Chen H. (2023). A Comprehensive Survey of Recommender Systems Based on Deep Learning. Applied Sciences, 13(20), 11378. https://doi.org/10.3390/app132011378
  • Zhu, X., Cao, Q. & Liu, C. (2022). Mechanism of platform interaction on social media users’ intention to disclose privacy: A case study of TikTok APP. Information, 13(10), 461. https://doi.org/10.3390/info13100461
Toplam 145 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Dijital Pazarlama, Tüketici Davranışı
Bölüm Araştırma Makalesi
Yazarlar

Şebnem Başimi Holzer 0009-0000-3131-3980

Nesrin Alptekin 0000-0002-8967-8955

Proje Numarası SBA-2023-1880
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 13 Ağustos 2024
Kabul Tarihi 6 Mayıs 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Başimi Holzer, Ş., & Alptekin, N. (2025). HİPER-KİŞİSELLEŞTİRME UYGULAMALARININ TÜKETİCİNİN ÇEVRİMİÇİ ETKİLEŞİME DEVAM ETME DAVRANIŞINA ETKİSİ. Anadolu Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 26(2), 1-41. https://doi.org/10.53443/anadoluibfd.1532705


This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License since 2023.