Araştırma Makalesi
BibTex RIS Kaynak Göster

İzmir Yalıçapkını (Halcyon smyrnensis) iklim değişikliğine direnebilecek mi?

Yıl 2024, Cilt: 25 Sayı: 2, 144 - 153, 15.10.2024
https://doi.org/10.17474/artvinofd.1529475

Öz

İklim değişikliği, kuş göç modellerinin, fenolojilerinin ve tür dağılımlarının değişmesine neden olarak yaban hayatı ve kuş popülasyonları için küresel bir tehdit oluşturmaktadır. İklim değişikliği, sulak alanların azalmasına ve sulak alanlardaki habitat kalitesinin düşmesine neden olarak su kuşlarının yaşam alanlarını tehdit etmektedir. Bu çalışma, Türkiye’deki İzmir yalıçapkını (Halcyon smyrnensis) popülasyonunun iklim değişikliklerine karşı gelecekteki potansiyel dağılımını tahmin etmek amacıyla yapılmıştır. Maxent modelleme yaklaşımı kullanılarak, biyoiklim değişkenleri ve iki farklı senaryo (RCP 2.6 ve RCP 8.5) altında türün dağılım potansiyeli değerlendirilmiştir. Modelleme sonuçları, düşük emisyon senaryosu olan RCP 2.6 altında, İzmir yalıçapkını'nın mevcut uygun habitat alanlarının korunabileceğini, ancak yüksek emisyon senaryosu olan RCP 8.5 altında, uygun habitatların önemli ölçüde azalacağını göstermektedir. İklim değişikliğinin etkisiyle, türün dağılım alanlarında önemli bir daralma ve habitat kalitesinde düşüş beklenmektedir. Özellikle sulak alanların azalması ve habitatların parçalanması, türün gelecekteki varlığını tehdit etmektedir. Çalışma İzmir yalıçapkını popülasyonunun korunması için iklim değişikliği senaryolarının dikkate alınarak, habitat koruma ve yönetim stratejilerinin geliştirilmesi gerektiğini vurgulamaktadır.

Etik Beyan

Gerek bulunmamaktadır.

Destekleyen Kurum

-

Teşekkür

Makalenin düzenlenmesi, yazım kuralları kontrolü vb. katkıları için Arş. Gör. Büşra KALLECİ’ye çok teşekkür ederim. Ayrıca makale fikri için Doğa Derneği Yaban Hayatı Uzmanı Şafak ARSLAN’a teşekkür ederim.

Kaynakça

  • Abdu S, Lee AT, Cunningham SJ (2018) The presence of artificial water points structures an arid-zone avian community over small spatial scales. Ostrich, 89(4): 339-346.
  • Albright TP, Mutiibwa D, Gerson, AR, Smith EK, Talbot WA, O’Neill JJ, Wolf BO (2017) Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proceedings of the National Academy of Sciences, 114(9): 2283-2288.
  • Altundağ MÜ, Karataş A (2021) Türkiye’nin Yalıçapkınları (Coraciiformes: Alcedinidae). Doğanın Sesi, (8): 23-34.
  • Arab A, Courter J, Zelt J (2016) A spatio-temporal comparison of avian migration phenology using citizen science data. Spatial Statistics, 18: 234-245.
  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy, 11(4): 854-866.
  • Bai J, Chen Y, Hou J, Zhao J, Ma Y, Zhai J (2022) Analysis on the hotspot characteristics of bird diversity distribution along the continental coastline of China. Frontiers in Marine Science, 9.
  • Bicudo JEP, Buttemer WA, Chappell MA, Pearson JT, Bech C (2010) Ecological and Environmental Physiology of Birds. OUP Oxford.
  • Brilot BO, Bateson M (2012) Water bathing alters threat perception in starlings. Biology Letters, 8 (3): 379-381.
  • Cuadros S, Angulo, F (2023) Distribution and habitat assessment of an endangered hummingbird: the grey-bellied comet taphrolesbia griseiventris. Bird Conservation International, 33.
  • DKMP (2020) https://bolge6.tarimorman.gov.tr/Haber/646/Ilk-Izmir-Yalicapkini-Bogazkent-Kus-Halkalama-Istasyonunda-Halkalandi, Erişim Tarihi: 01.08.2024.
  • Dutta S, Saha G, Mazumdar S (2021) Influence of habitat features of urban streetscapes on richness and abundance of avian species. Ornis Hungarica, 29(1): 20-32.
  • Elith J, Phillips S, Hastie T, Dudík M, Chee Y, Yates C (2010) A statistical explanation of maxent for ecologists. Diversity and Distributions, 17(1): 43-57.
  • Evcin O, Kucuk O, Akturk E (2019) Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environmental Monitoring and Assessment, 191(11): 669.
  • Evcin Ö (2023) İklim Değişikliği: Orman Ekosistemlerinde Etkileri ve Yönetimi Kitabı. İklim Değişiminin Yaban Hayvanları ve Habitat Tercihlerine Olan Etkileri, Palme Kitabevi, Ankara, ss: 347-358.
  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12): 4302-4315.
  • Fry CH, Fry K (2010) Kingfishers, Bee-Eaters and Rollers. A&C Black, London.
  • Grimes LG (1976) The occurrence of cooperative breeding behavior in African birds. Ostrich, 47(1): 1-15.
  • GBIF (2024) The Global Biodiversity Information Facility. GBIF Occurrence, https://doi.org/10.15468/dl.terd9v, Erişim Tarihi: 03.08.2024.
  • Gill F, Donsker D, Rasmussen P (2017) Rollers, ground rollers & kingfishers. World Bird List Version, 7.
  • Grinde A, Niemi G (2016) A synthesis of species interactions, metacommunities, and the conservation of avian diversity in hemiboreal and boreal forests. Journal of Avian Biology, 47(5): 706-718. Houghton J (2005) Global warming. Reports on Progress in Physics, 68(6): 1343.
  • Huntley B, Collingham Y, Green R, Hilton G, Rahbek C, Willis S (2006) Potential impacts of climatic change upon geographical distributions of birds. Ibis, 148 (s1): 8-28.
  • IUCN (2024) BirdLife International 2017. Halcyon smyrnensis (amended version of 2016 assessment), The IUCN Red List of Threatened Species 2017: e.T22725846A119289544. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22725846A119289544.en. Accessed on 03 August 2024.
  • Kalleci B (2023) Kastamonu Ilgaz Dağı yaban hayatı geliştirme sahası ve gavurdağı yaban hayatı geliştirme sahası arasındaki yaban hayatı ekolojik koridorlarının belirlenmesi. Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Kastamonu.
  • Kelly J, Horne B (1997) Effects of food supplementation on the timing of nest initiation in belted kingfishers. Ecology, 78(8): 2504-2511.
  • Kesler D, Haig S (2007) Multiscale habitat use and selection in cooperatively breeding micronesian kingfishers. Journal of Wildlife Management, 71(3): 765-772.
  • Kiraç A (2021) Potential distribution of two lynx species in Europe under paleoclimatological scenarios and anthropogenic climate change scenarios. Cerne, 27: e-102517.
  • Krebs CJ (1998) Ecological Methodology. Addison-Welsey Educational Publishers Inc., USA.
  • Legge S, Heinsohn R (2001) Kingfishers in paradise: the breeding biology of tanysiptera sylvia at The Iron Range National Park, Cape York. Australian Journal of Zoology, 49(1): 85.
  • Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annual Review of Ecology and Systematics, 453-487.
  • Miranda L, Imperatriz-Fonseca V, Giannini T (2019) Climate change impact on ecosystem functions provided by birds in Southeastern Amazonia. Plos One, 14(4): e0215229.
  • Mo L, Wu J, Luo X, Li K, Peng Y, Feng A, … & Mai B (2013) Using the kingfisher (alcedo atthis) as a bioindicator of pcbs and pbdes in the Dinghushan Biosphere Reserve, China. Environmental Toxicology and Chemistry, 32(7): 1655-1662.
  • Naher H, Sarker N (2016) Nest and nest characteristics of common kingfisher (alcedo atthis) and white-throated kingfisher (Halcyon smyrnensis) in Bangladesh. Bangladesh Journal of Zoology, 44(1): 99-109.
  • Oğurlu İ (2016) Yaban hayatı ekolojisi. Süleyman Demirel Üniversitesi Orman Fakültesi Yayın No: 19, Isparta, 297.
  • Okahisa Y, Nakahara T, Sato NJ, Theuerkauf J, Ueda K (2015) Puddle use by New Caledonian rainforest birds. Ornithological Science, 14(1): 41-45.
  • Özer S, Dikmen O (2021) Türk kültürünün kaybolan değerlerinden olan su yalaklarının kullanım durumlarına göre incelenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (3): 238-252.
  • Patterson C, Guerin M (2013) The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - part i. World S Poultry Science Journal, 69(1): 17-26.
  • Pearce-Higgins J (2013) Impacts of climate change on waterbirds. 149-154.
  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231-259.
  • Pille L, Säume I (2021) The water-sensitive city meets biodiversity: habitat services of rain water management measures in highly urbanized landscapes. Ecology & Society, 26(2).
  • Qiu J, Shen Z, Leng G, Xie H, Hou X, Wei G (2019) Impacts of climate change on watershed systems and potential adaptation through BMPs in a drinking water source area. Journal of Hydrology, 573: 123-135. R Core Team (2013) R: A language and environment for statistical computing. Senapathi D (2010) Climate change and birds: adaptation, mitigation & impacts on avian populations. a report on the bou’s annual conference held at the University of Leicester. Ibis, 152(4): 869-872.
  • Seston R, Giesy J, Fredricks T, Tazelaar D, Coefield S, Bradley P, … & Zwiernik M (2012) Dietary‐ and tissue‐based exposure of belted kingfisher to pcdfs and pcdds in the tittabawassee river floodplain, midland, mi, USA. Environmental Toxicology and Chemistry, 31(5): 1158-1168.
  • Smit B, Woodborne S, Wolf BO, McKechnie AE (2019) Differences in the use of surface water resources by desert birds are revealed using isotopic tracers. The Auk, 136 (1): uky005.
  • Tellería J, Fernández‐López J, Fandós G (2016) Effect of climate change on mediterranean winter ranges of two migratory passerines. Plos One, 11(1): e0146958.
  • Trakus (2024) Türkiye’nin Anonim Kuşları, İzmir Yalıçapkını. https://www.trakus.org/kods_bird/uye/?fsx=2fsdl17@d&tur=%DDzmir%20yal%FD%E7apk%FDn%FD, Erişim Tarihi: 04.08.2024.
  • Tryjanowski P, Jankowiak Ł, Czechowski P, Dulisz B, Golawski A, Grzywaczewski G, ... & Wuczyński A (2022) Summer water sources for temperate birds: use, importance, and threats. The European Zoological Journal, 89 (1): 913-926.
  • Venne S, Currie D (2021) Can habitat suitability estimated from maxent predict colonizations and extinctions?. Diversity and Distributions, 27(5): 873-886.
  • Wang Y, Shi J, Wu Y, Zhang W, Yang X, Lv H, … & Xu J (2023) Selection of flagship species and their use as umbrellas in bird conservation: a case study in Lishui, Zhejiang Province, China. Animals, 13 (11): 1825.
  • Yang X, Lin S, He J, Xin Y, Zhang L, Jiang H,… & Li Y (2017) Tropical birds are declining in the hainan island of China. Biological Conservation, 210: 9-18.

Can the White-throated Kingfisher (Halcyon smyrnensis) be able to resist climate change?

Yıl 2024, Cilt: 25 Sayı: 2, 144 - 153, 15.10.2024
https://doi.org/10.17474/artvinofd.1529475

Öz

Climate change poses a global threat to wildlife and bird populations by causing changes in bird migration patterns, phenologies and species distributions. Climate change threatens wetland habitats by causing a reduction of wetlands and deterioration of habitat quality in wetlands. This study was conducted to estimate the potential distribution of the white-throated kingfisher (Halcyon smyrnensis) population in Türkiye against future climate changes. Using the Maxent modeling approach, bioclimatic variables and the distribution potential of the species were evaluated under two different scenarios (RCP 2.6 and RCP 8.5). Modeling results show that under the low-emission scenario RCP 2.6, the currently suitable habitat areas of the white-throated kingfisher can be preserved, but under the high-emission scenario RCP 8.5, the suitable habitats will be significantly reduced. A significant contraction in the distribution areas of the species and a decrease in habitat quality are expected under the impact of climate change. Particularly, the reduction of wetlands and habitat fragmentation threaten the future existence of the species. The study emphasizes that habitat protection and management strategies should be developed by taking into account climate change scenarios in order to protect the white-throated kingfisher population.

Kaynakça

  • Abdu S, Lee AT, Cunningham SJ (2018) The presence of artificial water points structures an arid-zone avian community over small spatial scales. Ostrich, 89(4): 339-346.
  • Albright TP, Mutiibwa D, Gerson, AR, Smith EK, Talbot WA, O’Neill JJ, Wolf BO (2017) Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proceedings of the National Academy of Sciences, 114(9): 2283-2288.
  • Altundağ MÜ, Karataş A (2021) Türkiye’nin Yalıçapkınları (Coraciiformes: Alcedinidae). Doğanın Sesi, (8): 23-34.
  • Arab A, Courter J, Zelt J (2016) A spatio-temporal comparison of avian migration phenology using citizen science data. Spatial Statistics, 18: 234-245.
  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy, 11(4): 854-866.
  • Bai J, Chen Y, Hou J, Zhao J, Ma Y, Zhai J (2022) Analysis on the hotspot characteristics of bird diversity distribution along the continental coastline of China. Frontiers in Marine Science, 9.
  • Bicudo JEP, Buttemer WA, Chappell MA, Pearson JT, Bech C (2010) Ecological and Environmental Physiology of Birds. OUP Oxford.
  • Brilot BO, Bateson M (2012) Water bathing alters threat perception in starlings. Biology Letters, 8 (3): 379-381.
  • Cuadros S, Angulo, F (2023) Distribution and habitat assessment of an endangered hummingbird: the grey-bellied comet taphrolesbia griseiventris. Bird Conservation International, 33.
  • DKMP (2020) https://bolge6.tarimorman.gov.tr/Haber/646/Ilk-Izmir-Yalicapkini-Bogazkent-Kus-Halkalama-Istasyonunda-Halkalandi, Erişim Tarihi: 01.08.2024.
  • Dutta S, Saha G, Mazumdar S (2021) Influence of habitat features of urban streetscapes on richness and abundance of avian species. Ornis Hungarica, 29(1): 20-32.
  • Elith J, Phillips S, Hastie T, Dudík M, Chee Y, Yates C (2010) A statistical explanation of maxent for ecologists. Diversity and Distributions, 17(1): 43-57.
  • Evcin O, Kucuk O, Akturk E (2019) Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environmental Monitoring and Assessment, 191(11): 669.
  • Evcin Ö (2023) İklim Değişikliği: Orman Ekosistemlerinde Etkileri ve Yönetimi Kitabı. İklim Değişiminin Yaban Hayvanları ve Habitat Tercihlerine Olan Etkileri, Palme Kitabevi, Ankara, ss: 347-358.
  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12): 4302-4315.
  • Fry CH, Fry K (2010) Kingfishers, Bee-Eaters and Rollers. A&C Black, London.
  • Grimes LG (1976) The occurrence of cooperative breeding behavior in African birds. Ostrich, 47(1): 1-15.
  • GBIF (2024) The Global Biodiversity Information Facility. GBIF Occurrence, https://doi.org/10.15468/dl.terd9v, Erişim Tarihi: 03.08.2024.
  • Gill F, Donsker D, Rasmussen P (2017) Rollers, ground rollers & kingfishers. World Bird List Version, 7.
  • Grinde A, Niemi G (2016) A synthesis of species interactions, metacommunities, and the conservation of avian diversity in hemiboreal and boreal forests. Journal of Avian Biology, 47(5): 706-718. Houghton J (2005) Global warming. Reports on Progress in Physics, 68(6): 1343.
  • Huntley B, Collingham Y, Green R, Hilton G, Rahbek C, Willis S (2006) Potential impacts of climatic change upon geographical distributions of birds. Ibis, 148 (s1): 8-28.
  • IUCN (2024) BirdLife International 2017. Halcyon smyrnensis (amended version of 2016 assessment), The IUCN Red List of Threatened Species 2017: e.T22725846A119289544. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22725846A119289544.en. Accessed on 03 August 2024.
  • Kalleci B (2023) Kastamonu Ilgaz Dağı yaban hayatı geliştirme sahası ve gavurdağı yaban hayatı geliştirme sahası arasındaki yaban hayatı ekolojik koridorlarının belirlenmesi. Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Kastamonu.
  • Kelly J, Horne B (1997) Effects of food supplementation on the timing of nest initiation in belted kingfishers. Ecology, 78(8): 2504-2511.
  • Kesler D, Haig S (2007) Multiscale habitat use and selection in cooperatively breeding micronesian kingfishers. Journal of Wildlife Management, 71(3): 765-772.
  • Kiraç A (2021) Potential distribution of two lynx species in Europe under paleoclimatological scenarios and anthropogenic climate change scenarios. Cerne, 27: e-102517.
  • Krebs CJ (1998) Ecological Methodology. Addison-Welsey Educational Publishers Inc., USA.
  • Legge S, Heinsohn R (2001) Kingfishers in paradise: the breeding biology of tanysiptera sylvia at The Iron Range National Park, Cape York. Australian Journal of Zoology, 49(1): 85.
  • Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annual Review of Ecology and Systematics, 453-487.
  • Miranda L, Imperatriz-Fonseca V, Giannini T (2019) Climate change impact on ecosystem functions provided by birds in Southeastern Amazonia. Plos One, 14(4): e0215229.
  • Mo L, Wu J, Luo X, Li K, Peng Y, Feng A, … & Mai B (2013) Using the kingfisher (alcedo atthis) as a bioindicator of pcbs and pbdes in the Dinghushan Biosphere Reserve, China. Environmental Toxicology and Chemistry, 32(7): 1655-1662.
  • Naher H, Sarker N (2016) Nest and nest characteristics of common kingfisher (alcedo atthis) and white-throated kingfisher (Halcyon smyrnensis) in Bangladesh. Bangladesh Journal of Zoology, 44(1): 99-109.
  • Oğurlu İ (2016) Yaban hayatı ekolojisi. Süleyman Demirel Üniversitesi Orman Fakültesi Yayın No: 19, Isparta, 297.
  • Okahisa Y, Nakahara T, Sato NJ, Theuerkauf J, Ueda K (2015) Puddle use by New Caledonian rainforest birds. Ornithological Science, 14(1): 41-45.
  • Özer S, Dikmen O (2021) Türk kültürünün kaybolan değerlerinden olan su yalaklarının kullanım durumlarına göre incelenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (3): 238-252.
  • Patterson C, Guerin M (2013) The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - part i. World S Poultry Science Journal, 69(1): 17-26.
  • Pearce-Higgins J (2013) Impacts of climate change on waterbirds. 149-154.
  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231-259.
  • Pille L, Säume I (2021) The water-sensitive city meets biodiversity: habitat services of rain water management measures in highly urbanized landscapes. Ecology & Society, 26(2).
  • Qiu J, Shen Z, Leng G, Xie H, Hou X, Wei G (2019) Impacts of climate change on watershed systems and potential adaptation through BMPs in a drinking water source area. Journal of Hydrology, 573: 123-135. R Core Team (2013) R: A language and environment for statistical computing. Senapathi D (2010) Climate change and birds: adaptation, mitigation & impacts on avian populations. a report on the bou’s annual conference held at the University of Leicester. Ibis, 152(4): 869-872.
  • Seston R, Giesy J, Fredricks T, Tazelaar D, Coefield S, Bradley P, … & Zwiernik M (2012) Dietary‐ and tissue‐based exposure of belted kingfisher to pcdfs and pcdds in the tittabawassee river floodplain, midland, mi, USA. Environmental Toxicology and Chemistry, 31(5): 1158-1168.
  • Smit B, Woodborne S, Wolf BO, McKechnie AE (2019) Differences in the use of surface water resources by desert birds are revealed using isotopic tracers. The Auk, 136 (1): uky005.
  • Tellería J, Fernández‐López J, Fandós G (2016) Effect of climate change on mediterranean winter ranges of two migratory passerines. Plos One, 11(1): e0146958.
  • Trakus (2024) Türkiye’nin Anonim Kuşları, İzmir Yalıçapkını. https://www.trakus.org/kods_bird/uye/?fsx=2fsdl17@d&tur=%DDzmir%20yal%FD%E7apk%FDn%FD, Erişim Tarihi: 04.08.2024.
  • Tryjanowski P, Jankowiak Ł, Czechowski P, Dulisz B, Golawski A, Grzywaczewski G, ... & Wuczyński A (2022) Summer water sources for temperate birds: use, importance, and threats. The European Zoological Journal, 89 (1): 913-926.
  • Venne S, Currie D (2021) Can habitat suitability estimated from maxent predict colonizations and extinctions?. Diversity and Distributions, 27(5): 873-886.
  • Wang Y, Shi J, Wu Y, Zhang W, Yang X, Lv H, … & Xu J (2023) Selection of flagship species and their use as umbrellas in bird conservation: a case study in Lishui, Zhejiang Province, China. Animals, 13 (11): 1825.
  • Yang X, Lin S, He J, Xin Y, Zhang L, Jiang H,… & Li Y (2017) Tropical birds are declining in the hainan island of China. Biological Conservation, 210: 9-18.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yaban Hayatı ve Habitat Yönetimi, Orman Entomolojisi ve Orman Koruma
Bölüm Araştırma Makalesi
Yazarlar

Özkan Evcin 0000-0002-9019-5547

Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 2

Kaynak Göster

APA Evcin, Ö. (2024). İzmir Yalıçapkını (Halcyon smyrnensis) iklim değişikliğine direnebilecek mi?. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 25(2), 144-153. https://doi.org/10.17474/artvinofd.1529475
AMA Evcin Ö. İzmir Yalıçapkını (Halcyon smyrnensis) iklim değişikliğine direnebilecek mi?. AÇÜOFD. Ekim 2024;25(2):144-153. doi:10.17474/artvinofd.1529475
Chicago Evcin, Özkan. “İzmir Yalıçapkını (Halcyon Smyrnensis) Iklim değişikliğine Direnebilecek Mi?”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 25, sy. 2 (Ekim 2024): 144-53. https://doi.org/10.17474/artvinofd.1529475.
EndNote Evcin Ö (01 Ekim 2024) İzmir Yalıçapkını (Halcyon smyrnensis) iklim değişikliğine direnebilecek mi?. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 25 2 144–153.
IEEE Ö. Evcin, “İzmir Yalıçapkını (Halcyon smyrnensis) iklim değişikliğine direnebilecek mi?”, AÇÜOFD, c. 25, sy. 2, ss. 144–153, 2024, doi: 10.17474/artvinofd.1529475.
ISNAD Evcin, Özkan. “İzmir Yalıçapkını (Halcyon Smyrnensis) Iklim değişikliğine Direnebilecek Mi?”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 25/2 (Ekim 2024), 144-153. https://doi.org/10.17474/artvinofd.1529475.
JAMA Evcin Ö. İzmir Yalıçapkını (Halcyon smyrnensis) iklim değişikliğine direnebilecek mi?. AÇÜOFD. 2024;25:144–153.
MLA Evcin, Özkan. “İzmir Yalıçapkını (Halcyon Smyrnensis) Iklim değişikliğine Direnebilecek Mi?”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, c. 25, sy. 2, 2024, ss. 144-53, doi:10.17474/artvinofd.1529475.
Vancouver Evcin Ö. İzmir Yalıçapkını (Halcyon smyrnensis) iklim değişikliğine direnebilecek mi?. AÇÜOFD. 2024;25(2):144-53.
Creative Commons Lisansı
Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi Creative Commons Alıntı 4.0 Uluslararası Lisansı ile lisanslanmıştır.