Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train

Yıl 2025, Cilt: 7 Sayı: 1, 83 - 92, 30.04.2025
https://doi.org/10.46387/bjesr.1639115

Öz

In high-speed railway vehicles, ride comfort and ride quality are important. While the train is moving, it encounters different vibrations caused by the rails. Long-term experience of these vibrations can lead to health problems in passengers. In addition, the durability of the train decreases due to vibrations, its performance decreases and maintenance costs increase. A rigid suspension system is required for the train to be used well. Passive suspension, which is a traditional suspension, establishes a balance between the ride quality of the train and passenger comfort. However, passive suspension is a fixed suspension system and cannot adjust the suspension stiffness according to changing conditions. Active suspension, on the other hand, can adjust the suspension stiffness according to changing conditions. In this research, an active suspension controlled by a Linear Quadratic Regulator is designed to control the train body. Thus, vibrations are minimized and passenger comfort is increased. Various simulations were made to compare the passive and active suspensions and superiority of active suspension was proven.

Kaynakça

  • A. Daramola, “A comparative analysis of road and rail performance in freight transport: an example from Nigeria”, Urban, Planning and Transport Research”, vol. 10, no. 1, pp. 58-81, 2022.
  • T. J. Harrison, W. J. Midgley, R. M. Goodall, and C. P. Ward, “Development and control of a rail vehicle model to reduce energy consumption and carbon dioxide emissions”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 235, no. 10, pp. 1237-1248, 2021.
  • M. Zhou, D. Wang, Q. Li, Y. Yue, W. Tu and R. Cao, “Impacts of weather on public transport ridership: Results from mining data from different sources”, Transportation research part C: emerging technologies, vol. 75, pp. 17-29, 2017.
  • F. Guo, S. Wu, J. Liu, X. Wu, and W. Zhang, “An innovative stepwise time-domain fatigue methodology to integrate damage tolerance into system dynamics”, Vehicle System Dynamics, vol. 61, no. 2, pp. 550-572, 2023.
  • I. Watson, “High-speed railway”, Encyclopedia, vol. 1, no. 3, pp. 665-688, 2021.
  • Y. Yao, X. Chen, H. Li, and G. Li, “Suspension parameters design for robust and adaptive lateral stability of high-speed train”, Vehicle System Dynamics, vol. 61, no. 4, pp. 943-967, 2023.
  • A. M. Yamin, I. M. Darus, N. M. Nor, and M. H. Ab Talib, “Intelligent cuckoo search algorithm of PID and skyhook controller for semi-active suspension system using magneto-rheological damper”, Malaysian Journal of Fundamental and Applied Sciences, vol. 17, no. 4, pp. 402-415, 2021.
  • H. Liu, C. Li, and X. Yang, “Overview of the Balanced Suspension Patents”, Recent Patents on Engineering, vol. 18, no. 8, pp. 1-16, 2024.
  • O. Mokhiamar, M. Ghoniem, and T. Awad, “Implementation of fuzzy logic control on a new low cost semi-active vehicle shock absorber”, Journal of Mechanical Engineering and Sciences, vol. 16, no. 2, pp. 8965-8975, 2022.
  • S. Liu, T. Zheng, D. Zhao, R. Hao, and M. Yang, “Strongly perturbed sliding mode adaptive control of vehicle active suspension system considering actuator nonlinearity”, Vehicle System Dynamics, vol. 60, no. 2, pp. 597-616, 2022.
  • A. H. Ahangarnejad, A. Radmehr, and M. Ahmadian, “A review of vehicle active safety control methods: From antilock brakes to semiautonomy”, Journal of Vibration and Control, vol. 27, no. 15-16, pp. 1683-1712, 2021.
  • B. Fu, B. Liu, E. Di Gialleonardo, and S. Bruni, “Semi-active control of primary suspensions to improve ride quality in a high-speed railway vehicle”, Vehicle System Dynamics, vol. 61, no. 10, pp. 2664-2688, 2023.
  • S. Singh, and A. Kumar, “Modelling and analysis of a passenger train for enhancing the ride performance using MR-based semi-active suspension”, Journal of Vibration Engineering & Technologies, vol. 10, no. 5, pp. 1737-1751, 2022.
  • X. Wang, B. Liu, E. Di Gialleonardo, I. Kovacic, and S. Bruni, “Application of semi-active yaw dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation”, Vehicle System Dynamics, vol. 60, no. 8, pp. 2608–2635, 2021.
  • H. Zhang, L. Ling, W. Zhai, and K. Wang, “An active suspension system for enhancing running safety of high-speed trains under strong crosswind”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit., vol. 238, no. 5, pp. 544-558, 2024.
  • S. Stichel, R. Persson, and R. Giossi, “Improving rail vehicle dynamic performance with active suspension”, High-speed Railway, vol. 1, no. 1, pp. 23-30, 2023.
  • H. Wu, N. Gong, J. Yang, L. Gong, W. Li and S. Sun, “Investigation of a semi-active suspension system for high-speed trains based on magnetorheological isolator with negative stiffness characteristics”, Mechanical Systems and Signal Processing, vol. 208, Article no. 111085, 2024.
  • H. Zhang, L. Ling, W. Zhai and K. Wang, “An active suspension system for enhancing running safety of high-speed trains under strong crosswind”, Proceedings of the Institution of Mechanical Engineers, Part F, vol. 238, no. 5, pp. 544-558, 2023.
  • Z. Zhou, Y. Liu, H. Xu, J. Zha and H. Chen, “Controlling performance of semiactive suspension with two methods of fuzzy-control and machine-learning”, Noise & Vibration Worldwide, vol. 55, no. 6-7, pp. 360-368, 2024.
  • S. Yang, Y. Zhao, Y. Liu, Y. Liao, and P. Wang, “A new semi-active control strategy on lateral suspension systems of high-speed trains and its application in HIL test rig”, Vehicle System Dynamics, vol. 61, no. 5, pp. 1317-1344, 2023.
  • R. Tymerski, R. “Optimizing Pole Placement Strategies for a Higher-Order DC-DC Buck Converter: A Comprehensive Evaluation”, Journal of Power and Energy Engineering, vol. 13, no. 1, pp. 47-69, 2025.
  • A. Savran, “Discrete state space modeling and control of nonlinear unknown systems”, ISA transactions, vol. 52, no. 6, pp. 795-806, 2013.
  • R. Ramakrishnan, and D. S. Nachimuthu, “Design of State Feedback LQR Based Dual Mode Fractional-Order PID Controller using Inertia Weighted PSO Algorithm: For Control of an Underactuated System”, Journal of The Institution of Engineers (India): Series C, vol. 102, no. 6, pp. 1403-1417, 2021.
  • M. Karahan, and C. Kasnakoglu, “LQR Control and Observer Design of a Magnetically Suspended Ball,” In IEEE 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) pp. 1-4, 2022.
  • C. Choubey, and J. Ohri, “Tuning of LQR-PID controller to control parallel manipulator”, Neural Computing and Applications, vol. 34, no. 4, pp. 3283-3297, 2022.

Bir Yüksek Hızlı Trenin Aktif Süspansiyonu için Modelleme ve LQR Geribildirim Kontrolü

Yıl 2025, Cilt: 7 Sayı: 1, 83 - 92, 30.04.2025
https://doi.org/10.46387/bjesr.1639115

Öz

Yüksek hızlı demiryolu araçlarında sürüş konforu ve yolculuğun kalitesi önemlidir. Tren hareket halindeyken rayların neden olduğu çeşitli titreşimlerle karşılaşır. Bu titreşimlerin uzun süreli yaşanması yolcularda sağlık sorunlarına yol açabilir. Ayrıca trenin titreşimler nedeniyle dayanıklılığı azalır, performansı düşer ve bakım maliyetleri artar. Trenin iyi kullanılabilmesi için rijit bir süspansiyon sistemine ihtiyaç vardır. Geleneksel bir süspansiyon olan pasif süspansiyon, trenin sürüş kalitesi ile yolcu konforu arasında bir denge kurar. Ancak pasif süspansiyon sabit bir süspansiyon sistemidir ve süspansiyon sertliğini değişen koşullara göre ayarlayamaz. Aktif süspansiyon ise süspansiyon sertliğini değişen koşullara göre ayarlayabilir. Bu araştırmada tren gövdesini kontrol etmek için Doğrusal Karesel Düzenleyici tarafından kontrol edilen aktif bir süspansiyon tasarlanmıştır. Böylece titreşimler en aza indirilmiş ve yolcu konforu arttırılmıştır. Pasif ve aktif süspansiyonları karşılaştırmak için çeşitli simülasyonlar yapılmış ve aktif süspansiyonun üstünlüğü kanıtlanmıştır.

Kaynakça

  • A. Daramola, “A comparative analysis of road and rail performance in freight transport: an example from Nigeria”, Urban, Planning and Transport Research”, vol. 10, no. 1, pp. 58-81, 2022.
  • T. J. Harrison, W. J. Midgley, R. M. Goodall, and C. P. Ward, “Development and control of a rail vehicle model to reduce energy consumption and carbon dioxide emissions”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 235, no. 10, pp. 1237-1248, 2021.
  • M. Zhou, D. Wang, Q. Li, Y. Yue, W. Tu and R. Cao, “Impacts of weather on public transport ridership: Results from mining data from different sources”, Transportation research part C: emerging technologies, vol. 75, pp. 17-29, 2017.
  • F. Guo, S. Wu, J. Liu, X. Wu, and W. Zhang, “An innovative stepwise time-domain fatigue methodology to integrate damage tolerance into system dynamics”, Vehicle System Dynamics, vol. 61, no. 2, pp. 550-572, 2023.
  • I. Watson, “High-speed railway”, Encyclopedia, vol. 1, no. 3, pp. 665-688, 2021.
  • Y. Yao, X. Chen, H. Li, and G. Li, “Suspension parameters design for robust and adaptive lateral stability of high-speed train”, Vehicle System Dynamics, vol. 61, no. 4, pp. 943-967, 2023.
  • A. M. Yamin, I. M. Darus, N. M. Nor, and M. H. Ab Talib, “Intelligent cuckoo search algorithm of PID and skyhook controller for semi-active suspension system using magneto-rheological damper”, Malaysian Journal of Fundamental and Applied Sciences, vol. 17, no. 4, pp. 402-415, 2021.
  • H. Liu, C. Li, and X. Yang, “Overview of the Balanced Suspension Patents”, Recent Patents on Engineering, vol. 18, no. 8, pp. 1-16, 2024.
  • O. Mokhiamar, M. Ghoniem, and T. Awad, “Implementation of fuzzy logic control on a new low cost semi-active vehicle shock absorber”, Journal of Mechanical Engineering and Sciences, vol. 16, no. 2, pp. 8965-8975, 2022.
  • S. Liu, T. Zheng, D. Zhao, R. Hao, and M. Yang, “Strongly perturbed sliding mode adaptive control of vehicle active suspension system considering actuator nonlinearity”, Vehicle System Dynamics, vol. 60, no. 2, pp. 597-616, 2022.
  • A. H. Ahangarnejad, A. Radmehr, and M. Ahmadian, “A review of vehicle active safety control methods: From antilock brakes to semiautonomy”, Journal of Vibration and Control, vol. 27, no. 15-16, pp. 1683-1712, 2021.
  • B. Fu, B. Liu, E. Di Gialleonardo, and S. Bruni, “Semi-active control of primary suspensions to improve ride quality in a high-speed railway vehicle”, Vehicle System Dynamics, vol. 61, no. 10, pp. 2664-2688, 2023.
  • S. Singh, and A. Kumar, “Modelling and analysis of a passenger train for enhancing the ride performance using MR-based semi-active suspension”, Journal of Vibration Engineering & Technologies, vol. 10, no. 5, pp. 1737-1751, 2022.
  • X. Wang, B. Liu, E. Di Gialleonardo, I. Kovacic, and S. Bruni, “Application of semi-active yaw dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation”, Vehicle System Dynamics, vol. 60, no. 8, pp. 2608–2635, 2021.
  • H. Zhang, L. Ling, W. Zhai, and K. Wang, “An active suspension system for enhancing running safety of high-speed trains under strong crosswind”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit., vol. 238, no. 5, pp. 544-558, 2024.
  • S. Stichel, R. Persson, and R. Giossi, “Improving rail vehicle dynamic performance with active suspension”, High-speed Railway, vol. 1, no. 1, pp. 23-30, 2023.
  • H. Wu, N. Gong, J. Yang, L. Gong, W. Li and S. Sun, “Investigation of a semi-active suspension system for high-speed trains based on magnetorheological isolator with negative stiffness characteristics”, Mechanical Systems and Signal Processing, vol. 208, Article no. 111085, 2024.
  • H. Zhang, L. Ling, W. Zhai and K. Wang, “An active suspension system for enhancing running safety of high-speed trains under strong crosswind”, Proceedings of the Institution of Mechanical Engineers, Part F, vol. 238, no. 5, pp. 544-558, 2023.
  • Z. Zhou, Y. Liu, H. Xu, J. Zha and H. Chen, “Controlling performance of semiactive suspension with two methods of fuzzy-control and machine-learning”, Noise & Vibration Worldwide, vol. 55, no. 6-7, pp. 360-368, 2024.
  • S. Yang, Y. Zhao, Y. Liu, Y. Liao, and P. Wang, “A new semi-active control strategy on lateral suspension systems of high-speed trains and its application in HIL test rig”, Vehicle System Dynamics, vol. 61, no. 5, pp. 1317-1344, 2023.
  • R. Tymerski, R. “Optimizing Pole Placement Strategies for a Higher-Order DC-DC Buck Converter: A Comprehensive Evaluation”, Journal of Power and Energy Engineering, vol. 13, no. 1, pp. 47-69, 2025.
  • A. Savran, “Discrete state space modeling and control of nonlinear unknown systems”, ISA transactions, vol. 52, no. 6, pp. 795-806, 2013.
  • R. Ramakrishnan, and D. S. Nachimuthu, “Design of State Feedback LQR Based Dual Mode Fractional-Order PID Controller using Inertia Weighted PSO Algorithm: For Control of an Underactuated System”, Journal of The Institution of Engineers (India): Series C, vol. 102, no. 6, pp. 1403-1417, 2021.
  • M. Karahan, and C. Kasnakoglu, “LQR Control and Observer Design of a Magnetically Suspended Ball,” In IEEE 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) pp. 1-4, 2022.
  • C. Choubey, and J. Ohri, “Tuning of LQR-PID controller to control parallel manipulator”, Neural Computing and Applications, vol. 34, no. 4, pp. 3283-3297, 2022.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomasyon Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Karahan 0000-0002-5828-497X

Erken Görünüm Tarihi 28 Nisan 2025
Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 13 Şubat 2025
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Karahan, M. (2025). Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 7(1), 83-92. https://doi.org/10.46387/bjesr.1639115
AMA Karahan M. Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train. Müh.Bil.ve Araş.Dergisi. Nisan 2025;7(1):83-92. doi:10.46387/bjesr.1639115
Chicago Karahan, Mehmet. “Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 7, sy. 1 (Nisan 2025): 83-92. https://doi.org/10.46387/bjesr.1639115.
EndNote Karahan M (01 Nisan 2025) Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train. Mühendislik Bilimleri ve Araştırmaları Dergisi 7 1 83–92.
IEEE M. Karahan, “Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train”, Müh.Bil.ve Araş.Dergisi, c. 7, sy. 1, ss. 83–92, 2025, doi: 10.46387/bjesr.1639115.
ISNAD Karahan, Mehmet. “Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train”. Mühendislik Bilimleri ve Araştırmaları Dergisi 7/1 (Nisan 2025), 83-92. https://doi.org/10.46387/bjesr.1639115.
JAMA Karahan M. Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train. Müh.Bil.ve Araş.Dergisi. 2025;7:83–92.
MLA Karahan, Mehmet. “Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 7, sy. 1, 2025, ss. 83-92, doi:10.46387/bjesr.1639115.
Vancouver Karahan M. Modeling and LQR Feedback Control for an Active Suspension of a High-Speed Train. Müh.Bil.ve Araş.Dergisi. 2025;7(1):83-92.