Araştırma Makalesi
BibTex RIS Kaynak Göster

Phytochemical profiling of Brachythecium glareosum (Bruch ex Spruce) Schimp. and preliminary in silico assessment of antifungal potential

Yıl 2025, Cilt: 11 Sayı: 1, 44 - 51, 30.06.2025
https://doi.org/10.26672/anatolianbryology.1705187

Öz

Phytochemical studies show that mosses can produce a range of bioactive chemicals that enhance defense mechanisms and ecological resilience. This study aims to investigate the phytochemical constituents and pharmacological potential of Brachythecium glareosum (Bruch ex Spruce) Schimp. to understand their bioactive potential and to stimulate future research into bryophyte-derived natural products. It also aims to be one of the first studies on B. glareosum in terms of phytochemicals and bioactivity. HPLC analysis revealed the presence of several phenolic compounds in the extract of B. glareosum. The study revealed the in silico antifungal potential of some phenolic compounds. It has been calculated that 2,5-Dihydroxybenzoic acid and 3,4-Dihydroxybenzoic acid compounds will inhibit Cytochrome P450 14Alpha-Sterol Demethylase (Cyp51) of Mycobacterium tuberculosis at the micromolar level. The study suggests that using more advanced methods to analyze B. glareosum could help find more useful compounds that can be used for treatment. Further biological assays are warranted to validate the antifungal activity indicated by in silico predictions.

Etik Beyan

This research did not involve human or animal subjects and therefore does not require ethical approval.

Destekleyen Kurum

The authors declare that no funding, grant or other support was received during the preparation of this article.

Kaynakça

  • Ahmed E. F. Elkhateeb W. A. Taie H. A. Rateb M. E. Fayad W. 2017. Biological capacity and chemical composition of secondary metabolites from representatives Japanese lichens. Journal of Applied Pharmaceutical Science. 7:1, 098-103.
  • Asakawa Y. 2007. Biologically active compounds from bryophytes. Pure and Applied Chemistry. 79:4, 557-580.
  • Asakawa Y. Ludwiczuk A. 2013. Bryophytes: liverworts, mosses, and hornworts: extraction and isolation procedures. Metabolomics tools for natural product discovery: Methods and protocols. 1-20.
  • Asakawa Y. Tori M. Masuya T. Frahm J.-P. 1990. Ent-sesquiterpenoids and cyclic bis (bibenzyls) from the german liverwort Marchantia polymorpha. Phytochemistry. 29:5, 1577-1584.
  • Bodade R. Borkar P. Saiful A. Khobragade C. 2008. In vitro screening of bryophytes for antimicrobial activity.
  • Davidson A. Harborne J. Longton R. 1989. Identification of hydroxycinnamic and phenolic acids in Mnium hornum and Brachythecium rutabulum and their possible role in protection against herbivory. The Journal of the Hattori Botanical Laboratory. 67: 415-422.
  • Dierssen K. 2001. 2001. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca 56.
  • Eberhardt J. Santos-Martins D. Tillack A. F. Forli S. 2021. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of chemical information and modeling. 61:8, 3891-3898.
  • Elkhateeb W. A. Daba G. M. 2020. Occurrence of terpenes, polyketides, and tannins in some Japanese lichens and green mosses. Egyptian Pharmaceutical Journal. 19:3, 216-223.
  • Frahm J.P. 2004. Recent developments of commercial products from bryophytes. The bryologist. 107:3, 277-283.
  • Göktaş B. Osmaniye D. Levent S. Özkan B. N. S. Özkay Y. Kaplancıklı Z. A. 2024. Design, synthesis, and investigation of biological activities of new triazole derivatives with antifungal effect. Journal of Molecular Structure. 1310, 138277.
  • Henderson D. M. 1961. Contribution to the bryophyte flora of Turkey. Notes from the Royal Botanic Garden Edinburgh. 10, 279-301.
  • Huey R. Morris G. M. Olson A. J. Goodsell D. S. 2007. A semiempirical free energy force field with charge‐based desolvation. Journal of computational chemistry, 28:6, 1145-1152.
  • Ignatov M. Huttunen S. 2002. Brachytheciaceae (Bryophyta)-a family of sibling genera. Arctoa. 11: 245-296.
  • Kabadere S. Birgi F. Vatan-Öztopçu P. İscen C. F. İlhan S. 2021. Some Biological Activities of the Moss Brachythecium populeum (Hedw.) Bruch, Schimp. & W. Gumbel (Bryophyta). Gazi University Journal of Science. 1-1.
  • Klavina L. Springe G. Nikolajeva V. Martsinkevich I. Nakurte I. Dzabijeva D. Steinberga I. 2015. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (Moss Phytochemistry). Molecules. 20:9, 17221-17243.
  • Kürschner H. Erdağ A. 2021. Bryophyte locality data from the Near and Middle East 1775-2019 Bryophyta. Vol. 4. Hiperyayın. İstanbul.
  • Kürschner H. Frey W. 2011. Liverworts, mosses and hornworts of southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta). Nova Hedwigia. Beihefte, Beih. 139.
  • Maestro S. 2024. Schrödinger Release 2024-3: LLC, New York, NY.
  • Park S.-N. Lee O. H. 2023. Antioxidant and Anti-Inflammatory Activity of Brachythecium populeum Extract. Korean Journal of Clinical Laboratory Science, 55:3, 174-183.
  • Pirisi F. M. Cabras P. Cao C. F. Migliorini M. Muggelli M. 2000. Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. Journal of agricultural and food chemistry. 48:4, 1191-1196.
  • Podust L. M. Poulos T. L. Waterman M. R. 2001. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proceedings of the National Academy of Sciences, 98:6, 3068-3073.
  • Rios J.-L. Recio M. C. 2005. Medicinal plants and antimicrobial activity. Journal of ethnopharmacology. 100:1-2, 80-84.
  • Singh M. Rawat A. Govindarajan R. 2007. Antimicrobial activity of some Indian mosses. Fitoterapia. 78:2, 156-158. Smith A. J. E. 2004. The moss flora of Britain and Ireland: Cambridge university press.
  • Smolińska-Kondla D. Zych M. Ramos P. Wacławek S. Stebel A. 2022. Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Polonica. 68:2, 54-68.
  • Unver T. Uslu H. Gurhan I. Goktas B. 2024. Screening of phenolic components and antimicrobial properties of Iris persica L. subsp. persica extracts by in vitro and in silico methods. Food Science & Nutrition 12:9, 6578-6594.
  • Veneziani G. Esposto S. Taticchi A. Urbani S. Selvaggini R. Sordini B. Servili M. 2018. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT, 87, 523-528.
  • Zinsmeister H. D. Becker H. Eicher T. 1991. Bryophytes, a source of biologically active, naturally occurring material? Angewandte Chemie International Edition in English. 30:2, 130-147.

Brachythecium glareosum (Bruch ex Spruce) Schimp. türünün fitokimyasal profillemesi ve in silico destekli antifungal potansiyelinin ön değerlendirmesi

Yıl 2025, Cilt: 11 Sayı: 1, 44 - 51, 30.06.2025
https://doi.org/10.26672/anatolianbryology.1705187

Öz

Bu çalışma, Brachythecium glareosum (Bruch ex Spruce) Schimp.'un fitokimyasal bileşenlerini ve farmakolojik potansiyelini araştırmayı, biyoaktif potansiyellerini anlamayı ve briyofit türevi doğal ürünlerle ilgili gelecekteki araştırmaları teşvik etmeyi amaçlamaktadır. Ayrıca, fitokimyasal ve biyoaktivite açısından B. glareosum üzerine yapılan ilk çalışmalardan biri olmayı hedeflemektedir. HPLC analizi, B. glareosum özütünün bazı fenolik bileşiklerinin tespitini ortaya koymuştur. Bazı fenolik bileşiklerin in silico antifungal potansiyeli ortaya çıkarılmıştır. 2,5-Dihidroksibenzoik asit ve 3,4-Dihidroksibenzoik asit bileşiklerinin, Mycobacterium tuberculosis'in Sitokrom P450 14Alfa-Sterol Demetilaz'ını (Cyp51) mikromolar düzeyde inhibe ettiği hesaplanmıştır. Bu çalışma, B. glareosum'un fenolik profilinin daha geniş analitik tekniklerle genişletilmesinin terapötik açıdan önemli ek biyoaktif bileşikleri ortaya çıkarabileceğini öne sürmektedir. İn siliko tahminlerle belirtilen antifungal aktiviteyi doğrulamak için daha fazla biyolojik analiz yapılması gerekmektedir.

Etik Beyan

Bu araştırma, insan veya hayvan deneklerini içermemektedir ve bu nedenle etik onay gerektirmemektedir.

Destekleyen Kurum

Yazarlar, bu yazının hazırlanması sırasında herhangi bir fon, hibe veya başka bir destek alınmadığını beyan ederler.

Kaynakça

  • Ahmed E. F. Elkhateeb W. A. Taie H. A. Rateb M. E. Fayad W. 2017. Biological capacity and chemical composition of secondary metabolites from representatives Japanese lichens. Journal of Applied Pharmaceutical Science. 7:1, 098-103.
  • Asakawa Y. 2007. Biologically active compounds from bryophytes. Pure and Applied Chemistry. 79:4, 557-580.
  • Asakawa Y. Ludwiczuk A. 2013. Bryophytes: liverworts, mosses, and hornworts: extraction and isolation procedures. Metabolomics tools for natural product discovery: Methods and protocols. 1-20.
  • Asakawa Y. Tori M. Masuya T. Frahm J.-P. 1990. Ent-sesquiterpenoids and cyclic bis (bibenzyls) from the german liverwort Marchantia polymorpha. Phytochemistry. 29:5, 1577-1584.
  • Bodade R. Borkar P. Saiful A. Khobragade C. 2008. In vitro screening of bryophytes for antimicrobial activity.
  • Davidson A. Harborne J. Longton R. 1989. Identification of hydroxycinnamic and phenolic acids in Mnium hornum and Brachythecium rutabulum and their possible role in protection against herbivory. The Journal of the Hattori Botanical Laboratory. 67: 415-422.
  • Dierssen K. 2001. 2001. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca 56.
  • Eberhardt J. Santos-Martins D. Tillack A. F. Forli S. 2021. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of chemical information and modeling. 61:8, 3891-3898.
  • Elkhateeb W. A. Daba G. M. 2020. Occurrence of terpenes, polyketides, and tannins in some Japanese lichens and green mosses. Egyptian Pharmaceutical Journal. 19:3, 216-223.
  • Frahm J.P. 2004. Recent developments of commercial products from bryophytes. The bryologist. 107:3, 277-283.
  • Göktaş B. Osmaniye D. Levent S. Özkan B. N. S. Özkay Y. Kaplancıklı Z. A. 2024. Design, synthesis, and investigation of biological activities of new triazole derivatives with antifungal effect. Journal of Molecular Structure. 1310, 138277.
  • Henderson D. M. 1961. Contribution to the bryophyte flora of Turkey. Notes from the Royal Botanic Garden Edinburgh. 10, 279-301.
  • Huey R. Morris G. M. Olson A. J. Goodsell D. S. 2007. A semiempirical free energy force field with charge‐based desolvation. Journal of computational chemistry, 28:6, 1145-1152.
  • Ignatov M. Huttunen S. 2002. Brachytheciaceae (Bryophyta)-a family of sibling genera. Arctoa. 11: 245-296.
  • Kabadere S. Birgi F. Vatan-Öztopçu P. İscen C. F. İlhan S. 2021. Some Biological Activities of the Moss Brachythecium populeum (Hedw.) Bruch, Schimp. & W. Gumbel (Bryophyta). Gazi University Journal of Science. 1-1.
  • Klavina L. Springe G. Nikolajeva V. Martsinkevich I. Nakurte I. Dzabijeva D. Steinberga I. 2015. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (Moss Phytochemistry). Molecules. 20:9, 17221-17243.
  • Kürschner H. Erdağ A. 2021. Bryophyte locality data from the Near and Middle East 1775-2019 Bryophyta. Vol. 4. Hiperyayın. İstanbul.
  • Kürschner H. Frey W. 2011. Liverworts, mosses and hornworts of southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta). Nova Hedwigia. Beihefte, Beih. 139.
  • Maestro S. 2024. Schrödinger Release 2024-3: LLC, New York, NY.
  • Park S.-N. Lee O. H. 2023. Antioxidant and Anti-Inflammatory Activity of Brachythecium populeum Extract. Korean Journal of Clinical Laboratory Science, 55:3, 174-183.
  • Pirisi F. M. Cabras P. Cao C. F. Migliorini M. Muggelli M. 2000. Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. Journal of agricultural and food chemistry. 48:4, 1191-1196.
  • Podust L. M. Poulos T. L. Waterman M. R. 2001. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proceedings of the National Academy of Sciences, 98:6, 3068-3073.
  • Rios J.-L. Recio M. C. 2005. Medicinal plants and antimicrobial activity. Journal of ethnopharmacology. 100:1-2, 80-84.
  • Singh M. Rawat A. Govindarajan R. 2007. Antimicrobial activity of some Indian mosses. Fitoterapia. 78:2, 156-158. Smith A. J. E. 2004. The moss flora of Britain and Ireland: Cambridge university press.
  • Smolińska-Kondla D. Zych M. Ramos P. Wacławek S. Stebel A. 2022. Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Polonica. 68:2, 54-68.
  • Unver T. Uslu H. Gurhan I. Goktas B. 2024. Screening of phenolic components and antimicrobial properties of Iris persica L. subsp. persica extracts by in vitro and in silico methods. Food Science & Nutrition 12:9, 6578-6594.
  • Veneziani G. Esposto S. Taticchi A. Urbani S. Selvaggini R. Sordini B. Servili M. 2018. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT, 87, 523-528.
  • Zinsmeister H. D. Becker H. Eicher T. 1991. Bryophytes, a source of biologically active, naturally occurring material? Angewandte Chemie International Edition in English. 30:2, 130-147.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Zafer Çambay 0000-0002-1170-7525

Harun Uslu 0000-0001-8827-8557

Kevser Özdemir Bayçinar 0000-0002-5679-1417

Bünyamin Göktaş 0000-0003-2345-7313

Muhammed Güngören 0000-0002-3122-7086

Mevlüt Alataş 0000-0003-0862-0258

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 23 Mayıs 2025
Kabul Tarihi 18 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Çambay, Z., Uslu, H., Özdemir Bayçinar, K., Göktaş, B., vd. (2025). Phytochemical profiling of Brachythecium glareosum (Bruch ex Spruce) Schimp. and preliminary in silico assessment of antifungal potential. Anatolian Bryology, 11(1), 44-51. https://doi.org/10.26672/anatolianbryology.1705187

133041331413315 27016 27017 27017  27018