Araştırma Makalesi
BibTex RIS Kaynak Göster

Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana

Yıl 2025, Cilt: 1 Sayı: 1, 9 - 18, 20.06.2025

Öz

Photovoltaic (PV) panels play an important role in renewable energy production, particularly in regions with abundant sunlight, such as Turkey. Solar energy represents a strategic alternative for reducing Turkey's reliance on energy imports and lowering energy costs. This study focuses on evaluating the performance of a system comprising an 80W solar panel for electricity generation and hydrogen production via alkaline electrolysis, specifically designed for the Adana region. Simulations conducted in MATLAB/Simulink explored the effects of varying temperature and radiation levels on system performance. The findings reveal a direct correlation between power generation and solar radiation, with higher radiation levels leading to increased power output. However, elevated temperatures negatively impact the efficiency of the PV panel, resulting in reduced power generation.
In the experimental setup, graphite (G) and silver-copper-modified graphite (Ag-Cu/G) electrodes were utilized as cathodes, while a platinum electrode served as the anode. Operating voltages ranging from 2.5V to 3V were applied, demonstrating that hydrogen production increases with higher operating voltages. Surface characterization of the electrodes was conducted using SEM-EDX analysis. At 3V, after 15 minutes of operation, hydrogen volumes of 15 mL and 21.4 mL were obtained for G and Ag-Cu/G electrodes, respectively. Seasonal variations were also considered, highlighting that spring's frequent rainy and cloudy conditions limit sunlight availability, whereas the extended clear-sky durations of summer months offer a significant advantage for hydrogen production.

Etik Beyan

Gerekmemektedir.

Kaynakça

  • [1] Haddad, Z., Nahoui, A., Salmi, M., & Aidjadj, M. (2023). Effect of dust on the operation of photovoltaic solar panels installed in the Hodna region - Experimental study. Journal of Renewable Energies, 1, 75–82.
  • [2] Koussa, M., Cheknane, A., Hadji, S., Haddadi, M., & Noureddine, S. (2011). Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions. Applied Energy, 88, 1756–1771.
  • [3] Emetere, M. E., Akinyemi, M. L., & Edeghe, E. B. (2016). A simple technique for sustaining solar energy production in active convective coastal regions. International Journal of Photoenergy, 2016, 1–11.
  • [4] Tian, Y., & Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538–553.
  • [5] Mohamed Elshafei, A., & Mansour, R. (2023). Green hydrogen as a potential solution for reducing carbon emissions: A review. Journal of Energy Research and Reviews, 13, 1–10.
  • [6] Das, A., & Peu, S. D. (2022). A comprehensive review on recent advancements in thermochemical processes for clean hydrogen production to decarbonize the energy sector. Sustainability, 14, 11206.
  • [7] Lu, L., & Wu, X. (2024). Heteronuclear dual metal atom electrocatalysts for water-splitting reactions. Molecules, 29, 1812.
  • [8] Li, S., Yang, Z., Shen, Q., & Yang, G. (2023). A parametric study on the interconnector of solid oxide electrolysis cells for co-electrolysis of water and carbon dioxide. Journal of Marine Science and Engineering, 11, 1066.
  • [9] Yan, F., et al. (2024). Experimental study on the factors influencing performance and emissions of hydrogen internal combustion engines. E3S Web of Conferences, 522, 01009.
  • [10] Alia, S., Ding, D., McDaniel, A., Toma, F. M., & Dinh, H. N. (2021). Chalkboard 2 - How to make clean hydrogen. The Electrochemical Society Interface, 30, 50–56.
  • [11] Kanchiralla, F. M., Brynolf, S., Malmgren, E., Hansson, J., & Grahn, M. (2022). Life-cycle assessment and costing of fuels and propulsion systems in future fossil-free shipping. Environmental Science & Technology, 56, 12517–12531.
  • [12] Li, S., et al. (2022). Techno-economic analysis of sustainable biofuels for marine transportation. Environmental Science & Technology, 56, 17206–17214.
  • [13] Manoj, V., Pilla, R., & Pudi, V. N. (2023). Sustainability performance evaluation of solar panels using multi-criteria decision-making techniques. Journal of Physics: Conference Series, 2570, 012014.
  • [14] Sani, M., & Sule, A. (2020). Effect of temperature on the performance of photovoltaic module. International Journal of Innovative Science and Research Technology, 5, 670–676.
  • [15] Hostin, S., Benedikovic, P., & Michalikova, A. (2009). Chlorine production for water disinfection by means of photovoltaic panels. Nova Biotechnologica, 9, 205–210.
  • [16] Ma, Y., Li, G., & Tang, R. (2011). Optical performance of vertical axis three azimuth angles tracked solar panels. Applied Energy, 88, 1784–1791.
  • [17] Chen, X., Wang, W., Luo, D., & Zhu, C. (2019). Performance evaluation and optimization of a building-integrated photovoltaic/thermal solar water heating system for exterior shading: A case study in South China. Applied Sciences, 9, 5395.
  • [18] Roslan, E., & Hassim, I. (2019). Solar PV system with pulsating heat pipe cooling. Indonesian Journal of Electrical Engineering and Computer Science, 14, 311-318.
  • [19] Chinathambi, G., Murugesan, M., Palanisamy, C., Munirajan, S., & Bhero, S. (2017). Modeling of a solar photovoltaic water pumping system under the influence of panel cooling. Thermal Science, 21, 399–410.
  • [20] Mejia, F. A., & Kleissl, J. (2013). Soiling losses for solar photovoltaic systems in California. Solar Energy, 95, 357–363.
  • [21] Matuska, T., & Sourek, B. (2017). Performance analysis of photovoltaic water heating system. International Journal of Photoenergy, 2017, 1–10.
  • [22] Song, J., Zhu, Y., Xia, D., & Yang, Y. (2014). A photovoltaic solar tracking system with bidirectional sliding axle for building integration. Energy Procedia, 61, 1638–1641.
  • [23] Mert, M. E., & Kardaş, G. (2011). Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium. Journal of Alloys and Compounds, 509, 9190–9194.
  • [24] Zhao, H., Liu, M., Du, X., & Zhang, X. (2024). Synthesis of M-NiS/Mo₂S₃ (M = Co, Fe, Ce, and Bi) nanoarrays as efficient electrocatalytic hydrogen evolution reaction catalyst in fresh and seawater. International Journal of Hydrogen Energy, 62, 532–540.
  • [25] Zhang, J., Cui, W., Ni, Y., Chen, W., & You, D. (2024). A MoS₂/Cu₁.₈S/NiS@MoSX heterostructured electro-catalyst for high-efficiency hydrogen evolution in alkaline solution. International Journal of Hydrogen Energy, 51, 1577–1585.
  • [26] Wang, C., et al. (2024). Advanced noble-metal/transition-metal/metal-free electrocatalysts for hydrogen evolution reaction in water-electrolysis for hydrogen production. Coordination Chemistry Reviews, 514, 215899.
  • [27] Kumar Mandari, K., & Kang, M. (2024). CuNi-LDH sheets and CoS nanoflakes decorated on graphitic carbon nitride heterostructure catalyst for efficient photocatalytic H₂ production. Applied Surface Science, 655, 159550.
  • [28] Guo, L., et al. (2024). Self-supported crystalline-amorphous composites of metal phosphate and NiS for high-performance water electrolysis under industrial conditions. Applied Catalysis B: Environmental, 340, 123252.
  • [29] Zhang, K., Yang, E., Zheng, Y., Yu, D., Chen, J., & Lou, Y. (2023). Robust and hydrophilic Mo-NiS@NiTe core-shell heterostructure nanorod arrays for efficient hydrogen evolution reaction in alkaline freshwater and seawater. Applied Surface Science, 637, 157977.

Adana İli Güneş Enerjisi ve Hidrojen Üretim Potansiyelinin Mevsimsel Analizi

Yıl 2025, Cilt: 1 Sayı: 1, 9 - 18, 20.06.2025

Öz

Fotovoltaik (FV) paneller, özellikle Türkiye gibi bol güneş alan bölgelerde yenilenebilir enerji üretiminde önemli bir rol oynamaktadır. Güneş enerjisi, Türkiye’nin enerji ithalatına bağımlılığını azaltmak ve enerji maliyetlerini düşürmek için stratejik bir alternatif sunmaktadır. Bu çalışma, Adana bölgesi için 80W'lık bir güneş paneli kullanılarak elektrik üretimi ve alkali elektroliz yoluyla hidrojen üretimi gerçekleştiren bir sistemin performansını değerlendirmeye odaklanmaktadır. MATLAB/Simulink ortamında gerçekleştirilen simülasyonlar, sıcaklık ve ışınım seviyelerinin sistem performansı üzerindeki etkilerini incelemiştir. Bulgular, güç üretimi ile güneş ışınımı arasında doğrudan bir ilişki olduğunu göstermiştir; ışınım seviyesinin artması, FV panel tarafından üretilen gücü artırmaktadır. Ancak, sıcaklığın artması panel verimliliğini olumsuz etkileyerek üretilen gücün azalmasına yol açmaktadır.
Deneysel düzende, katot olarak grafit (G) ve gümüş-bakır modifiye grafit (Ag-Cu/G) elektrotlar, anot olarak ise platin elektrot kullanılmıştır. 2,5V ile 3V arasında değişen çalışma voltajları uygulanmış ve hidrojen üretiminin çalışma voltajı arttıkça yükseldiği gözlemlenmiştir. Elektrotların yüzey karakterizasyonu SEM-EDX analizi ile gerçekleştirilmiştir. 3V uygulandığında, 15 dakikalık bir süre sonunda G ve Ag-Cu/G elektrotları için sırasıyla 15 mL ve 21,4 mL hidrojen hacimleri elde edilmiştir. Mevsimsel değişimler de değerlendirilmiştir, ilkbahar mevsimindeki sık yağmurlu ve bulutlu hava koşullarının güneş ışığına erişimi sınırladığı, buna karşın yaz aylarının uzun ve açık hava süreleri sayesinde hidrojen üretimi açısından önemli bir avantaj sunduğu belirlenmiştir.

Kaynakça

  • [1] Haddad, Z., Nahoui, A., Salmi, M., & Aidjadj, M. (2023). Effect of dust on the operation of photovoltaic solar panels installed in the Hodna region - Experimental study. Journal of Renewable Energies, 1, 75–82.
  • [2] Koussa, M., Cheknane, A., Hadji, S., Haddadi, M., & Noureddine, S. (2011). Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions. Applied Energy, 88, 1756–1771.
  • [3] Emetere, M. E., Akinyemi, M. L., & Edeghe, E. B. (2016). A simple technique for sustaining solar energy production in active convective coastal regions. International Journal of Photoenergy, 2016, 1–11.
  • [4] Tian, Y., & Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538–553.
  • [5] Mohamed Elshafei, A., & Mansour, R. (2023). Green hydrogen as a potential solution for reducing carbon emissions: A review. Journal of Energy Research and Reviews, 13, 1–10.
  • [6] Das, A., & Peu, S. D. (2022). A comprehensive review on recent advancements in thermochemical processes for clean hydrogen production to decarbonize the energy sector. Sustainability, 14, 11206.
  • [7] Lu, L., & Wu, X. (2024). Heteronuclear dual metal atom electrocatalysts for water-splitting reactions. Molecules, 29, 1812.
  • [8] Li, S., Yang, Z., Shen, Q., & Yang, G. (2023). A parametric study on the interconnector of solid oxide electrolysis cells for co-electrolysis of water and carbon dioxide. Journal of Marine Science and Engineering, 11, 1066.
  • [9] Yan, F., et al. (2024). Experimental study on the factors influencing performance and emissions of hydrogen internal combustion engines. E3S Web of Conferences, 522, 01009.
  • [10] Alia, S., Ding, D., McDaniel, A., Toma, F. M., & Dinh, H. N. (2021). Chalkboard 2 - How to make clean hydrogen. The Electrochemical Society Interface, 30, 50–56.
  • [11] Kanchiralla, F. M., Brynolf, S., Malmgren, E., Hansson, J., & Grahn, M. (2022). Life-cycle assessment and costing of fuels and propulsion systems in future fossil-free shipping. Environmental Science & Technology, 56, 12517–12531.
  • [12] Li, S., et al. (2022). Techno-economic analysis of sustainable biofuels for marine transportation. Environmental Science & Technology, 56, 17206–17214.
  • [13] Manoj, V., Pilla, R., & Pudi, V. N. (2023). Sustainability performance evaluation of solar panels using multi-criteria decision-making techniques. Journal of Physics: Conference Series, 2570, 012014.
  • [14] Sani, M., & Sule, A. (2020). Effect of temperature on the performance of photovoltaic module. International Journal of Innovative Science and Research Technology, 5, 670–676.
  • [15] Hostin, S., Benedikovic, P., & Michalikova, A. (2009). Chlorine production for water disinfection by means of photovoltaic panels. Nova Biotechnologica, 9, 205–210.
  • [16] Ma, Y., Li, G., & Tang, R. (2011). Optical performance of vertical axis three azimuth angles tracked solar panels. Applied Energy, 88, 1784–1791.
  • [17] Chen, X., Wang, W., Luo, D., & Zhu, C. (2019). Performance evaluation and optimization of a building-integrated photovoltaic/thermal solar water heating system for exterior shading: A case study in South China. Applied Sciences, 9, 5395.
  • [18] Roslan, E., & Hassim, I. (2019). Solar PV system with pulsating heat pipe cooling. Indonesian Journal of Electrical Engineering and Computer Science, 14, 311-318.
  • [19] Chinathambi, G., Murugesan, M., Palanisamy, C., Munirajan, S., & Bhero, S. (2017). Modeling of a solar photovoltaic water pumping system under the influence of panel cooling. Thermal Science, 21, 399–410.
  • [20] Mejia, F. A., & Kleissl, J. (2013). Soiling losses for solar photovoltaic systems in California. Solar Energy, 95, 357–363.
  • [21] Matuska, T., & Sourek, B. (2017). Performance analysis of photovoltaic water heating system. International Journal of Photoenergy, 2017, 1–10.
  • [22] Song, J., Zhu, Y., Xia, D., & Yang, Y. (2014). A photovoltaic solar tracking system with bidirectional sliding axle for building integration. Energy Procedia, 61, 1638–1641.
  • [23] Mert, M. E., & Kardaş, G. (2011). Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium. Journal of Alloys and Compounds, 509, 9190–9194.
  • [24] Zhao, H., Liu, M., Du, X., & Zhang, X. (2024). Synthesis of M-NiS/Mo₂S₃ (M = Co, Fe, Ce, and Bi) nanoarrays as efficient electrocatalytic hydrogen evolution reaction catalyst in fresh and seawater. International Journal of Hydrogen Energy, 62, 532–540.
  • [25] Zhang, J., Cui, W., Ni, Y., Chen, W., & You, D. (2024). A MoS₂/Cu₁.₈S/NiS@MoSX heterostructured electro-catalyst for high-efficiency hydrogen evolution in alkaline solution. International Journal of Hydrogen Energy, 51, 1577–1585.
  • [26] Wang, C., et al. (2024). Advanced noble-metal/transition-metal/metal-free electrocatalysts for hydrogen evolution reaction in water-electrolysis for hydrogen production. Coordination Chemistry Reviews, 514, 215899.
  • [27] Kumar Mandari, K., & Kang, M. (2024). CuNi-LDH sheets and CoS nanoflakes decorated on graphitic carbon nitride heterostructure catalyst for efficient photocatalytic H₂ production. Applied Surface Science, 655, 159550.
  • [28] Guo, L., et al. (2024). Self-supported crystalline-amorphous composites of metal phosphate and NiS for high-performance water electrolysis under industrial conditions. Applied Catalysis B: Environmental, 340, 123252.
  • [29] Zhang, K., Yang, E., Zheng, Y., Yu, D., Chen, J., & Lou, Y. (2023). Robust and hydrophilic Mo-NiS@NiTe core-shell heterostructure nanorod arrays for efficient hydrogen evolution reaction in alkaline freshwater and seawater. Applied Surface Science, 637, 157977.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji
Bölüm Araştırma Makalesi
Yazarlar

Başak Doğru Mert 0000-0002-2270-9032

Hüseyin Nazlıgül 0000-0003-3037-8568

Mehmet Erman Mert 0000-0002-0114-8707

Yayımlanma Tarihi 20 Haziran 2025
Gönderilme Tarihi 21 Ocak 2025
Kabul Tarihi 27 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 1

Kaynak Göster

APA Doğru Mert, B., Nazlıgül, H., & Mert, M. E. (2025). Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana. Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Bilim Dergisi, 1(1), 9-18.
AMA Doğru Mert B, Nazlıgül H, Mert ME. Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana. ATUJSCIENCE. Haziran 2025;1(1):9-18.
Chicago Doğru Mert, Başak, Hüseyin Nazlıgül, ve Mehmet Erman Mert. “Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana”. Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Bilim Dergisi 1, sy. 1 (Haziran 2025): 9-18.
EndNote Doğru Mert B, Nazlıgül H, Mert ME (01 Haziran 2025) Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1 1 9–18.
IEEE B. Doğru Mert, H. Nazlıgül, ve M. E. Mert, “Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana”, ATUJSCIENCE, c. 1, sy. 1, ss. 9–18, 2025.
ISNAD Doğru Mert, Başak vd. “Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana”. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1/1 (Haziran 2025), 9-18.
JAMA Doğru Mert B, Nazlıgül H, Mert ME. Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana. ATUJSCIENCE. 2025;1:9–18.
MLA Doğru Mert, Başak vd. “Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana”. Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Bilim Dergisi, c. 1, sy. 1, 2025, ss. 9-18.
Vancouver Doğru Mert B, Nazlıgül H, Mert ME. Seasonal Analysis of Solar Energy and Hydrogen Production Potential in Adana. ATUJSCIENCE. 2025;1(1):9-18.