Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de hayvansal kaynaklı gıda örneklerinden izole edilen koagülaz negatif stafilokokların biyofilm oluşturmaları ve antibiyotik dirençliliklerinin fenotipik ve moleküler olarak belirlenmesi

Yıl 2025, Cilt: 30 Sayı: 2, 231 - 240, 29.05.2025
https://doi.org/10.21673/anadoluklin.1571130

Öz

Amaç: Bu çalışmanın amacı, çeşitli hayvansal gıda örneklerinden (çiğ süt, peynir, tavuk, et) izole edilen koagülaz-negatif Stafilokokların (KNS) antibiyotik direnci ve biyofilm oluşturma özelliklerini araştırmaktır.

Yöntemler: Çeşitli hayvansal gıda örneklerinden (çiğ süt, peynir, tavuk, et) izole edilen toplam 60 Staphylococcus izolatı, Üniversitenin Mikrobiyoloji Laboratuvarı’nın dondurulmuş kültür koleksiyonundan elde edilmiştir. İzolatlar antibiyotik direnci, biyofilm ve S tabakası oluşturma ve biyofilmle ilişkili genler açısından değerlendirilmiştir.

Bulgular: Test edilen izolatların 22’si KNS olarak tanımlanmıştır. KNS izolatları fosfomisin (%68,2; 15/22), fusidik asit (%63,6, n=14/22) ve tetrasikline (%59,1, n=13/22) yüksek oranda dirençli bulunmuştur. Diğer antibiyotiklere karşı orta düzeyde direnç tespit edilmiştir. Slime üretimi (%54.5, n=12/22) ve S-tabakası üretiminin (%40.9, n=9/22) oldukça yüksek oranda olduğu belirlenmiştir. KNS izolatlarının biyofilm oluşumunun 24 saatlik deneyde daha güçlü olduğu görülmüştür. Biyofilm oluşumu ile ilgili gen araştırmasında, 22 KNS izolatının 10’unun (%45) icaA geni için ve 4’ünün (%18) icaD geni için pozitif olduğu, izolatların tümünün bap geni için negatif olduğu belirlenmiştir.

Sonuç: Hayvanlardan elde edilen gıdalarda bulunan KNS’ler, antibiyotik direnci ile ilişkili önemli faktörlerden biri olması sebebiyle klinik etkileri olan halk sağlığı sorunlarına yol açabilmektedirler. Üretim ve tüketim aşamalarında antibiyotik direnci ve biyofilm oluşturma yeteneği kazanabilen bakteriler, insanlar ve hayvanlar için kritik bir sağlık sorunu oluşturabilmektedirler.

Proje Numarası

FGA-2021-7044

Kaynakça

  • Gizaw F, Kekeba T, Teshome F, et al. Distribution and antimicrobial resistance profile of coagulase-negative staphylococci from cattle, equipment, and personnel on dairy farm and abattoir settings. Heliyon. 2020;6(3):e03606.
  • Yurdakul NC, Enginkaya Z, Ünal E. Antibiotic resistance of enterococci, coagulase negative staphylococci and isolated from chicken meat. Czech J Food Sci. 2013;31(1):14–9.
  • Resch M, Nagel V, Hertel C. Antibiotic resistance of coagulase-negative staphylococci associated with food and used in starter cultures. Int J Food Microbiol. 2008;127(1-2):99-104.
  • Capita R, Alonso-Calleja C. Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr. 2013;53(1):11-48.
  • Öztürk ŞB, Sakarya S. Nöraminidazın Koagülaz Negatif Stafilokok Suşlarında Biyofilm Oluşumu, Bakteri Adheransı ve Antibiyotik Direncine Etkisinin Araştırılması: İn Vitro Çalışma. Türk Mikrobiol Cem Der. 2016;46(1):18-26.
  • Cengiz SA, Us E, Cengiz AT. Slime faktörünün klinikteki yeri ve önemi. J Turgut Ozal Med Center. 2006;13(3):193-7.
  • Satpathy S, Sen SK, Pattanaik S, Raut S. Review on bacterial biofilm: An universal cause of contamination. Biocatal Agri Biotechnol. 2016;7:56-66.
  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603-61.
  • Cruzado-Bravo MLM, Silva NCC, Rodrigues MX, Silva GOE, Porto E, Sturion GL. Phenotypic and genotypic characterization of Staphylococcus spp. isolated from mastitis milk and cheese processing: Study of adherence and biofilm formation. Food Res Int. 2019;122:450-60.
  • Vautor E, Abadie G, Pont A, Thiery R. Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet Microbiol. 2008;127(3-4):407-11.
  • European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2023) [online]. Website https://www.eucast.org/clinical_breakpoints/. June 2023. 18.10.2024
  • Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989;42(8):872-4.
  • Bernoth EM. Autoagglutination, growth on tryptone‐soy‐Coomassieagar, outer membrane protein patterns and virulence of Aeromonas salmonicida strains. J Fish Dis. 1990;13(2):145-55.
  • Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175-9.
  • Suvajdžić B, Teodorović V, Vasilev D, et al., Detection of icaA and icaD genes of Staphylococcus aureus isolated in cases of bovine mastitis in the Republic of Serbia. Acta Vet. 2017;67(2):168-77.
  • Vasudevan P, Nair MK, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol. 2003;92(1-2):179-85.
  • Cucarella C, Tormo MA, Ubeda C, et al. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun. 2004;72(4):2177-85.
  • Marek A, Pyzik E, Stępień-Pyśniak D, et al. Biofilm-Formation Ability and the Presence of Adhesion Genes in Coagulase-Negative Staphylococci Isolates from Chicken Broilers. Animals (Basel). 2021;11(3):728.
  • Woroszyło M, Pendrak K, Ciecholewska D, Padzik N, Szewczuk M, Karakulska J. Investigation of biofilm formation ability of coagulase-negative staphylococci isolated from ready-to-eat meat. Acta Sci Polon Zoot. 2019;17(4):27-34.
  • Zafalon LF, Cunha MLRS, Brandão HM, et al., Relationship between virulence factor genes in coagulase-negative Staphylococcus spp. and failure of antimicrobial treatment of subclinical mastitis in sheep. Pesq Vet Bras. 2018;38(4):579-85.
  • El-Seedy RF, Radwan AI, Hassan HW, Shehata A. Coagulase Negative Staphylococci as an emerging cause of bovine mastitis: prevalence, antimicrobial resistance and biofilm formation. J Vet Med Res. 2017;24(1):1-11.
  • Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4):870-926.
  • Yılmaz ES, Aslantaş Ö, Önen SP, Türkyılmaz S, Kürekci C. Prevalence, antimicrobial resistance and virulence traits in enterococci from food of animal origin in Turkey. Food Sci Tech. 2016;66:20-6.
  • Doyle ME. Veterinary drug residues in processed meats potential health risk. A review of the scientific literature. Accessed June 2023. Available from: http://www.wisc.edu/fri/briefs/FRIBrief_VetDrgRes.pdf, 04.01.2006.
  • Suller MT, Russell AD. Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect. 1999;43(4):281-91.
  • Kroning IS, Iglesias MA, Sehn CP, Valente Gandra TK, Mata MM, da Silva WP. Staphylococcus aureus isolated from handmade sweets: Biofilm formation, enterotoxigenicity and antimicrobial resistance. Food Microbiol. 2016;58:105-11.
  • Gündoğan N, Ataol Ö. Et örneklerinden izole edilen Staphylococcus aureus ve koagülaz negatif stafilokok’ların biyofilm üretimi ve DNaz aktivitelerinin belirlenmesi. Turk Hij Den Biyol Derg. Eylül 2012;69(3):135-42.
  • Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522-54.
  • Yüksekdağ ZN, Baltacı N. Staphylococcus aureus türlerinde biyofilm ve biyofilm oluşumundan sorumlu genler. Türk Mikrobiyol Cem Der. 2013;43(3):77-83.
  • Tremblay YD, Lamarche D, Chever P, Haine D, Messier S, Jacques M. Characterization of the ability of coagulase-negative staphylococci isolated from the milk of Canadian farms to form biofilms. J Dairy Sci. 2013;96(1):234-46.
  • Andrade NC, Laranjo M, Costa MM, Queiroga MC. Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes. Antibiotics (Basel). 2021;10(6):633.
  • Gajewska J, Chajęcka-Wierzchowska W. Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk. Pathogens. 2020;9(8):654.

Phenotypic and molecular determination of biofilm formation and antibiotic resistance of coagulase negative staphylococci isolated from food samples of animal origin in Turkey

Yıl 2025, Cilt: 30 Sayı: 2, 231 - 240, 29.05.2025
https://doi.org/10.21673/anadoluklin.1571130

Öz

Aim: This study aimed to investigate the antibiotic resistance and biofilm formation characteristics of the coagulase-negative Staphylococcus (CNS) isolated from various animal food samples (raw milk, cheese, chicken, meat).

Methods: A total of 60 Staphylococcus isolates collected from various animal food samples (raw milk, cheese, chicken, meat) were obtained from the frozen culture collection of the Microbiology Laboratory of the Gazi University. The isolates were assessed regarding antibiotic resistance, biofilm and s-layer formation, and biofilm-associated genes.

Results: In total, 22 CNS isolates were identified. The CNS isolates were highly resistant to fosfomycin (68.2%; 15/22), fusidic acid (63.6%, n=14/22), and tetracycline (59.1%, n=13/22). There was an intermediate resistance to other antibiotics as well. There was very strong slime production (54.5%, n=12/22) and S-layer production (40.9%, n=9/22). The biofilm formation of CNS isolates was better at 24 hours. Regarding the biofilm-producing genes, 10 (45%) of 22 CNS isolates were positive for the icaA gene, and 4 (18%) isolates were positive for the icaD gene, while all of the isolates were negative for the bap gene.

Conclusion: The CNS existing in foods from animals may lead to public health problems with clinical implications as a result of being one of the important factors associated with antibiotic resistance. The bacteria that can gain antibiotic resistance and biofilm formation capabilities in the stages of production and consumption may be a critical healthcare issue for humans and animals.

Destekleyen Kurum

Gazi University

Proje Numarası

FGA-2021-7044

Teşekkür

The authors are grateful to Gazi University Projects of Scientific Research (BAP) for the financial support of this study (Grant number: FGA-2021-7044).

Kaynakça

  • Gizaw F, Kekeba T, Teshome F, et al. Distribution and antimicrobial resistance profile of coagulase-negative staphylococci from cattle, equipment, and personnel on dairy farm and abattoir settings. Heliyon. 2020;6(3):e03606.
  • Yurdakul NC, Enginkaya Z, Ünal E. Antibiotic resistance of enterococci, coagulase negative staphylococci and isolated from chicken meat. Czech J Food Sci. 2013;31(1):14–9.
  • Resch M, Nagel V, Hertel C. Antibiotic resistance of coagulase-negative staphylococci associated with food and used in starter cultures. Int J Food Microbiol. 2008;127(1-2):99-104.
  • Capita R, Alonso-Calleja C. Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr. 2013;53(1):11-48.
  • Öztürk ŞB, Sakarya S. Nöraminidazın Koagülaz Negatif Stafilokok Suşlarında Biyofilm Oluşumu, Bakteri Adheransı ve Antibiyotik Direncine Etkisinin Araştırılması: İn Vitro Çalışma. Türk Mikrobiol Cem Der. 2016;46(1):18-26.
  • Cengiz SA, Us E, Cengiz AT. Slime faktörünün klinikteki yeri ve önemi. J Turgut Ozal Med Center. 2006;13(3):193-7.
  • Satpathy S, Sen SK, Pattanaik S, Raut S. Review on bacterial biofilm: An universal cause of contamination. Biocatal Agri Biotechnol. 2016;7:56-66.
  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603-61.
  • Cruzado-Bravo MLM, Silva NCC, Rodrigues MX, Silva GOE, Porto E, Sturion GL. Phenotypic and genotypic characterization of Staphylococcus spp. isolated from mastitis milk and cheese processing: Study of adherence and biofilm formation. Food Res Int. 2019;122:450-60.
  • Vautor E, Abadie G, Pont A, Thiery R. Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet Microbiol. 2008;127(3-4):407-11.
  • European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2023) [online]. Website https://www.eucast.org/clinical_breakpoints/. June 2023. 18.10.2024
  • Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989;42(8):872-4.
  • Bernoth EM. Autoagglutination, growth on tryptone‐soy‐Coomassieagar, outer membrane protein patterns and virulence of Aeromonas salmonicida strains. J Fish Dis. 1990;13(2):145-55.
  • Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175-9.
  • Suvajdžić B, Teodorović V, Vasilev D, et al., Detection of icaA and icaD genes of Staphylococcus aureus isolated in cases of bovine mastitis in the Republic of Serbia. Acta Vet. 2017;67(2):168-77.
  • Vasudevan P, Nair MK, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol. 2003;92(1-2):179-85.
  • Cucarella C, Tormo MA, Ubeda C, et al. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun. 2004;72(4):2177-85.
  • Marek A, Pyzik E, Stępień-Pyśniak D, et al. Biofilm-Formation Ability and the Presence of Adhesion Genes in Coagulase-Negative Staphylococci Isolates from Chicken Broilers. Animals (Basel). 2021;11(3):728.
  • Woroszyło M, Pendrak K, Ciecholewska D, Padzik N, Szewczuk M, Karakulska J. Investigation of biofilm formation ability of coagulase-negative staphylococci isolated from ready-to-eat meat. Acta Sci Polon Zoot. 2019;17(4):27-34.
  • Zafalon LF, Cunha MLRS, Brandão HM, et al., Relationship between virulence factor genes in coagulase-negative Staphylococcus spp. and failure of antimicrobial treatment of subclinical mastitis in sheep. Pesq Vet Bras. 2018;38(4):579-85.
  • El-Seedy RF, Radwan AI, Hassan HW, Shehata A. Coagulase Negative Staphylococci as an emerging cause of bovine mastitis: prevalence, antimicrobial resistance and biofilm formation. J Vet Med Res. 2017;24(1):1-11.
  • Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4):870-926.
  • Yılmaz ES, Aslantaş Ö, Önen SP, Türkyılmaz S, Kürekci C. Prevalence, antimicrobial resistance and virulence traits in enterococci from food of animal origin in Turkey. Food Sci Tech. 2016;66:20-6.
  • Doyle ME. Veterinary drug residues in processed meats potential health risk. A review of the scientific literature. Accessed June 2023. Available from: http://www.wisc.edu/fri/briefs/FRIBrief_VetDrgRes.pdf, 04.01.2006.
  • Suller MT, Russell AD. Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect. 1999;43(4):281-91.
  • Kroning IS, Iglesias MA, Sehn CP, Valente Gandra TK, Mata MM, da Silva WP. Staphylococcus aureus isolated from handmade sweets: Biofilm formation, enterotoxigenicity and antimicrobial resistance. Food Microbiol. 2016;58:105-11.
  • Gündoğan N, Ataol Ö. Et örneklerinden izole edilen Staphylococcus aureus ve koagülaz negatif stafilokok’ların biyofilm üretimi ve DNaz aktivitelerinin belirlenmesi. Turk Hij Den Biyol Derg. Eylül 2012;69(3):135-42.
  • Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522-54.
  • Yüksekdağ ZN, Baltacı N. Staphylococcus aureus türlerinde biyofilm ve biyofilm oluşumundan sorumlu genler. Türk Mikrobiyol Cem Der. 2013;43(3):77-83.
  • Tremblay YD, Lamarche D, Chever P, Haine D, Messier S, Jacques M. Characterization of the ability of coagulase-negative staphylococci isolated from the milk of Canadian farms to form biofilms. J Dairy Sci. 2013;96(1):234-46.
  • Andrade NC, Laranjo M, Costa MM, Queiroga MC. Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes. Antibiotics (Basel). 2021;10(6):633.
  • Gajewska J, Chajęcka-Wierzchowska W. Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk. Pathogens. 2020;9(8):654.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Mikrobiyoloji
Bölüm ORJİNAL MAKALE
Yazarlar

Meryem Burcu Külahcı 0000-0002-5007-5209

Ebru Beyzi 0000-0002-5292-9554

Sumru Çıtak 0000-0003-1925-0483

Proje Numarası FGA-2021-7044
Yayımlanma Tarihi 29 Mayıs 2025
Gönderilme Tarihi 21 Ekim 2024
Kabul Tarihi 4 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 2

Kaynak Göster

Vancouver Külahcı MB, Beyzi E, Çıtak S. Phenotypic and molecular determination of biofilm formation and antibiotic resistance of coagulase negative staphylococci isolated from food samples of animal origin in Turkey. Anadolu Klin. 2025;30(2):231-40.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.