Araştırma Makalesi
BibTex RIS Kaynak Göster

Attitude Analysis of Health Employees on Artificial Intelligence Applications

Yıl 2025, Cilt: 25 Sayı: 2, 93 - 122
https://doi.org/10.18037/ausbd.1529145

Öz

Nowadays, significant advancements have been made in the field of healthcare in diagnosis, treatment, and care alongside technology. Artificial intelligence and robotics provide support for healthcare professionals and offer facilitative solutions. These solutions contribute to enhancing the quality of care in healthcare services. The increasing complexity and volume of data in the healthcare field indicate that artificial intelligence will be more widely used in this area. Artificial intelligence plays a significant role in medical decision-making processes in the healthcare sector. However, the attitudes of healthcare professionals towards artificial intelligence technologies can affect their effective adoption. The research aims to evaluate the attitudes of healthcare professionals in artificial intelligence applications and determine whether these attitudes vary according to demographic characteristics and the use of information technologies. A quantitative research method was applied in the study. A survey was used as the data collection method, and 386 assessable survey forms were obtained. The data collected during the research were analyzed utilizing the SPSS 21 software program. The analysis revealed significant differences between participants’ attitudes toward artificial intelligence and factors such as their gender, employment status, industry of employment, level of information technology use, duration of information technology usage, use of technological devices like computers and Kindle (e-book readers) and their use of information technology for connecting to social networks.

Etik Beyan

The research included in the article was carried out with the approval of the Ethics Committee of Istanbul University Cerrahpaşa Ethics Committee (Approval Date: 27.11.2023; Approval No: 892761).

Kaynakça

  • Agouri, H. E., Azizi, M., Attar, H. E., Khannoussi, M. E., Ibrahimi, A., Kabbaj, R., . . . Khannoussi, B. E., (2022). Assessment of Deep Learning Algorithms to Predict Histopathological Diagnosis of Breast Cancer: First Moraccan Prospective Study on an Private Dataset. BMC Research Notes, 15(66). https://doi.org/10.1186/s13104-022-05936-1
  • Akalın, B. (2020). Sağlık hizmetleri ve yönetiminde yapay zeka (1 bs.). İstanbul: Hiperlink.
  • Alkış, N. ve Çoşkunçay, D. F. (2021). Covid-19 salgınında hayat eve sığar (hes) uygulamasının kullanıcılar tarafından benimsenmesi: ampirik bir çalışma. Bilişim Teknolojileri Dergisi, 14(4). https://doi.org/10.17671/gazibtd.883789
  • Al-Qerem, W., Eberhardt, J., Jarab, A., Bawab, A. Q., Hammad, A., Alasmari, F., . . . Al-Beool, S. (2023). Exploring knowledge, attitudes, and practices towards artificial ıntelligence among health professions’ students in Jordan. BMC Medical Informatics and Decision Making, 23. https://doi.org/10.1186/s12911-023-02403-0
  • AstraZeneca. (2019). Astrazeneca, yapay zekayla ilaç keşfini hızlandıracak. Erişim adresi: https://www.astrazeneca.com.tr/press-release/astrazeneca--yapay-zekayla-ilac-kefini-hzlandracak-.html#
  • Atalay, M. ve Çelik, E. (2017). Büyük veri analizinde yapay zeka ve makine öğrenmesi uygulamaları. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22), 155-172. https://doi.org/10.20875/makusobed.309727
  • AtomWise. (2015). New ebola treatment using artificial intelligence. Erişim adresi: https://www.atomwise.com/2015/03/24/new-ebola-treatment-using-artificial-intelligence/
  • Avaner, E. B. (2018). Turing testi ışığında düşüncenin multidisipliner ı̇ncelemesi III. Türkiye Biyoetik Dergisi, 5(4), 183-192. Erişim adresi: https://jag.journalagent.com/tjob/pdfs/TJOB_5_4_183_192.pdf
  • Aydın, N. (2020). Sağlıkta yeni bir dönem: mobil sağlık. SmartJournal, 6(38), 2438-2447. http://dx.doi.org/10.31576/smryj.697
  • Bergdahl, J., Latikka, R., Celuch, M. ve Savolainen, L. (2023). Self-determination and attitudes toward artificial intelligence: cross-national and longitudinal perspectives. Telematics and Informatics , 82(1). https://doi.org/10.1016/j.tele.2023.102013
  • Bohr, A. ve Memarzadeh, K. (2020). Current healthcare, big data, and machine Learning. A. Bohr, ve K. Memarzadeh (Ed.) Artificial Intelligence in Healthcare içinde (s. 1-24). Elsevier: Academic Press. https://doi.org/10.1016/B978-0-12-818438-7.00001-0
  • Boşat, M., Önder, E. ve Arcagök, U., (2020). Augmented Reality Practices in Health Services: Literature Review. Journal of Science and Technology, 10(2), 67-72. https://dergipark.org.tr/en/download/article-file/1366569
  • Boyd, M. ve Wilson, N. (2017). Rapid developments in artificial intelligence: how might the New Zealand government respond? Policy Quarterly, 13(4). https://doi.org/10.26686/pq.v13i4.4619
  • Coşkun, F. ve Gülleroğlu, H. D. (2021). Yapay zekanın tarih içindeki gelişimi ve eğitimde kullanılması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 54(3), 947-966. https://doi.org/10.30964/auebfd.916220
  • Çelik, I. N., Arslan, F. K., Tunç, R. ve Yıldız, İ. (2021). İlaç keşif ve geliştirilmesinde yapay zekâ. Ankara Eczacılık Fakültesi Dergisi, 45(2), 400-427. https://doi.org/10.33483/jfpau.878041
  • Çifçi, M. A., 2022. Derin öğrenme metodu kullanarak bt görüntülerinden akciğer kanseri teşhisi. Dokuz Eylül Üniversitesi Fakültesi Fen ve Mühendislik Dergisi, 24(71), 487-500. https://doi.org/10.21205/deufmd.2022247114
  • Çolakoğlu, S. ve Yıldız, A. (2023). An analysis of the features, user reviews and potential of a mobile health application; albert health assistant. İzmir: 14. Tıp Bilişimi Kongresi. Erişim adresi: https://albert.health/tr
  • Deloitte. (2019). Intelligent drug discovery. Diegam, Berkenlaan: Deloitte University EMEA CVBA. Erişim adresi: https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/life-sciences-health-care/deloitte-ch-en-intelligent-drug-discovery.pdf
  • Demirdöğmez, M. (2022). Blockchain teknolojisi ve yapay zeka. E. B. Ceyhan, ve O. Yılmaz (Ed.) Blockchain Teknolojisi-Güncel Teknolojilerle İlişkisi içinde (s. 65-118). Nobel Akademik Yayıncılık.
  • Dhamija, P. ve Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal, 32(4), 869-896. https://doi.org/10.1108/TQM-10-2019-0243
  • Díaz, P. I., Sampedro-Gómez, J., Sampedro-Gómez, J., Vicente-Palacios, V. ve Sanchez, P. L. (2019). Applications of artificial ıntelligence in cardiology. The future is already here. Revista Española de Cardiología , 72(12). https://doi.org/10.1016/j.rec.2019.05.014
  • Diaz-Pernas, F. J., Martinez-Zarzuela, M., Anton-Rodriguez, M. ve Gonzalez-Ortega, D. (2021). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare, 9(2), 153. https://doi.org/10.3390/healthcare9020153
  • Doğan, P. K., Doğan, İ. ve Çetinkayalı, G. (2023). Spor bilimleri öğrencilerilerinin yapay zekaya yönelik tutumları ile iş bulma kaygıları arasındaki ilişkinin incelenmesi. https://dergipark.org.tr/tr/download/article-file/3407883
  • Dreesmann, N. J., Su, H. ve Thompson, H. J., (2022). A Systematic Review of Virtual Reality Therapeutics for Acute Pain Management. Pain Management Nursing, 23(5), 672-681. https://doi.org/10.1016/j.pmn.2022.05.004
  • Ergüven, Ö. ve Ökten, S. (2022). Yapay zekânın mikrobiyolojide kullanımı. Sağlık Bilimlerinde Yapay Zeka Dergisi, 2(2), 1-12. https://doi.org/10.52309/jaihs.v2i2.41
  • Farina, E., Nabhen, J. J., Dacoregio, M. I., Batalini, F. ve Moraes, F. Y. (2022). An overview of artificial intelligence in oncology. Future Science OA, 8(4). https://doi.org/10.2144/fsoa-2021-0074
  • Güzel, M. (2021). Yapay zekânın ilaç geliştirme çalışmalarındaki rolü. Sağlık Düşüncesi ve Tıp Kültürü Platformu(58), 28-31. Erişim adresi: https://sdplatform.com/yapay-zekanin-ilac-gelistirme-calismalarindaki-rolu/
  • Gilson, A., Safranek, C., Huang, T., Socrates, V., Chi, L., Taylor, R. A. ve Chartash, D. (2022). How does chatgpt perform on the medical licensing exams? The ımplications of large language models for medical education and knowledge assessment. medRxiv. https://doi.org/10.2196/45312
  • Gupta, A. ve Waldron, A. (2023). A responsible path to generative aı in healthcare. Erişim adresi: https://cloud.google.com/blog/topics/healthcare-life-sciences/sharing-google-med-palm-2-medical-large-language-model
  • Hadithy, Z. A., Lawati, A. A., Al-Zadjali, R. ve Sinawi, H. A. (2023). Knowledge, attitudes, and perceptions of artificial ıntelligence in healthcare among medical students at Sultan Qaboos University. Cureus, 15(9). https://doi.org/10.7759/cureus.44887
  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. ve Aerts, H. J. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500-510. http://doi.org/10.1038/s41568-018-0016-5
  • Howard, J. (2019). Artificial intelligence: Implications for the Future of Work. Am J Ind Med, 62(11), 917-926. https://doi.org/10.1002/ajim.23037
  • Imaging Technology News. (2023). İCAD and Google health expand ıntegration of google's aı technology with İCAD's profound breast health suite for 2d mammography for use as independent reader. Erişim adresi: https://www.itnonline.com/content/icad-and-google-health-expand-integration-google's-ai-technology-icad's-profound-breast
  • Insider Intelligence. (2022). Big pharma is using AI and machine learning in drug. Discovery and development to save lives. Erişim adresi: https://www.emarketer.com/topics/industry/digital-health
  • Insilico Medicine. (2023). Insilico medicine presents at future investment initiative conference in Riyadh. Erişim adresi: https://www.eurekalert.org/news-releases/1005417
  • Jabeen, K., Khan, M. A., Alhaisoni, M., Tariq, U., Zhang, Y.-D., Hamza, A., . . . Damaševičius, R. (2022). Breast cancer classification from ultrasound ımages using probality-based optimal deep learning feature fusion. Sensors, 22(3), 807. https://doi.org/10.3390/s22030807
  • Jiang, F., Jiang, Y., Zhi, H. ve Dong, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4). https://doi.org/10.1136/svn-2017-000101
  • Kann, B. H., Hosny, A. ve Aerts, H. J. (2022). Artificial intelligence for clinical oncology. Cancer Cell, 39(7), 916-927. https://doi.org/10.1016/j.ccell.2021.04.002
  • Karakuş, O., Yorulmazlar, M. M., Çetin, A. ve Özsoy, D. (2023). Examining the attitudes of e-sports players towards artificial intelligence technologies. International Journal of Recreation and Sport Science, 7(1), 18-25. https://doi.org/10.46463/ijrss.1361388
  • Kaya, F., Aydın, F., Schepman, A., Rodway, P., Yetişensoy, O. ve Kaya, M. D. (2022). The roles of personality traits, AI anxiety and demographic factors in attitudes toward artificial intelligence. International Journal of Human–Computer Interaction, 40(2), 1-18. https://doi.org/10.1080/10447318.2022.2151730
  • Kour, S., Biswas, I., Sheoran, S. ve Arora, S. (2023). Artificial intelligence and nanotechnology for cervical cancer treatment: current status and future perspectives. Journal of Drug Delivery Science and Technology, 83. https://doi.org/10.1016/j.jddst.2023.104392
  • Kum, Ö. (2023). Grafik tasarım bölümü öğrencilerinin yapay zekaya yönelik tutumları (Tokat ili örneği). Sosyal Bilimler Ekev Akademi Dergisi(96), 172-181. https://doi.org/10.17753/sosekev.1381995
  • Kurtuluş, K., 2010, Araştırma yöntemleri. İstanbul: Türkmen Kitabevi.
  • Kwak, Y., Ahn, J.-W. ve Seo, Y. H. (2022). Influence of AI ethics awareness, attitude, anxiety and self-efficacy on nursing students' behavioral intestions. BMC Nursing, 21(1), 1-8. https://doi.org/10.1186/s12912-022-01048-0
  • Londhe, V. Y. ve Bhasin, B. (2019). Artificial intelligence and its potential in oncology. Drug Discovery Today, 24(1), 228-232. http://doi.org/10.1016/j.drudis.2018.10.005
  • Ma, L., Yu, S., Xu, X., Amadi, S. M., Zhang, J. ve Wang, Z. (2023). Application of artificial intelligence in 3d printing physical organ models. Mater Today Bio.
  • Martin, B. A., Jin, H. S., Wang, D., Nguyen, H., Zhan, K. ve Wang, Y. X. (2020). The influence of consumer anthropomorphism on attitudes towards artificial intelligence trip advisors . Journal of Hospitality and Tourism Management, 44, 108–111. https://doi.org/10.1016/j.jhtm.2020.06.004
  • Matias, Y. Ve Corrado, G. (2023). Our latest health AI research updates. Erişim adresi: https://blog.google/technology/health/ai-llm-medpalm-research-thecheckup/
  • McCarthy, J. (2004). What Is Artificial Intelligence?
  • McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., . . . Halling-Brown, M. (2020). International evaluation of an AI system for breast cancer screening. Nature(577), 89-94. http://doi.org/10.1038/s41586-019-1799-6
  • Medikaynak. (2020). İlaç geliştirmede yapay zeka kullanımı. Erişim Adresi: medikaynak.com/n/ilac-gelistirmede-yapay-zeka-kullanimi
  • Millington, I. ve Funge, J. (2009). Artificial intelligence for games (2 b.). Boca Raton: CRC Press.
  • Moritz, S., Romeike, B., Stosch, C. ve Tolks, D. (2023). Generative AI (gAI) in medical education: Chat-GPT and co. GMS Journal for Medical Education, 40(4), 1-9. http://doi.org/10.3205/zma001636
  • Mullard, A. (2017). The drug-maker's guide to the galaxy. Nature, 549, 445-447. http://doi.org/10.1038/549445a Neapolitan, R. E. ve Jiang, X. (2018). Artificial intelligence with an ıntroduction to machine learning (2 bs.). New York: Chapman and Hall/CRC.
  • Narin, A., Kaya, C. ve Pamuk, Z., (2021). Automatic detection of coronavirüs disease (covid-19) using x-ray ımages and deep convolutional neural networks. Patterns Analysis and Applications, Cilt 24, 1207-1220. http://doi.org/ 0.1007/s10044-021-00984-y
  • NVIDIA. (2016). NVIDIA teams with national cancer ınstitute, U.S. department of energy to create AI platform for accelerating cancer research. Erişim adresi: https://nvidianews.nvidia.com/news/nvidia-teams-with-national-cancer-institute-u-s-department-of-energy-to-create-ai-platform-for-accelerating-cancer-research
  • Organisation for Economic Co-operation and Development. (2019). Recommendation of the council on artificial ıntelligence. Erişim adresi: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
  • Oğuz, S. C. (2022). E-Devlet Uygulamaları Kapsamında HES Kodu Uygulaması ve Kişisel Verilerin Korunmas. Türkiye Biyoetik Dergisi,, 9(1), 21-28. http://doi.org/10.5505/tjob.2022.59454
  • Özdet, B. Ve İçer, S., (2022). Akciğer bilgisayarlı tomografi görüntülerinde görüntü işleme uygulamaları ile tümörlerinin tespit edilmesi. Bursa Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 135-150. https://doi.org/10.17482/uumfd.947619
  • Pacal, I., (2022). Deep learning approaches of breast cancer in ultrasound (us) images. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(4), 1917-1927. https://doi.org/10.21597/jist.1183679
  • Parvathaneni, M., Awol, A. K., Kumari, M., Lan, K. ve Lingam, M. (2023). Application of artificial intelligence and machine learning in drug discovery and development. Journal of Drug Delivery & Therapeutics, 13(1), 151-158. http://dx.doi.org/10.22270/jddt.v13i1.5867
  • Priyadharsini, M., Mallika, S. S., Karuppasamy, K. ve R, S. (2022). Drug discovery for alzheimer's disease using machine learning [Öz]. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS) sunulan bildiri, Coimbatore, India. Erişim adresi: https://ieeexplore.ieee.org/document/9785277
  • Pricewaterhouse Coopers. (2017). What doctor? Why AI and robotics will define new health. Erişim adresi: https://www.pwc.com/gx/en/news-room/docs/what-doctor-why-ai-and-robotics-will-define-new-health.pdf
  • Pricewaterhouse Coopers. (2018). The macroeconomic impact of AI, 1–75. Erişim adresi: https://www.pwc.co.uk/economic-services/assets/macroeconomic-impact-of-ai-technical-report-feb-18.pdf
  • Rahaman, M. M., Millar, E. K. A. ve Meijering, E., (2023). Breast cancer histopathology ımage-based gene expression prediction using spatial transcriptomics data and deep learning. Scientific Reports, 13. http://doi.org/10.1038/s41598-023-40219-0
  • Sarbadhikari, S., ve Sarbadhikari, S. (2020). The global experience of digital health interventions in covid-19 management. Journal of Public Health , 64(6), 117. http://doi.org/10.4103/ijph.IJPH_457_20
  • Schepman, A., ve Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior. https://doi.org/10.1016/j.chbr.2020.100014
  • Schepman, A., ve Rodway, P. (2023). The general attitudes towards artificial intelligence scale (GAAIS): confirmatory validation and associations with personality, corporate distrust, and general trust. International Journal of Human–Computer Interaction, 39(13), 2724-2741. https://doi.org/10.1080/10447318.2022.2085400
  • Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Jr, R. A., . . . Ko. (2020). Rethinking drug desing in the artificial intelligence Era. Nature Reviews Drug Discovery, 19, 353-364. http://doi.org/10.1038/s41573-019-0050-3
  • Serbaya, S. H., Khan, A. A., Surbaya, S. H., ve Alzahrani, S. M. (2024). Knowledge, attitude and practice toward artificial intelligence among healthcare workers in private polyclinics in Jeddah, Saudi Arabia. Advances in Medical Education and Practice, 15, 269-280. http://doi.org/10.2147/AMEP.S448422
  • Shaheen, M. Y. (2021). Applications of artificial intelligence (AI) in healthcare: A review. ScienceOpen Preprints. http://doi.org/10.14293/S2199-1006.1.SOR-.PPVRY8K.v1
  • Shia, W.-C. ve Chen, D.-R., 2021. Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine. Computerized Medical Imaging and Graphics, 87, 101829. https://doi.org/10.1016/j.compmedimag.2020.101829
  • Shimizu, H., ve Nakayama, K. I. (2020). Artificial intelligence in oncology. Cancer Science, 111(5), 1452-1460. https://doi.org/10.1111/cas.14377
  • Shirkin, R. (2020). Artificial intelligence : the complete beginners’ guide to artificial ıntelligence: step-by-step guide for beginners. Amazon KDP Printing and Publishing.
  • Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Hou, L., . . . Green, B. (2023). Towards expert-level medical question answering with large language models. Computation and Language. https://doi.org/10.48550/arXiv.2305.09617
  • Subin, L. (2021). Artificial intelligence and sustainable development in China. Chinese Economy, 54(4), 235-248. http://doi.org/10.1080/10971475.2020.1857062
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemalz, A., ve Bray, F. (2021). Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. http://doi.org/10.3322/caac.21660
  • Tabachnick, B. G., ve Fidell, L. S. (2013). Using multivariate statistics (6 bs.). Boston: Pearson Educaiton.
  • Tan, Ç., Ceylan, Y., ve Öztürk, O. (2023). Öğretmenlerin yapay zekaya karşı tutumlarının incelenmesi. Sosyal Bilimler Dergisi, 10(67), 72-83. http://doi.org/10.29228/SOBIDER.73772
  • Türkiye İstatistik Kurumu. (2021). Bölgesel istatistikler. https://biruni.tuik.gov.tr/bolgeselistatistik/degiskenlerUzerindenSorgula.do
  • Vecchio, D. D., Stein., M. J., Dayan, E., Marte, J. ve Theodorou, S. (2023). Nanotechnology and Artificial Intelligence: An Emerging Paradigm for Postoperative Patient Care. Aesthetic Surgery Journal, 43(7), 748-757. http://doi.org/10.1093/asj/sjad071.
  • Verma, V. K., ve Verma, S. (2022). Machine learning applications in healthcare sector: an overview. Materials Today Proceedings, 57(5), 2144-2147. https://doi.org/10.1016/j.matpr.2021.12.101
  • Vua, H. T., ve Lim, J. (2022). Effects of country and individual factors on public acceptance of artificial intelligence and robotics technologies: a multilevel sem analysis of 28-country survey data. . Behaviour & Information Technology, 41(7), 1515–1528. https://doi.org/10.1080/0144929X.2021.1884288
  • WHO. (2015). mHealth programmes are sponsored by government. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4774
  • Witowski, J., Heacock, L., Reig, B., Kang, S. K., Lewin, A., Pysarenko, K., . . . Moy, L. (2009). Improving breast cancer diagnostics with artificial ıntelligence for MRI. Science Translational Medicine, 14(664). https://doi.org/10.1126/scitranslmed.abo4802
  • Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., . . . Zhan, J. (2021). Artificial intelligence: a powerful paradigm for scientific research. The Innovation , 2. https://doi.org/10.1016/j.xinn.2021.100179
  • Yılmaz, A. (2020). Yapay zeka. Kodlab.
  • Yang, L., Wu, J., Mo, X., Chen, Y., Huang, S., Zhou, L., . . . Xie, X. (2023). Changes in Mobile Health Apps Usage Before and After the COVID-19 Outbreak in China: Semilongitudinal Survey. JMIR Public Health Surveill, 9. http://doi.org/10.2196/40552
  • Yu, K.-H., Beam, A. L. ve Kohane, I. S. (2018). Artificial Intelligence in Healthcare. Nature Biomedical Engineering(2), 719-731. http://doi.org/10.1038/s41551-018-0305-z
  • Zakareya, S., Izadkhah, H. ve Karimpour, J., (2023). A new deep-learning-based model for breast cancer diagnosis from medical ımages. Diagnostics, 13(11), 1944. https://doi.org/10.3390/diagnostics13111944
  • Zeng, C., Guo, X., Wen, W., Shi, J., Long, J., Cai, Q., . . . Zheng, W., (2020). Evaluation of Pathogenetic Mutations in breast cancer predisposition genes in population‐based studies conducted among Chinese women. Breast Cancer Research and Treatment. 181(2), 465-473. http://doi.org/10.1007/s10549-020-05643-0.
  • Zhang, B., ve Dafoe, A. (2019, Ocak 19). Artificial Intelligence: American Attitudes and Trends. Erişim adresi: https://ssrn.com/abstract=3312874
  • Zheng, X. T., Yang, Z., Sutarlie, L., Thangaveloo, M., Yu, Y., Salleh, N. A., . . . Tee, B. C. (2023). Battery-Free and AI-Enabled Multiplexed Sensor Patches for Wound Monitoring. Science Advanced, 9(24), 1-14. https://doi.org/10.1126/sciadv.adg6670.

Sağlık Çalışanlarının Yapay Zekâ Uygulamalarına Yönelik Tutum Analizi

Yıl 2025, Cilt: 25 Sayı: 2, 93 - 122
https://doi.org/10.18037/ausbd.1529145

Öz

Günümüzde teknolojiyle beraber sağlık alanında tanı, tedavi ve bakımda önemli ilerlemeler kaydedilmektedir. Yapay zekâ ve robot teknolojileri sağlık çalışanları için destek sağlamakta ve kolaylaştırıcı çözümler sunmaktadır. Bu çözümler sayesinde sağlık hizmetlerinde bakım kalitesinin artması sağlanmaktadır. Sağlık alanında verinin karmaşıklığının ve miktarının artması, yapay zekânın bu alanda daha yaygın bir şekilde kullanılacağını işaret etmektedir. Yapay zekâ, sağlık sektöründe tıbbi karar verme süreçlerinde önemli bir rol oynamaktadır. Ancak, sağlık çalışanlarının yapay zekâ teknolojilerine yönelik tutumları, bu teknolojilerin etkili bir şekilde benimsenmesini etkileyebilmektedir. Yapılan araştırmayla birlikte sağlık çalışanlarının yapay zekâ uygulamalarına yönelik tutumlarının değerlendirilerek, yapay zekâya ilişkin tutumlarının demografik özelliklere ve bilişim teknolojileri kullanımına göre farklılaşıp farklılaşmadığını belirlemek amaçlanmıştır. Çalışmada nicel araştırma yöntemi uygulanmıştır. Veri toplama yöntemi olarak anket kullanılmış ve 386 değerlendirilebilir anket formu elde edilmiştir. Araştırmada elde edilen veriler SPSS 21 programı aracılığıyla yapılmıştır. Yapılan analizler sonucunda; katılımcıların cinsiyetleri, çalışma durumları, çalışılan sektör, bilişim teknolojileri kullanım düzeyleri, bilişim teknolojileri kullanım süreleri, kullanılan teknolojik cihaz olarak bilgisayar ve kindle (e-kitap okuyucu) kullanımları, bilişim teknolojilerini sosyal ağlara bağlanmak amacıyla kullanımları ile yapay zekâya yönelik tutumları arasında anlamlı farklılık bulunmuştur.

Etik Beyan

Makalede yer alan araştırma, İstanbul Üniversitesi-Cerrahpaşa, Sosyal ve Beşerî Bilimler Araştırmaları Etik Kurulu’nun onayıyla gerçekleştirilmiştir (Onay Tarihi: 23.01.2024; Onay No: 892761).

Kaynakça

  • Agouri, H. E., Azizi, M., Attar, H. E., Khannoussi, M. E., Ibrahimi, A., Kabbaj, R., . . . Khannoussi, B. E., (2022). Assessment of Deep Learning Algorithms to Predict Histopathological Diagnosis of Breast Cancer: First Moraccan Prospective Study on an Private Dataset. BMC Research Notes, 15(66). https://doi.org/10.1186/s13104-022-05936-1
  • Akalın, B. (2020). Sağlık hizmetleri ve yönetiminde yapay zeka (1 bs.). İstanbul: Hiperlink.
  • Alkış, N. ve Çoşkunçay, D. F. (2021). Covid-19 salgınında hayat eve sığar (hes) uygulamasının kullanıcılar tarafından benimsenmesi: ampirik bir çalışma. Bilişim Teknolojileri Dergisi, 14(4). https://doi.org/10.17671/gazibtd.883789
  • Al-Qerem, W., Eberhardt, J., Jarab, A., Bawab, A. Q., Hammad, A., Alasmari, F., . . . Al-Beool, S. (2023). Exploring knowledge, attitudes, and practices towards artificial ıntelligence among health professions’ students in Jordan. BMC Medical Informatics and Decision Making, 23. https://doi.org/10.1186/s12911-023-02403-0
  • AstraZeneca. (2019). Astrazeneca, yapay zekayla ilaç keşfini hızlandıracak. Erişim adresi: https://www.astrazeneca.com.tr/press-release/astrazeneca--yapay-zekayla-ilac-kefini-hzlandracak-.html#
  • Atalay, M. ve Çelik, E. (2017). Büyük veri analizinde yapay zeka ve makine öğrenmesi uygulamaları. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22), 155-172. https://doi.org/10.20875/makusobed.309727
  • AtomWise. (2015). New ebola treatment using artificial intelligence. Erişim adresi: https://www.atomwise.com/2015/03/24/new-ebola-treatment-using-artificial-intelligence/
  • Avaner, E. B. (2018). Turing testi ışığında düşüncenin multidisipliner ı̇ncelemesi III. Türkiye Biyoetik Dergisi, 5(4), 183-192. Erişim adresi: https://jag.journalagent.com/tjob/pdfs/TJOB_5_4_183_192.pdf
  • Aydın, N. (2020). Sağlıkta yeni bir dönem: mobil sağlık. SmartJournal, 6(38), 2438-2447. http://dx.doi.org/10.31576/smryj.697
  • Bergdahl, J., Latikka, R., Celuch, M. ve Savolainen, L. (2023). Self-determination and attitudes toward artificial intelligence: cross-national and longitudinal perspectives. Telematics and Informatics , 82(1). https://doi.org/10.1016/j.tele.2023.102013
  • Bohr, A. ve Memarzadeh, K. (2020). Current healthcare, big data, and machine Learning. A. Bohr, ve K. Memarzadeh (Ed.) Artificial Intelligence in Healthcare içinde (s. 1-24). Elsevier: Academic Press. https://doi.org/10.1016/B978-0-12-818438-7.00001-0
  • Boşat, M., Önder, E. ve Arcagök, U., (2020). Augmented Reality Practices in Health Services: Literature Review. Journal of Science and Technology, 10(2), 67-72. https://dergipark.org.tr/en/download/article-file/1366569
  • Boyd, M. ve Wilson, N. (2017). Rapid developments in artificial intelligence: how might the New Zealand government respond? Policy Quarterly, 13(4). https://doi.org/10.26686/pq.v13i4.4619
  • Coşkun, F. ve Gülleroğlu, H. D. (2021). Yapay zekanın tarih içindeki gelişimi ve eğitimde kullanılması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 54(3), 947-966. https://doi.org/10.30964/auebfd.916220
  • Çelik, I. N., Arslan, F. K., Tunç, R. ve Yıldız, İ. (2021). İlaç keşif ve geliştirilmesinde yapay zekâ. Ankara Eczacılık Fakültesi Dergisi, 45(2), 400-427. https://doi.org/10.33483/jfpau.878041
  • Çifçi, M. A., 2022. Derin öğrenme metodu kullanarak bt görüntülerinden akciğer kanseri teşhisi. Dokuz Eylül Üniversitesi Fakültesi Fen ve Mühendislik Dergisi, 24(71), 487-500. https://doi.org/10.21205/deufmd.2022247114
  • Çolakoğlu, S. ve Yıldız, A. (2023). An analysis of the features, user reviews and potential of a mobile health application; albert health assistant. İzmir: 14. Tıp Bilişimi Kongresi. Erişim adresi: https://albert.health/tr
  • Deloitte. (2019). Intelligent drug discovery. Diegam, Berkenlaan: Deloitte University EMEA CVBA. Erişim adresi: https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/life-sciences-health-care/deloitte-ch-en-intelligent-drug-discovery.pdf
  • Demirdöğmez, M. (2022). Blockchain teknolojisi ve yapay zeka. E. B. Ceyhan, ve O. Yılmaz (Ed.) Blockchain Teknolojisi-Güncel Teknolojilerle İlişkisi içinde (s. 65-118). Nobel Akademik Yayıncılık.
  • Dhamija, P. ve Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal, 32(4), 869-896. https://doi.org/10.1108/TQM-10-2019-0243
  • Díaz, P. I., Sampedro-Gómez, J., Sampedro-Gómez, J., Vicente-Palacios, V. ve Sanchez, P. L. (2019). Applications of artificial ıntelligence in cardiology. The future is already here. Revista Española de Cardiología , 72(12). https://doi.org/10.1016/j.rec.2019.05.014
  • Diaz-Pernas, F. J., Martinez-Zarzuela, M., Anton-Rodriguez, M. ve Gonzalez-Ortega, D. (2021). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare, 9(2), 153. https://doi.org/10.3390/healthcare9020153
  • Doğan, P. K., Doğan, İ. ve Çetinkayalı, G. (2023). Spor bilimleri öğrencilerilerinin yapay zekaya yönelik tutumları ile iş bulma kaygıları arasındaki ilişkinin incelenmesi. https://dergipark.org.tr/tr/download/article-file/3407883
  • Dreesmann, N. J., Su, H. ve Thompson, H. J., (2022). A Systematic Review of Virtual Reality Therapeutics for Acute Pain Management. Pain Management Nursing, 23(5), 672-681. https://doi.org/10.1016/j.pmn.2022.05.004
  • Ergüven, Ö. ve Ökten, S. (2022). Yapay zekânın mikrobiyolojide kullanımı. Sağlık Bilimlerinde Yapay Zeka Dergisi, 2(2), 1-12. https://doi.org/10.52309/jaihs.v2i2.41
  • Farina, E., Nabhen, J. J., Dacoregio, M. I., Batalini, F. ve Moraes, F. Y. (2022). An overview of artificial intelligence in oncology. Future Science OA, 8(4). https://doi.org/10.2144/fsoa-2021-0074
  • Güzel, M. (2021). Yapay zekânın ilaç geliştirme çalışmalarındaki rolü. Sağlık Düşüncesi ve Tıp Kültürü Platformu(58), 28-31. Erişim adresi: https://sdplatform.com/yapay-zekanin-ilac-gelistirme-calismalarindaki-rolu/
  • Gilson, A., Safranek, C., Huang, T., Socrates, V., Chi, L., Taylor, R. A. ve Chartash, D. (2022). How does chatgpt perform on the medical licensing exams? The ımplications of large language models for medical education and knowledge assessment. medRxiv. https://doi.org/10.2196/45312
  • Gupta, A. ve Waldron, A. (2023). A responsible path to generative aı in healthcare. Erişim adresi: https://cloud.google.com/blog/topics/healthcare-life-sciences/sharing-google-med-palm-2-medical-large-language-model
  • Hadithy, Z. A., Lawati, A. A., Al-Zadjali, R. ve Sinawi, H. A. (2023). Knowledge, attitudes, and perceptions of artificial ıntelligence in healthcare among medical students at Sultan Qaboos University. Cureus, 15(9). https://doi.org/10.7759/cureus.44887
  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. ve Aerts, H. J. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500-510. http://doi.org/10.1038/s41568-018-0016-5
  • Howard, J. (2019). Artificial intelligence: Implications for the Future of Work. Am J Ind Med, 62(11), 917-926. https://doi.org/10.1002/ajim.23037
  • Imaging Technology News. (2023). İCAD and Google health expand ıntegration of google's aı technology with İCAD's profound breast health suite for 2d mammography for use as independent reader. Erişim adresi: https://www.itnonline.com/content/icad-and-google-health-expand-integration-google's-ai-technology-icad's-profound-breast
  • Insider Intelligence. (2022). Big pharma is using AI and machine learning in drug. Discovery and development to save lives. Erişim adresi: https://www.emarketer.com/topics/industry/digital-health
  • Insilico Medicine. (2023). Insilico medicine presents at future investment initiative conference in Riyadh. Erişim adresi: https://www.eurekalert.org/news-releases/1005417
  • Jabeen, K., Khan, M. A., Alhaisoni, M., Tariq, U., Zhang, Y.-D., Hamza, A., . . . Damaševičius, R. (2022). Breast cancer classification from ultrasound ımages using probality-based optimal deep learning feature fusion. Sensors, 22(3), 807. https://doi.org/10.3390/s22030807
  • Jiang, F., Jiang, Y., Zhi, H. ve Dong, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4). https://doi.org/10.1136/svn-2017-000101
  • Kann, B. H., Hosny, A. ve Aerts, H. J. (2022). Artificial intelligence for clinical oncology. Cancer Cell, 39(7), 916-927. https://doi.org/10.1016/j.ccell.2021.04.002
  • Karakuş, O., Yorulmazlar, M. M., Çetin, A. ve Özsoy, D. (2023). Examining the attitudes of e-sports players towards artificial intelligence technologies. International Journal of Recreation and Sport Science, 7(1), 18-25. https://doi.org/10.46463/ijrss.1361388
  • Kaya, F., Aydın, F., Schepman, A., Rodway, P., Yetişensoy, O. ve Kaya, M. D. (2022). The roles of personality traits, AI anxiety and demographic factors in attitudes toward artificial intelligence. International Journal of Human–Computer Interaction, 40(2), 1-18. https://doi.org/10.1080/10447318.2022.2151730
  • Kour, S., Biswas, I., Sheoran, S. ve Arora, S. (2023). Artificial intelligence and nanotechnology for cervical cancer treatment: current status and future perspectives. Journal of Drug Delivery Science and Technology, 83. https://doi.org/10.1016/j.jddst.2023.104392
  • Kum, Ö. (2023). Grafik tasarım bölümü öğrencilerinin yapay zekaya yönelik tutumları (Tokat ili örneği). Sosyal Bilimler Ekev Akademi Dergisi(96), 172-181. https://doi.org/10.17753/sosekev.1381995
  • Kurtuluş, K., 2010, Araştırma yöntemleri. İstanbul: Türkmen Kitabevi.
  • Kwak, Y., Ahn, J.-W. ve Seo, Y. H. (2022). Influence of AI ethics awareness, attitude, anxiety and self-efficacy on nursing students' behavioral intestions. BMC Nursing, 21(1), 1-8. https://doi.org/10.1186/s12912-022-01048-0
  • Londhe, V. Y. ve Bhasin, B. (2019). Artificial intelligence and its potential in oncology. Drug Discovery Today, 24(1), 228-232. http://doi.org/10.1016/j.drudis.2018.10.005
  • Ma, L., Yu, S., Xu, X., Amadi, S. M., Zhang, J. ve Wang, Z. (2023). Application of artificial intelligence in 3d printing physical organ models. Mater Today Bio.
  • Martin, B. A., Jin, H. S., Wang, D., Nguyen, H., Zhan, K. ve Wang, Y. X. (2020). The influence of consumer anthropomorphism on attitudes towards artificial intelligence trip advisors . Journal of Hospitality and Tourism Management, 44, 108–111. https://doi.org/10.1016/j.jhtm.2020.06.004
  • Matias, Y. Ve Corrado, G. (2023). Our latest health AI research updates. Erişim adresi: https://blog.google/technology/health/ai-llm-medpalm-research-thecheckup/
  • McCarthy, J. (2004). What Is Artificial Intelligence?
  • McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., . . . Halling-Brown, M. (2020). International evaluation of an AI system for breast cancer screening. Nature(577), 89-94. http://doi.org/10.1038/s41586-019-1799-6
  • Medikaynak. (2020). İlaç geliştirmede yapay zeka kullanımı. Erişim Adresi: medikaynak.com/n/ilac-gelistirmede-yapay-zeka-kullanimi
  • Millington, I. ve Funge, J. (2009). Artificial intelligence for games (2 b.). Boca Raton: CRC Press.
  • Moritz, S., Romeike, B., Stosch, C. ve Tolks, D. (2023). Generative AI (gAI) in medical education: Chat-GPT and co. GMS Journal for Medical Education, 40(4), 1-9. http://doi.org/10.3205/zma001636
  • Mullard, A. (2017). The drug-maker's guide to the galaxy. Nature, 549, 445-447. http://doi.org/10.1038/549445a Neapolitan, R. E. ve Jiang, X. (2018). Artificial intelligence with an ıntroduction to machine learning (2 bs.). New York: Chapman and Hall/CRC.
  • Narin, A., Kaya, C. ve Pamuk, Z., (2021). Automatic detection of coronavirüs disease (covid-19) using x-ray ımages and deep convolutional neural networks. Patterns Analysis and Applications, Cilt 24, 1207-1220. http://doi.org/ 0.1007/s10044-021-00984-y
  • NVIDIA. (2016). NVIDIA teams with national cancer ınstitute, U.S. department of energy to create AI platform for accelerating cancer research. Erişim adresi: https://nvidianews.nvidia.com/news/nvidia-teams-with-national-cancer-institute-u-s-department-of-energy-to-create-ai-platform-for-accelerating-cancer-research
  • Organisation for Economic Co-operation and Development. (2019). Recommendation of the council on artificial ıntelligence. Erişim adresi: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
  • Oğuz, S. C. (2022). E-Devlet Uygulamaları Kapsamında HES Kodu Uygulaması ve Kişisel Verilerin Korunmas. Türkiye Biyoetik Dergisi,, 9(1), 21-28. http://doi.org/10.5505/tjob.2022.59454
  • Özdet, B. Ve İçer, S., (2022). Akciğer bilgisayarlı tomografi görüntülerinde görüntü işleme uygulamaları ile tümörlerinin tespit edilmesi. Bursa Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 135-150. https://doi.org/10.17482/uumfd.947619
  • Pacal, I., (2022). Deep learning approaches of breast cancer in ultrasound (us) images. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(4), 1917-1927. https://doi.org/10.21597/jist.1183679
  • Parvathaneni, M., Awol, A. K., Kumari, M., Lan, K. ve Lingam, M. (2023). Application of artificial intelligence and machine learning in drug discovery and development. Journal of Drug Delivery & Therapeutics, 13(1), 151-158. http://dx.doi.org/10.22270/jddt.v13i1.5867
  • Priyadharsini, M., Mallika, S. S., Karuppasamy, K. ve R, S. (2022). Drug discovery for alzheimer's disease using machine learning [Öz]. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS) sunulan bildiri, Coimbatore, India. Erişim adresi: https://ieeexplore.ieee.org/document/9785277
  • Pricewaterhouse Coopers. (2017). What doctor? Why AI and robotics will define new health. Erişim adresi: https://www.pwc.com/gx/en/news-room/docs/what-doctor-why-ai-and-robotics-will-define-new-health.pdf
  • Pricewaterhouse Coopers. (2018). The macroeconomic impact of AI, 1–75. Erişim adresi: https://www.pwc.co.uk/economic-services/assets/macroeconomic-impact-of-ai-technical-report-feb-18.pdf
  • Rahaman, M. M., Millar, E. K. A. ve Meijering, E., (2023). Breast cancer histopathology ımage-based gene expression prediction using spatial transcriptomics data and deep learning. Scientific Reports, 13. http://doi.org/10.1038/s41598-023-40219-0
  • Sarbadhikari, S., ve Sarbadhikari, S. (2020). The global experience of digital health interventions in covid-19 management. Journal of Public Health , 64(6), 117. http://doi.org/10.4103/ijph.IJPH_457_20
  • Schepman, A., ve Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior. https://doi.org/10.1016/j.chbr.2020.100014
  • Schepman, A., ve Rodway, P. (2023). The general attitudes towards artificial intelligence scale (GAAIS): confirmatory validation and associations with personality, corporate distrust, and general trust. International Journal of Human–Computer Interaction, 39(13), 2724-2741. https://doi.org/10.1080/10447318.2022.2085400
  • Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Jr, R. A., . . . Ko. (2020). Rethinking drug desing in the artificial intelligence Era. Nature Reviews Drug Discovery, 19, 353-364. http://doi.org/10.1038/s41573-019-0050-3
  • Serbaya, S. H., Khan, A. A., Surbaya, S. H., ve Alzahrani, S. M. (2024). Knowledge, attitude and practice toward artificial intelligence among healthcare workers in private polyclinics in Jeddah, Saudi Arabia. Advances in Medical Education and Practice, 15, 269-280. http://doi.org/10.2147/AMEP.S448422
  • Shaheen, M. Y. (2021). Applications of artificial intelligence (AI) in healthcare: A review. ScienceOpen Preprints. http://doi.org/10.14293/S2199-1006.1.SOR-.PPVRY8K.v1
  • Shia, W.-C. ve Chen, D.-R., 2021. Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine. Computerized Medical Imaging and Graphics, 87, 101829. https://doi.org/10.1016/j.compmedimag.2020.101829
  • Shimizu, H., ve Nakayama, K. I. (2020). Artificial intelligence in oncology. Cancer Science, 111(5), 1452-1460. https://doi.org/10.1111/cas.14377
  • Shirkin, R. (2020). Artificial intelligence : the complete beginners’ guide to artificial ıntelligence: step-by-step guide for beginners. Amazon KDP Printing and Publishing.
  • Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Hou, L., . . . Green, B. (2023). Towards expert-level medical question answering with large language models. Computation and Language. https://doi.org/10.48550/arXiv.2305.09617
  • Subin, L. (2021). Artificial intelligence and sustainable development in China. Chinese Economy, 54(4), 235-248. http://doi.org/10.1080/10971475.2020.1857062
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemalz, A., ve Bray, F. (2021). Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. http://doi.org/10.3322/caac.21660
  • Tabachnick, B. G., ve Fidell, L. S. (2013). Using multivariate statistics (6 bs.). Boston: Pearson Educaiton.
  • Tan, Ç., Ceylan, Y., ve Öztürk, O. (2023). Öğretmenlerin yapay zekaya karşı tutumlarının incelenmesi. Sosyal Bilimler Dergisi, 10(67), 72-83. http://doi.org/10.29228/SOBIDER.73772
  • Türkiye İstatistik Kurumu. (2021). Bölgesel istatistikler. https://biruni.tuik.gov.tr/bolgeselistatistik/degiskenlerUzerindenSorgula.do
  • Vecchio, D. D., Stein., M. J., Dayan, E., Marte, J. ve Theodorou, S. (2023). Nanotechnology and Artificial Intelligence: An Emerging Paradigm for Postoperative Patient Care. Aesthetic Surgery Journal, 43(7), 748-757. http://doi.org/10.1093/asj/sjad071.
  • Verma, V. K., ve Verma, S. (2022). Machine learning applications in healthcare sector: an overview. Materials Today Proceedings, 57(5), 2144-2147. https://doi.org/10.1016/j.matpr.2021.12.101
  • Vua, H. T., ve Lim, J. (2022). Effects of country and individual factors on public acceptance of artificial intelligence and robotics technologies: a multilevel sem analysis of 28-country survey data. . Behaviour & Information Technology, 41(7), 1515–1528. https://doi.org/10.1080/0144929X.2021.1884288
  • WHO. (2015). mHealth programmes are sponsored by government. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4774
  • Witowski, J., Heacock, L., Reig, B., Kang, S. K., Lewin, A., Pysarenko, K., . . . Moy, L. (2009). Improving breast cancer diagnostics with artificial ıntelligence for MRI. Science Translational Medicine, 14(664). https://doi.org/10.1126/scitranslmed.abo4802
  • Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., . . . Zhan, J. (2021). Artificial intelligence: a powerful paradigm for scientific research. The Innovation , 2. https://doi.org/10.1016/j.xinn.2021.100179
  • Yılmaz, A. (2020). Yapay zeka. Kodlab.
  • Yang, L., Wu, J., Mo, X., Chen, Y., Huang, S., Zhou, L., . . . Xie, X. (2023). Changes in Mobile Health Apps Usage Before and After the COVID-19 Outbreak in China: Semilongitudinal Survey. JMIR Public Health Surveill, 9. http://doi.org/10.2196/40552
  • Yu, K.-H., Beam, A. L. ve Kohane, I. S. (2018). Artificial Intelligence in Healthcare. Nature Biomedical Engineering(2), 719-731. http://doi.org/10.1038/s41551-018-0305-z
  • Zakareya, S., Izadkhah, H. ve Karimpour, J., (2023). A new deep-learning-based model for breast cancer diagnosis from medical ımages. Diagnostics, 13(11), 1944. https://doi.org/10.3390/diagnostics13111944
  • Zeng, C., Guo, X., Wen, W., Shi, J., Long, J., Cai, Q., . . . Zheng, W., (2020). Evaluation of Pathogenetic Mutations in breast cancer predisposition genes in population‐based studies conducted among Chinese women. Breast Cancer Research and Treatment. 181(2), 465-473. http://doi.org/10.1007/s10549-020-05643-0.
  • Zhang, B., ve Dafoe, A. (2019, Ocak 19). Artificial Intelligence: American Attitudes and Trends. Erişim adresi: https://ssrn.com/abstract=3312874
  • Zheng, X. T., Yang, Z., Sutarlie, L., Thangaveloo, M., Yu, Y., Salleh, N. A., . . . Tee, B. C. (2023). Battery-Free and AI-Enabled Multiplexed Sensor Patches for Wound Monitoring. Science Advanced, 9(24), 1-14. https://doi.org/10.1126/sciadv.adg6670.
Toplam 93 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlıkta Bilgi İşleme, Yapay Zeka (Diğer)
Bölüm Makaleler
Yazarlar

Handan Şirin 0000-0002-2377-0177

Eda Yılmaz Alarçin 0000-0002-6100-1272

Erken Görünüm Tarihi 28 Haziran 2025
Yayımlanma Tarihi
Gönderilme Tarihi 6 Ağustos 2024
Kabul Tarihi 3 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 2

Kaynak Göster

APA Şirin, H., & Yılmaz Alarçin, E. (2025). Sağlık Çalışanlarının Yapay Zekâ Uygulamalarına Yönelik Tutum Analizi. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 25(2), 93-122. https://doi.org/10.18037/ausbd.1529145