Biyomonitör Karayosunları Kullanılarak Atmosferik Polisiklik Aromatik Hidrokarbonların ve İz Elementlerin Birikimlerinin Belirlenmesi: Kocaeli Örneği
Yıl 2025,
Cilt: 11 Sayı: 1, 33 - 43, 30.06.2025
Gülsüm Koçak
,
Muhammet Ören
,
Hasan Çabuk
Öz
Karayosunları, vasküler bitkilerle karşılaştırıldığında geniş alanlara dağılım göstermeleri, yapılarının bu bitkilere kıyasla az gelişmiş olması sebebiyle biyomonitör olarak sıklıkla tercih edilmektedir. Bu çalışmada, 52 lokaliteden toplanan Hypnum cupressiforme Hedw. ve 22 lokaliteden toplanan Pseudoscleropodium purum (Hedw.) M.Fleisch. kullanılarak, Kocaeli ilinin atmosferik polisiklik aromatik hidrokarbon (PAH) ve iz elementlerin konsantrasyon değerleri araştırılmıştır. Bu türlerdeki iz elementlerin analizleri indüktif eşleşmiş plazma-kütle spektrometresi (ICP-MS), PAH analizleri ise yüksek performanslı sıvı kromatografisi (HPLC) ile yapılmıştır. Çalışma sonucunda ortalama PAH konsantrasyon değeri 193.84 ng/g olarak tespit edilmiş olup, sırasıyla fenantren (60.98 ng/g) ve benzo[k]florenten (22.60 ng/g) en yüksek değere sahip iki bileşik olmuştur. İz element analiz sonuçlarında ise 4639.87 µg/g ile alüminyum en yüksek değere sahipken, 0.3 µg/g ile kadmiyum en düşük birikim gösteren ağır metal olmuştur. Konsantrasyon değerlerinin büyükten küçüğe Al>Fe>Zn>Cu>Cr>Pb>Ni>V>Sn>Co>Mo>As>Sb>Hg>Cd olacak şekilde sıralandığı tespit edilmiştir. Pearson korelasyon analizi (SPSS Version 19.0) ile iz elementler ve PAH’lar arasındaki ilişkiler incelenmiş ve ikisi arasında anlamlı ilişki olduğu belirlenmiştir. H. cupressiforme ve P. purum örneklerinin birikim konsantrasyonları t testi ile karşılaştırılmıştır. t testi analizi sonucunda iki tür arasında benz[a]antrasen ve benzo[a]piren hariç diğer parametreler için istatistiksel olarak anlamlı fark olduğu H. cupressiforme’nin daha fazla birikim yaptığı tespit edilmiştir.
Etik Beyan
Bu araştırma, insan veya hayvan deneklerini içermemektedir ve bu nedenle etik onay gerektirmemektedir.
Destekleyen Kurum
Birinci yazarın yüksek lisans tezinden üretilen bu çalışma Zonguldak Bülent Ecevit Üniversitesi, Bilimsel Araştırma Projeleri tarafından 2015-84906727-03 numaralı proje ile desteklenmiştir.
Proje Numarası
2015-84906727-03
Teşekkür
Bu çalışma Zonguldak Bülent Ecevit Üniversitesi, Bilimsel Araştırma Projeleri tarafından 2015-84906727-03 numaralı proje ile desteklenmiştir.
Kaynakça
- Aizezi N. Ye Y. Chen Z. Liu Y. 2025. Impact of soldering temperatures on heavy metal and dust emissions: A LIBS-based environmental pollution analysis. Spectrochimica Acta Part B: Atomic Spectroscopy. 107124.
- Akyüz M. Çabuk H. 2009. Meteorological Variations of PM2.5/PM10 Concentrations and Particle-Associated Polycyclic Aromatic Hydrocarbons in The Atmospheric Environment of Zonguldak, Turkey. Journal of Hazardous Materials. 170:1, 13-21.
- Arndt J. Planer-Friedrich B. 2018. Moss bag monitoring as screening technique to estimate the relevance of methylated arsine emission. Science of the Total Environment. 610, 1590-1594.
- Batan N. Özdemir T. Mendil D. 2012. Determination of Heavy Metal Concentration of Mosses in Degirmendere Valley of Trabzon Province of Turkey. Asian Journal of Chemıstry.24:1, 193-196.
- Batan N. Özdemir T. Saralıoğlu E. Akçay N. Mendil D. 2021. Determination of Heavy Metal Levels in Some Moss Samples Collected from Near the Highways in Burdur Province. Anatolian Bryology. 7:1, 33-43.
- Barbosa J. F. Rocha B.A. Souza M.C. Bocato M.Z. Azevedo L.F. Adeyemi J.A. Santana A. Campiglia A. D. 2023. Polycyclic aromatic hydrocarbons (PAHs): updated aspects of their determination, kinetics in the human body, and toxicity. Journal of Toxicology and Environmental Health, Part B. 26:1, 28-65.
- Behrooz R. D. Gkaras S. K. Kaskaoutis D. G. 2025. Atmospheric heavy metals and human health. Current Opinion in Environmental Science & Health. 100607.
- Cowden P. Aherne J. 2019. Interspecies comparison of three moss species (Hylocomium splendens, Pleurozium schreberi, and Isothecium stoloniferum) as biomonitors of trace element deposition. Environmental Monitoring and Assessment. 191: 1-13.
- Çabuk H. Kılıç M.S. & Ören M. 2014. Biomonitoring of polycyclic aromatic hydrocarbons in urban and industrial environments of the Western Black Sea Region, Turkey. Environmental monitoring and assessment. 186, 1515-1524.
- Çiçekliyurt M. M. H. Yayintas O. T. 2022. DNA methylation in bryophytes as a biomarker for monitoring environmental pollution. Indian Journal of Experimental Biology (IJEB). 60:11, 870-874.
- Demiray A. D. Yolcubal I. Akyol N. H. Çobanoğlu G. 2012. Biomonitoring of airborne metals using the Lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecological indicators. 18: 632-643.
- Demircioglu E. Sofuoglu A. Odabasi M. 2011. Atmospheric concentrations and phase partitioning of polycyclic aromatic hydrocarbons in Izmir, Turkey. CLEAN–Soil, Air, Water. 39:4, 319-327.
- Demková L. Baranová B. Oboňa J. Árvay J. & Lošák T. 2017. Assessment of air pollution by toxic elements on petrol stations using moss and lichen bag technique. 8, 355-361.
- Dhara A. Dutta R. 2025. A review on sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in wetland ecosystem: focusing on plant-biomonitoring and phytoremediation. Environmental Science and Pollution Research. 1-23.
- Fang G. C. Wu Y. S. Fu P. P. C. Yang I. L. Chen M. H. 2004. Polycyclic aromatic hydrocarbons in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere. 54:4, 443-452.
- Gałuszka A. 2007. Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from different forest communities: a case study, south-central Poland. Chemosphere. 67:7, 1415-1422.
- Gezahegn A. Bohnett E. Mammo S. 2024. The role of mosses in ‘clean and green’phytoremediation technology: a review paper. BioMetals. 1-13.
- Gómez-Ensastegui C. Avila-Pérez P. García-Rivas J.L. Barrera-Díaz C.E. Ortiz-Oliveros H.B. & Martínez-Gallegos S. 2025. Evaluation of an aquatic liverwort and terrestrial moss as biomonitors of heavy metals associated with particulate matter. Scientific Reports. 15:1, 4127.
- Goodman G.T. Roberts T.M. 1971. Plants and soils as indicators of metals in the air. Nature. 231:5301, 287-292.
Han Y. Kou J. Jiang B. Li J. Liu C. Lei S. Xiao H. Feng, C. 2025. Bryophytes adapt to open-pit coal mine environments by changing their functional traits in response to heavy metal-induced soil environmental changes-Journal of Hazardous Materials. 482, 136613.
- Jomova K. Alomar S. Y. Nepovimova E. Kuca K. Valko M. 2025. Heavy metals: toxicity and human health effects. Archives of Toxicology. 99:1, 153-209.
- Keith, L. H. (2015). The source of US EPA's sixteen PAH priority pollutants. Polycyclic Aromatic Compounds. 35:2-4, 147-160.
- Macedo-Miranda M.G. Barrera-Díaz C.E. Avila-Pérez P. López-Solórzano E. Ortiz-Oliveros H.B. & Zavala-Arce R.E. 2024. Bioconcentration capacity of moss Leskea angustata Tayl., for heavy metals and its application in the atmospheric biomonitoring of a metropolitan area. Atmospheric Environment. 331, 120579.
- Macklin M. G. Thomas C. J. Mudbhatkal A. Brewer P. A. Hudson-Edwards K. A. Lewin J. Scussolini P. Eilander D. Lechner A. Mangalaa K. R. Owen J. Kuş G. Kemp D. 2023. Impacts of metal mining on river systems: a global assessment. Science. 381:6664, 1345-1350.
- Mitra S. Chakraborty A. J. Tareq A. M. Emran T. B. Nainu F. Khusro A. Idris A. M. Khandaker M. U. Osman H. Alhumaydhi F. A. Simal-Gandara, İ. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science. 34:3, 101865.
- Molnar E. Odagıu A. Balınt C. Burduhos P. Iederan C. Braşovean I. & Malınas C. 2024. Testing Biomonitoring Potential of Bryophytes. Note II: The Interrelations Between the Heavy Metal Content Identified in the Soil of Different Areas of Harghita County. ProEnvironment Promediu. 17:60, 208-214.
- Montano L. Baldini G. M. Piscopo M. Liguori G. Lombardi R. Ricciardi M. Esposito G. Pinto G. Fontanarosa C. Spinelli M. Palmieri I. Sofia D. Brogna C. Carati C. Esposito M. Gallo P. Amoresano A. Motta O. 2025. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics. 13:3, 151.
- Oishi Y. (2022). Biomonitoring of transboundary pollutants using moss in Japan’s mountains. Environmental Science and Pollution Research. 29:10, 15018-15025.
- Orliński R. 2002. Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons: concentrations profile and distribution along Warsaw main streets. Chemosphere. 48:2, 181-186.
- Ötvös E. Kozák I. O. Fekete J. Sharma V. K. Tuba Z. 2004. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Science of the Total Environment. 330:1-3, 89-99.
- Ören M. Koçak G. & Çabuk H. 2021. Zonguldak Çatalağzı Bölgesinde Bazı Atmosferik Polisiklik Aromatik Hidrokarbonların ve İz Elementlerin Karayosunları Kullanılarak Araştırılması. Anatolian Bryology.7:1, 44-52.
Öztürk M.Z. Çetinkaya G. Aydın S. 2017. Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35: 17-27.
- Radić S. Stipaničev D. Cvjetko P. Rajčić M.M. Širac S. Pevalek-Kozlina B. & Pavlica M. 2011. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicology and environmental safety. 74:2, 182-187.
- Rezania S. Taib S.M. Din M.F.M. Dahalan F.A. Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. Journal of hazardous materials. 318: 587-599.
- Rice K. M. Walker Jr E. M. Wu M. Gillette C. Blough E. R. 2014. Environmental mercury and its toxic effects. Journal of preventive medicine and public health. 47:2, 74.
- Salo M. Hiedanpää J. Karlsson T. Ávila L.C. Kotilainen J. Jounela P. García R.R. 2016. Local perspectives on the formalization of artisanal and small-scale mining in the Madre de Dios gold fields, Peru. The Extractive Industries and Society. 3:4, 1058-1066.
- Singh R. Joshi H. Singh A. 2020. Bryophytes: Natural Biomonitors. In Natural Products Chemistry. Apple Academic Press. 139-153.
- Suresh A. Soman V. KR, A. Rahman K. H. 2025. Sources, toxicity, fate and transport of polyaromatic hydrocarbons (PAHs) in the aquatic environment: A Review. Environmental Forensics. 26:1, 35-57.
- URL 1. Türkiye İstatistik Kurumu. Website: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2024-5378 [Retrieved: 29.04.2025].
- URL 2. Google Haritalar [Harita]. Website: https://www.google.com.tr/maps [Retrieved: 25. 04.2016].
- Uyar G. Ören M. İnce M. 2007. Atmospheric Heavy Metal Deposition in Düzce Province by Using Mosses as Biomonitors. Fresenius Environmental Bulletin. 16:2, 145-153.
- Uyar G. Ören M. Yildirim Y. & Öncel S. 2008. Biomonitoring of metal deposition in the vicinity of Eregli steel plant in Turkey. Environmental Forensics. 9:4, 350-363.
- Uyar G. Avcıl E. Ören M. Karaca F. Öncel M.S. 2009. Determination of Heavy Metal Pollution in Zonguldak, Turkey, by Moss Analysis (Hypnum cupressiforme). Environmental Engineering Science. 26:1, 183-194.
- Zinicovscaia I. Hramco C. Chaligava O. Yushin N. Grozdov D. Vergel K. Duca G. 2021. Accumulation of potentially toxic elements in mosses collected in the Republic of Moldova. Plants. 10:3, 471.
- Xu X. Liu X. Wang S. Zou Y. Zhang J. Liang L. Wen C. Li Y. Xu X. He X. Liu G. Xu, X. 2024. Relationship between PAH4 formation and thermal reaction products in model lipids and possible pathways of PAHs formation. Journal of Hazardous Materials. 465, 133374.
Determination of Atmospheric Polycyclic Aromatic Hydrocarbons and Trace Element Levels Using Moss Biomonitoring: A Case Study of Kocaeli
Yıl 2025,
Cilt: 11 Sayı: 1, 33 - 43, 30.06.2025
Gülsüm Koçak
,
Muhammet Ören
,
Hasan Çabuk
Öz
Mosses are frequently preferred as biomonitors due to their distribution over wide areas and their underdeveloped structure compared to vascular plants. In this study, the concentration values of atmospheric polycyclic aromatic hydrocarbons (PAHs) and trace elements in Kocaeli province were investigated using Hypnum cupressiforme Hedw. collected from 52 localities and Pseudoscleropodium purum (Hedw.) M.Fleisch. collected from 22 localities. The analysis of trace elements in these species was carried out by inductively coupled plasma-mass spectrometry (ICP-MS), and PAH analyses were carried out by high-performance liquid chromatography (HPLC). As a result of the study, the average PAH concentration value was determined to be 193.84 ng/g, and the two compounds with the highest values were phenanthrene (60.98 ng/g) and benzo[k]fluorene (22.60 ng/g), respectively. In the trace element analysis results, aluminum had the highest value with 4639.87 µg/g, while cadmium was the heavy metal with the lowest accumulation with 0.3 µg/g. It was determined that the concentration values were ranked from largest to smallest as Al>Fe>Zn>Cu>Cr>Pb>Ni>V>Sn>Co>Mo>As>Sb>Hg>Cd. The relationships between tracers and PAHs were examined using Pearson correlation analysis (SPSS Version 19.0), and it was determined that a significant relationship existed between the two. We compared the accumulation concentrations of H. cupressiforme and P. purum samples using a t-test. As a result of the t-test analysis, it was determined that there was a statistically significant difference between the two species for all parameters except benz[a]anthracene and benzo[a]pyrene, and H. cupressiforme accumulated more.
Etik Beyan
This research did not involve human or animal subjects and therefore does not require ethical approval.
Destekleyen Kurum
This study, produced from the master's thesis of the first author, was supported by Zonguldak Bülent Ecevit University, Scientific Research Projects with project number 2015-84906727-03.
Proje Numarası
2015-84906727-03
Teşekkür
This study was supported by Zonguldak Bülent Ecevit University, Scientific Research Projects with project number 2015-84906727-03.
Kaynakça
- Aizezi N. Ye Y. Chen Z. Liu Y. 2025. Impact of soldering temperatures on heavy metal and dust emissions: A LIBS-based environmental pollution analysis. Spectrochimica Acta Part B: Atomic Spectroscopy. 107124.
- Akyüz M. Çabuk H. 2009. Meteorological Variations of PM2.5/PM10 Concentrations and Particle-Associated Polycyclic Aromatic Hydrocarbons in The Atmospheric Environment of Zonguldak, Turkey. Journal of Hazardous Materials. 170:1, 13-21.
- Arndt J. Planer-Friedrich B. 2018. Moss bag monitoring as screening technique to estimate the relevance of methylated arsine emission. Science of the Total Environment. 610, 1590-1594.
- Batan N. Özdemir T. Mendil D. 2012. Determination of Heavy Metal Concentration of Mosses in Degirmendere Valley of Trabzon Province of Turkey. Asian Journal of Chemıstry.24:1, 193-196.
- Batan N. Özdemir T. Saralıoğlu E. Akçay N. Mendil D. 2021. Determination of Heavy Metal Levels in Some Moss Samples Collected from Near the Highways in Burdur Province. Anatolian Bryology. 7:1, 33-43.
- Barbosa J. F. Rocha B.A. Souza M.C. Bocato M.Z. Azevedo L.F. Adeyemi J.A. Santana A. Campiglia A. D. 2023. Polycyclic aromatic hydrocarbons (PAHs): updated aspects of their determination, kinetics in the human body, and toxicity. Journal of Toxicology and Environmental Health, Part B. 26:1, 28-65.
- Behrooz R. D. Gkaras S. K. Kaskaoutis D. G. 2025. Atmospheric heavy metals and human health. Current Opinion in Environmental Science & Health. 100607.
- Cowden P. Aherne J. 2019. Interspecies comparison of three moss species (Hylocomium splendens, Pleurozium schreberi, and Isothecium stoloniferum) as biomonitors of trace element deposition. Environmental Monitoring and Assessment. 191: 1-13.
- Çabuk H. Kılıç M.S. & Ören M. 2014. Biomonitoring of polycyclic aromatic hydrocarbons in urban and industrial environments of the Western Black Sea Region, Turkey. Environmental monitoring and assessment. 186, 1515-1524.
- Çiçekliyurt M. M. H. Yayintas O. T. 2022. DNA methylation in bryophytes as a biomarker for monitoring environmental pollution. Indian Journal of Experimental Biology (IJEB). 60:11, 870-874.
- Demiray A. D. Yolcubal I. Akyol N. H. Çobanoğlu G. 2012. Biomonitoring of airborne metals using the Lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecological indicators. 18: 632-643.
- Demircioglu E. Sofuoglu A. Odabasi M. 2011. Atmospheric concentrations and phase partitioning of polycyclic aromatic hydrocarbons in Izmir, Turkey. CLEAN–Soil, Air, Water. 39:4, 319-327.
- Demková L. Baranová B. Oboňa J. Árvay J. & Lošák T. 2017. Assessment of air pollution by toxic elements on petrol stations using moss and lichen bag technique. 8, 355-361.
- Dhara A. Dutta R. 2025. A review on sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in wetland ecosystem: focusing on plant-biomonitoring and phytoremediation. Environmental Science and Pollution Research. 1-23.
- Fang G. C. Wu Y. S. Fu P. P. C. Yang I. L. Chen M. H. 2004. Polycyclic aromatic hydrocarbons in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere. 54:4, 443-452.
- Gałuszka A. 2007. Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from different forest communities: a case study, south-central Poland. Chemosphere. 67:7, 1415-1422.
- Gezahegn A. Bohnett E. Mammo S. 2024. The role of mosses in ‘clean and green’phytoremediation technology: a review paper. BioMetals. 1-13.
- Gómez-Ensastegui C. Avila-Pérez P. García-Rivas J.L. Barrera-Díaz C.E. Ortiz-Oliveros H.B. & Martínez-Gallegos S. 2025. Evaluation of an aquatic liverwort and terrestrial moss as biomonitors of heavy metals associated with particulate matter. Scientific Reports. 15:1, 4127.
- Goodman G.T. Roberts T.M. 1971. Plants and soils as indicators of metals in the air. Nature. 231:5301, 287-292.
Han Y. Kou J. Jiang B. Li J. Liu C. Lei S. Xiao H. Feng, C. 2025. Bryophytes adapt to open-pit coal mine environments by changing their functional traits in response to heavy metal-induced soil environmental changes-Journal of Hazardous Materials. 482, 136613.
- Jomova K. Alomar S. Y. Nepovimova E. Kuca K. Valko M. 2025. Heavy metals: toxicity and human health effects. Archives of Toxicology. 99:1, 153-209.
- Keith, L. H. (2015). The source of US EPA's sixteen PAH priority pollutants. Polycyclic Aromatic Compounds. 35:2-4, 147-160.
- Macedo-Miranda M.G. Barrera-Díaz C.E. Avila-Pérez P. López-Solórzano E. Ortiz-Oliveros H.B. & Zavala-Arce R.E. 2024. Bioconcentration capacity of moss Leskea angustata Tayl., for heavy metals and its application in the atmospheric biomonitoring of a metropolitan area. Atmospheric Environment. 331, 120579.
- Macklin M. G. Thomas C. J. Mudbhatkal A. Brewer P. A. Hudson-Edwards K. A. Lewin J. Scussolini P. Eilander D. Lechner A. Mangalaa K. R. Owen J. Kuş G. Kemp D. 2023. Impacts of metal mining on river systems: a global assessment. Science. 381:6664, 1345-1350.
- Mitra S. Chakraborty A. J. Tareq A. M. Emran T. B. Nainu F. Khusro A. Idris A. M. Khandaker M. U. Osman H. Alhumaydhi F. A. Simal-Gandara, İ. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science. 34:3, 101865.
- Molnar E. Odagıu A. Balınt C. Burduhos P. Iederan C. Braşovean I. & Malınas C. 2024. Testing Biomonitoring Potential of Bryophytes. Note II: The Interrelations Between the Heavy Metal Content Identified in the Soil of Different Areas of Harghita County. ProEnvironment Promediu. 17:60, 208-214.
- Montano L. Baldini G. M. Piscopo M. Liguori G. Lombardi R. Ricciardi M. Esposito G. Pinto G. Fontanarosa C. Spinelli M. Palmieri I. Sofia D. Brogna C. Carati C. Esposito M. Gallo P. Amoresano A. Motta O. 2025. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics. 13:3, 151.
- Oishi Y. (2022). Biomonitoring of transboundary pollutants using moss in Japan’s mountains. Environmental Science and Pollution Research. 29:10, 15018-15025.
- Orliński R. 2002. Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons: concentrations profile and distribution along Warsaw main streets. Chemosphere. 48:2, 181-186.
- Ötvös E. Kozák I. O. Fekete J. Sharma V. K. Tuba Z. 2004. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Science of the Total Environment. 330:1-3, 89-99.
- Ören M. Koçak G. & Çabuk H. 2021. Zonguldak Çatalağzı Bölgesinde Bazı Atmosferik Polisiklik Aromatik Hidrokarbonların ve İz Elementlerin Karayosunları Kullanılarak Araştırılması. Anatolian Bryology.7:1, 44-52.
Öztürk M.Z. Çetinkaya G. Aydın S. 2017. Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35: 17-27.
- Radić S. Stipaničev D. Cvjetko P. Rajčić M.M. Širac S. Pevalek-Kozlina B. & Pavlica M. 2011. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicology and environmental safety. 74:2, 182-187.
- Rezania S. Taib S.M. Din M.F.M. Dahalan F.A. Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. Journal of hazardous materials. 318: 587-599.
- Rice K. M. Walker Jr E. M. Wu M. Gillette C. Blough E. R. 2014. Environmental mercury and its toxic effects. Journal of preventive medicine and public health. 47:2, 74.
- Salo M. Hiedanpää J. Karlsson T. Ávila L.C. Kotilainen J. Jounela P. García R.R. 2016. Local perspectives on the formalization of artisanal and small-scale mining in the Madre de Dios gold fields, Peru. The Extractive Industries and Society. 3:4, 1058-1066.
- Singh R. Joshi H. Singh A. 2020. Bryophytes: Natural Biomonitors. In Natural Products Chemistry. Apple Academic Press. 139-153.
- Suresh A. Soman V. KR, A. Rahman K. H. 2025. Sources, toxicity, fate and transport of polyaromatic hydrocarbons (PAHs) in the aquatic environment: A Review. Environmental Forensics. 26:1, 35-57.
- URL 1. Türkiye İstatistik Kurumu. Website: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2024-5378 [Retrieved: 29.04.2025].
- URL 2. Google Haritalar [Harita]. Website: https://www.google.com.tr/maps [Retrieved: 25. 04.2016].
- Uyar G. Ören M. İnce M. 2007. Atmospheric Heavy Metal Deposition in Düzce Province by Using Mosses as Biomonitors. Fresenius Environmental Bulletin. 16:2, 145-153.
- Uyar G. Ören M. Yildirim Y. & Öncel S. 2008. Biomonitoring of metal deposition in the vicinity of Eregli steel plant in Turkey. Environmental Forensics. 9:4, 350-363.
- Uyar G. Avcıl E. Ören M. Karaca F. Öncel M.S. 2009. Determination of Heavy Metal Pollution in Zonguldak, Turkey, by Moss Analysis (Hypnum cupressiforme). Environmental Engineering Science. 26:1, 183-194.
- Zinicovscaia I. Hramco C. Chaligava O. Yushin N. Grozdov D. Vergel K. Duca G. 2021. Accumulation of potentially toxic elements in mosses collected in the Republic of Moldova. Plants. 10:3, 471.
- Xu X. Liu X. Wang S. Zou Y. Zhang J. Liang L. Wen C. Li Y. Xu X. He X. Liu G. Xu, X. 2024. Relationship between PAH4 formation and thermal reaction products in model lipids and possible pathways of PAHs formation. Journal of Hazardous Materials. 465, 133374.