Antioxidant defense strategies of some pear cultivars onto different rootstocks under NaCl stress
Yıl 2025,
Cilt: 34 Sayı: AI, 12 - 28
Melih Aydınlı
,
Fatma Yıldırım
,
Emel Kaçal
,
Yaşar Karakurt
,
Sercan Önder
Öz
Salt stress is one of the most significant abiotic factors limiting plant production worldwide. In this study, the tolerance of Ankara and Deveci pear varieties to NaCl stress was examined on commonly used rootstocks. According to our results, leaf surface area, leaf water potential, and hydrogen peroxide amount decreased under NaCl stress, while root/shoot ratio, proline content, and glutathione reductase activity in the leaves increased. The A×11 and A×29 combinations were identified as the most affected in terms of leaf surface area. The root/shoot ratio increased on OH×F rootstocks but decreased on Fox 11 and BA 29 rootstocks. GR activity was found to be higher on varieties grafted onto OH×F 97 rootstock, with the highest activity detected in the D×97 combination under severe stress. Total phenolic compounds and total flavonoid content were not affected by NaCl stress. Arbutin, chlorogenic acid, catechin, and rutin showed variable results under NaCl stress. In the more salt-tolerant Deveci variety, the amount of arbutin in leaves was higher compared to other phenolic compounds. Overall, the higher amount of arbutin, which is a key phenolic compound in pears, in the Deveci variety suggests that this compound may contribute to the tolerance mechanism.
Destekleyen Kurum
Scientific and Technological Research Council of Türkiye (TUBITAK)
Kaynakça
- Andreotti, C., Costa, G., & Treutter, D. (2006). Composition of phenolic compounds in pear leaves as affected by genetics, ontogenesis and the environment. Scientia Horticulturae, 109(2), 130-137.
https://doi.org/10.1016/j.scienta.2006.03.014
- Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156,64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
- Asayesh, Z. M., Arzani, K., Mokhtassi-Bidgoli, A., & Abdollahi, H. (2023). Enzymatic and non-enzymatic response of grafted and ungrafted young European pear (Pyrus communis L.) trees to drought stress. Scientia Horticulturae, 310, 111745. https://doi.org/10.1016/j.scienta.2022.111745
- Aydınlı, M., Yıldırım, F., Kaçal, E., Altındal, M., & Yıldız, H. (2024). Morphological and Physiological Changes under NaCl Stress in Some Pyrus and Quince Rootstocks. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(2), 299-313. https://doi.org/10.29133/yyutbd.1414651
- Bates, L. S., Waldren, R. P., &Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/doi.org/10.1007/BF00018060
- Bendaly, A., Messed, D., Smaoui, A., Ksoui, R., Bouchereau, A., & Abdelly, C. (2016). Physiological and leaf metabolome changes in the xerophyte species Atriplex halimus induced by salinity. Plant Physiology and Biochemistry, 103, 208-218. https://doi.org/10.1016/j.plaphy.2016.02.037
- Calzone, A., Tonelli, M., Cotrozzi, L., Lorenzini, G., Nali, C., & Pellegrini, E. (2023). Significance of phenylpropanoid pathways in the response of two pomegranate cultivars to salinity and ozone stress. Environmental and Experimental Botany, 208, 105249. https://doi.org/10.1016/j.envexpbot.2023.105249
- Castillo, J. M., Mancilla-Leytón, J. M., Martins-Noguerol, R., Moreira, X., Moreno-Pérez, A. J., & Muñoz-Vallés, S., Pedroche, J. J., Figueroa, M. F., García-González, A., Salas, J. J., María C. Millán-Linares, M. C., Francisco, M., & Cambrollé, J. (2022). Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Scientia Horticulturae, 301, 111136. https://doi.org/10.1016/j.scienta.2022.111136
- Chatterjee, P., Samaddar, S., Anandham, R., Kang, Y., Kim, K., Selvakumar, G., & Sa, T. (2017). Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00705
- Coban, N., & Öztürk, A. (2020). Effect of rootstock and cultivars on some branch and leaf characteristics in pear. Turkish Journal of Food and Agriculture Sciences, 2(1), 15-22.
https://doi.org/10.14744/turkjfas.2020.005
- Demiral, T., & Türkan, I. (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 56(1), 72-79. https://doi.org/10.1016/j.envexpbot.2005.01.005
- Denaxa, N. K., Nomikou, A., Malamos, N., Liveri, E., Roussos, P. A., & Papasotiropoulos, V. (2022). Salinity effect on plant growth parameters and fruit bioactive compounds of two strawberry cultivars, coupled with environmental conditions monitoring. Agronomy, 12(10), 2279. https://doi.org/10.3390/agronomy12102279
- Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2020). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science, 11, 552969, https://doi.org/10.3389/fpls.2020.552969
- Escarpa, A., & González, C. (1998). High-performance liquid chromatography with diode-array detection fort he determination of phenolic compounds in pell and pulp from different apple varieties. Journal of Chromatography A, 823(1-2), 331-337. https://doi.org/10.1016/S0021-9673(98)00294-5
- Foyer, C. H., & Halliwell, B. (1976). The presence of glutathion and glutathion reductase in chloroplast: a proposed role in ascorbic acid metabolism. Plant, 133(1), 21-25.
https://doi.org/10.1007/BF00386001
- Fozouni, M., Abbaspour, N., & Baneh, H. D. (2012). Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. Vitis, 51(4):, 147-152.
García, M., García, G., Parola, R., Maddela, N. R., Pérez-Almeida, I., & Garcés-Fiallos, F. R. (2024). Root-shoot ratio and SOD activity are associated with the sensitivity of common bean seedlings to NaCl salinization. Rhizosphere, 29, 100848. https://doi.org/10.1016/j.rhisph.2024.100848
- Günen, Y., Mısırlı, A., & Gülcan, R. (2005). Leaf phenolic content of pear cultivars resistant or susceptible to fire blight. Scientia Horticulturae, 105(2), 213-221.https://doi.org/10.1016/j.scienta.2005.01.014
- Hasanuzzaman, M., Hossain, M. A., Teixeira da Silva, J. A., & Fujita. M. (2012). Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In. V. Bandi., A. K. Shanker., C. Shanker & M. Mandapaka (Eds.), Crop Stress and Its Management: Perspectives and Strategies. Springer, Berlin.
- Kim, J., Liu, Y., Zhang, X., Zhao, X., & Childs, K. L. (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiology and Biochemistry, 105, 203-212. https://doi.org/10.1016/j.plaphy.2016.04.020
- Koleska, I., Hasanagic, D., Todorovic, V., Murtic, S., & Maksimovic, I. (2018). Grafting influence on the weight and quality of tomato fruit under salt stress. Annals of Applied Biology, 172, 187-196
https://doi.org/10.1111/aab.12411
- Kumar, K., Debnath, P., Singh, S., & Kumar, N. (2023). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses, 3(3), 570-585. ttps://doi.org/10.3390/stresses3030040
- Küçükyumuk, C., Yıldız, H., Küçükyumuk, Z., & Ünlükara, A. (2015). Responses of “0900 Ziraat” sweet cherry variety grafted on different rootstocks to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 214-221. https://doi.org/10.15835/nbha4319754
- Larher, F. R., Lugan, R., Gagneul, D., Guyot, S., Monnier, C., Lespinasse, Y., & Bouchereau, A. (2009). A reassessment of the prevalent organic solutes constitutively accumulated and potentially involved in osmotic adjustment in pear leaves. Environmental and Experimental Botany, 66(2), 230-241. https://doi.org/10.1016/j.envexpbot.2009.02.005
- Li, X., Zhang, J. Y., Gao, W. Y., Wang, Y., Wang, H. Y., & Cao, J. G. (2012). Chemical composition and anti-inflammatory and antioxidant activities of eight pear cultivars. Journal of Agricultural and Food Chemistry, 60(35), 8738-8744. https://doi.org/10.1021/jf303235h
- Mansour, M. M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, 52-68. https://doi.org/10.1016/j.phytochem.2017.04.016
- Munn, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Musacchi, S., Quartieri, M., & Tagliavini, M. (2006). Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. European Journal of Agronomy, 24(3), 268-275. https://doi.org/10.1016/j.eja.2005.10.003
- Okubo, M., & Sakuratani, T. (2000). Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Scientia Horticulturae, 85(1-2), 85-90.
https://doi.org/10.1016/S0304-4238(99)00141-7
- Okubo, M., Furukawa, Y., & Sakuratani, T. (2000). Growth, fowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Scientia Horticulturae, 85(1-2), 91-101. https://doi.org/10.1016/S0304-4238(99)00145-4
- Ouertani, R. N., Jardak, R., Ben Chikha, M., Ben Yaala, W., Abid, G., Karmous, C., Hamdi, Z., Mejri, S., Jansen, R. K., & Ghorbel, A. (2022). Genotype-specific patterns of physiological and antioxidative responses in barley under salinity stress. Cereal Research Communications, 1-13. https://doi.org/10.1007/s42976-021-00232-3
- Paganová, V., Hus, M., & Lichtnerová, H. (2022). Effect of salt treatment on the growth, water status, and gas exchange of Pyrus pyraster L.(Burgsd.) and Tilia cordata Mill. seedlings. Horticulturae, 8(6), 519. https://doi.org/10.3390/horticulturae8060519
- Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
- Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. https://doi.org/10.1016/j.envexpbot.2012.01.007
- Poury, N., Seifi, E., & Alizadeh, M. (2023). Effects of salinity and proline on growth and physiological characteristics of three olive cultivars. Gesunde Pflanzen, 75(4), 1169-1180.
https://doi.org/10.1007/s10343-022-00778-0
- Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
- Rouphael, Y., Petropoulos, S. A., Cardarelli, M., & Colla, G. (2018). Salinity as eustressor for enhancing quality of vegetables. Scientia Horticulturae, 234, 361-369. https://doi.org/10.1016/j.scienta.2018.02.048
- Santander, C., Ruiz, A., García, S., Aroca, R., Cumming, J., & Cornejo, P. (2020). Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. Journal of the Science of Food and Agriculture, 100, 1577-1587. https://doi.org/10.1002/jsfa.10166
- Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In M. Zaman., S. A. Shahid & L. Heng (Eds.), Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham.
- Singleton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolibdic phosphothungstic acid. American Journal of Enology and Viticulture, 16(3), 144-158.
https://doi.org/10.5344/ajev.1965.16.3.144
- Sofy, R., Elhawat, N., & Alshaa, T. (2020). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 200, 110732. https://doi.org/10.1016/j.ecoenv.2020.110732
- Tanrıöven, D., & Ekşi, A. (2005). Phenolic compounds in pear juice from different cultivars. Food Chemistry, 93(1), 89-93. https://doi.org/10.1016/j.foodchem.2004.09.009
- Velikova, V., Yordanov, I., & Edrev, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66.
https://doi.org/10.1016/S0168-9452(99)00197-1
- Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75(6), 623-627. https://doi.org/10.1080/14620316.2000.11511297
- Waśkiewicz, A., Muzolf-Panek, M., & Goliński, P. (2013). Phenolic content changes in plants under salt stress. In A. Parvaiz., M. M. Azooz & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress. Springer, New York. https://doi.org/10.1007/978-1-4614-4747-4_11
- Zafari, F., Amiri, M. E., Noroozisharaf, A., & Almasi, P. (2018). Physiological and morphological responses of the ‘Dargazi’pear (Pyrus communis) to in vitro salinity. Agriculturae Conspectus Scientificus, 83(2), 169-174.
- Zhang, Y., Li, P., & Chen, L. (2010). Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in “Honeycriscp” apple flesh. Food Chemistry, 123(4), 1013-1018.
https://doi.org/10.1016/j.foodchem.2010.05.053
- Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
https://doi.org/10.1016/S0308-8146(98)00102-2
- Zobayed, S. M. A., Afreen, F., & Kozai, T. (2007). Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condition. Environmental and Experimental Botany, 59, 109-116. https://doi.org/10.1016/j.envexpbot.2005.10.002
- Zrig, A., Belhadj, S., Tounekti K. H., & Elsheikh, S. Y. S. (2023). Perspective Chapter: rootstock-scion ınteraction effect on improving salt tolerance in fruit trees. In T. H. Awan., E. A. Waraich., M. I. Awan, S. Hussain (Eds.), Plant abiotic stress responses and tolerance mechanisms. Intechopen.
Yıl 2025,
Cilt: 34 Sayı: AI, 12 - 28
Melih Aydınlı
,
Fatma Yıldırım
,
Emel Kaçal
,
Yaşar Karakurt
,
Sercan Önder
Kaynakça
- Andreotti, C., Costa, G., & Treutter, D. (2006). Composition of phenolic compounds in pear leaves as affected by genetics, ontogenesis and the environment. Scientia Horticulturae, 109(2), 130-137.
https://doi.org/10.1016/j.scienta.2006.03.014
- Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156,64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
- Asayesh, Z. M., Arzani, K., Mokhtassi-Bidgoli, A., & Abdollahi, H. (2023). Enzymatic and non-enzymatic response of grafted and ungrafted young European pear (Pyrus communis L.) trees to drought stress. Scientia Horticulturae, 310, 111745. https://doi.org/10.1016/j.scienta.2022.111745
- Aydınlı, M., Yıldırım, F., Kaçal, E., Altındal, M., & Yıldız, H. (2024). Morphological and Physiological Changes under NaCl Stress in Some Pyrus and Quince Rootstocks. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(2), 299-313. https://doi.org/10.29133/yyutbd.1414651
- Bates, L. S., Waldren, R. P., &Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/doi.org/10.1007/BF00018060
- Bendaly, A., Messed, D., Smaoui, A., Ksoui, R., Bouchereau, A., & Abdelly, C. (2016). Physiological and leaf metabolome changes in the xerophyte species Atriplex halimus induced by salinity. Plant Physiology and Biochemistry, 103, 208-218. https://doi.org/10.1016/j.plaphy.2016.02.037
- Calzone, A., Tonelli, M., Cotrozzi, L., Lorenzini, G., Nali, C., & Pellegrini, E. (2023). Significance of phenylpropanoid pathways in the response of two pomegranate cultivars to salinity and ozone stress. Environmental and Experimental Botany, 208, 105249. https://doi.org/10.1016/j.envexpbot.2023.105249
- Castillo, J. M., Mancilla-Leytón, J. M., Martins-Noguerol, R., Moreira, X., Moreno-Pérez, A. J., & Muñoz-Vallés, S., Pedroche, J. J., Figueroa, M. F., García-González, A., Salas, J. J., María C. Millán-Linares, M. C., Francisco, M., & Cambrollé, J. (2022). Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Scientia Horticulturae, 301, 111136. https://doi.org/10.1016/j.scienta.2022.111136
- Chatterjee, P., Samaddar, S., Anandham, R., Kang, Y., Kim, K., Selvakumar, G., & Sa, T. (2017). Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00705
- Coban, N., & Öztürk, A. (2020). Effect of rootstock and cultivars on some branch and leaf characteristics in pear. Turkish Journal of Food and Agriculture Sciences, 2(1), 15-22.
https://doi.org/10.14744/turkjfas.2020.005
- Demiral, T., & Türkan, I. (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 56(1), 72-79. https://doi.org/10.1016/j.envexpbot.2005.01.005
- Denaxa, N. K., Nomikou, A., Malamos, N., Liveri, E., Roussos, P. A., & Papasotiropoulos, V. (2022). Salinity effect on plant growth parameters and fruit bioactive compounds of two strawberry cultivars, coupled with environmental conditions monitoring. Agronomy, 12(10), 2279. https://doi.org/10.3390/agronomy12102279
- Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2020). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science, 11, 552969, https://doi.org/10.3389/fpls.2020.552969
- Escarpa, A., & González, C. (1998). High-performance liquid chromatography with diode-array detection fort he determination of phenolic compounds in pell and pulp from different apple varieties. Journal of Chromatography A, 823(1-2), 331-337. https://doi.org/10.1016/S0021-9673(98)00294-5
- Foyer, C. H., & Halliwell, B. (1976). The presence of glutathion and glutathion reductase in chloroplast: a proposed role in ascorbic acid metabolism. Plant, 133(1), 21-25.
https://doi.org/10.1007/BF00386001
- Fozouni, M., Abbaspour, N., & Baneh, H. D. (2012). Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. Vitis, 51(4):, 147-152.
García, M., García, G., Parola, R., Maddela, N. R., Pérez-Almeida, I., & Garcés-Fiallos, F. R. (2024). Root-shoot ratio and SOD activity are associated with the sensitivity of common bean seedlings to NaCl salinization. Rhizosphere, 29, 100848. https://doi.org/10.1016/j.rhisph.2024.100848
- Günen, Y., Mısırlı, A., & Gülcan, R. (2005). Leaf phenolic content of pear cultivars resistant or susceptible to fire blight. Scientia Horticulturae, 105(2), 213-221.https://doi.org/10.1016/j.scienta.2005.01.014
- Hasanuzzaman, M., Hossain, M. A., Teixeira da Silva, J. A., & Fujita. M. (2012). Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In. V. Bandi., A. K. Shanker., C. Shanker & M. Mandapaka (Eds.), Crop Stress and Its Management: Perspectives and Strategies. Springer, Berlin.
- Kim, J., Liu, Y., Zhang, X., Zhao, X., & Childs, K. L. (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiology and Biochemistry, 105, 203-212. https://doi.org/10.1016/j.plaphy.2016.04.020
- Koleska, I., Hasanagic, D., Todorovic, V., Murtic, S., & Maksimovic, I. (2018). Grafting influence on the weight and quality of tomato fruit under salt stress. Annals of Applied Biology, 172, 187-196
https://doi.org/10.1111/aab.12411
- Kumar, K., Debnath, P., Singh, S., & Kumar, N. (2023). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses, 3(3), 570-585. ttps://doi.org/10.3390/stresses3030040
- Küçükyumuk, C., Yıldız, H., Küçükyumuk, Z., & Ünlükara, A. (2015). Responses of “0900 Ziraat” sweet cherry variety grafted on different rootstocks to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 214-221. https://doi.org/10.15835/nbha4319754
- Larher, F. R., Lugan, R., Gagneul, D., Guyot, S., Monnier, C., Lespinasse, Y., & Bouchereau, A. (2009). A reassessment of the prevalent organic solutes constitutively accumulated and potentially involved in osmotic adjustment in pear leaves. Environmental and Experimental Botany, 66(2), 230-241. https://doi.org/10.1016/j.envexpbot.2009.02.005
- Li, X., Zhang, J. Y., Gao, W. Y., Wang, Y., Wang, H. Y., & Cao, J. G. (2012). Chemical composition and anti-inflammatory and antioxidant activities of eight pear cultivars. Journal of Agricultural and Food Chemistry, 60(35), 8738-8744. https://doi.org/10.1021/jf303235h
- Mansour, M. M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, 52-68. https://doi.org/10.1016/j.phytochem.2017.04.016
- Munn, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Musacchi, S., Quartieri, M., & Tagliavini, M. (2006). Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. European Journal of Agronomy, 24(3), 268-275. https://doi.org/10.1016/j.eja.2005.10.003
- Okubo, M., & Sakuratani, T. (2000). Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Scientia Horticulturae, 85(1-2), 85-90.
https://doi.org/10.1016/S0304-4238(99)00141-7
- Okubo, M., Furukawa, Y., & Sakuratani, T. (2000). Growth, fowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Scientia Horticulturae, 85(1-2), 91-101. https://doi.org/10.1016/S0304-4238(99)00145-4
- Ouertani, R. N., Jardak, R., Ben Chikha, M., Ben Yaala, W., Abid, G., Karmous, C., Hamdi, Z., Mejri, S., Jansen, R. K., & Ghorbel, A. (2022). Genotype-specific patterns of physiological and antioxidative responses in barley under salinity stress. Cereal Research Communications, 1-13. https://doi.org/10.1007/s42976-021-00232-3
- Paganová, V., Hus, M., & Lichtnerová, H. (2022). Effect of salt treatment on the growth, water status, and gas exchange of Pyrus pyraster L.(Burgsd.) and Tilia cordata Mill. seedlings. Horticulturae, 8(6), 519. https://doi.org/10.3390/horticulturae8060519
- Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
- Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. https://doi.org/10.1016/j.envexpbot.2012.01.007
- Poury, N., Seifi, E., & Alizadeh, M. (2023). Effects of salinity and proline on growth and physiological characteristics of three olive cultivars. Gesunde Pflanzen, 75(4), 1169-1180.
https://doi.org/10.1007/s10343-022-00778-0
- Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
- Rouphael, Y., Petropoulos, S. A., Cardarelli, M., & Colla, G. (2018). Salinity as eustressor for enhancing quality of vegetables. Scientia Horticulturae, 234, 361-369. https://doi.org/10.1016/j.scienta.2018.02.048
- Santander, C., Ruiz, A., García, S., Aroca, R., Cumming, J., & Cornejo, P. (2020). Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. Journal of the Science of Food and Agriculture, 100, 1577-1587. https://doi.org/10.1002/jsfa.10166
- Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In M. Zaman., S. A. Shahid & L. Heng (Eds.), Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham.
- Singleton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolibdic phosphothungstic acid. American Journal of Enology and Viticulture, 16(3), 144-158.
https://doi.org/10.5344/ajev.1965.16.3.144
- Sofy, R., Elhawat, N., & Alshaa, T. (2020). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 200, 110732. https://doi.org/10.1016/j.ecoenv.2020.110732
- Tanrıöven, D., & Ekşi, A. (2005). Phenolic compounds in pear juice from different cultivars. Food Chemistry, 93(1), 89-93. https://doi.org/10.1016/j.foodchem.2004.09.009
- Velikova, V., Yordanov, I., & Edrev, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66.
https://doi.org/10.1016/S0168-9452(99)00197-1
- Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75(6), 623-627. https://doi.org/10.1080/14620316.2000.11511297
- Waśkiewicz, A., Muzolf-Panek, M., & Goliński, P. (2013). Phenolic content changes in plants under salt stress. In A. Parvaiz., M. M. Azooz & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress. Springer, New York. https://doi.org/10.1007/978-1-4614-4747-4_11
- Zafari, F., Amiri, M. E., Noroozisharaf, A., & Almasi, P. (2018). Physiological and morphological responses of the ‘Dargazi’pear (Pyrus communis) to in vitro salinity. Agriculturae Conspectus Scientificus, 83(2), 169-174.
- Zhang, Y., Li, P., & Chen, L. (2010). Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in “Honeycriscp” apple flesh. Food Chemistry, 123(4), 1013-1018.
https://doi.org/10.1016/j.foodchem.2010.05.053
- Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
https://doi.org/10.1016/S0308-8146(98)00102-2
- Zobayed, S. M. A., Afreen, F., & Kozai, T. (2007). Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condition. Environmental and Experimental Botany, 59, 109-116. https://doi.org/10.1016/j.envexpbot.2005.10.002
- Zrig, A., Belhadj, S., Tounekti K. H., & Elsheikh, S. Y. S. (2023). Perspective Chapter: rootstock-scion ınteraction effect on improving salt tolerance in fruit trees. In T. H. Awan., E. A. Waraich., M. I. Awan, S. Hussain (Eds.), Plant abiotic stress responses and tolerance mechanisms. Intechopen.