Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessment of Antibacterial and Antifungal Activities of Ethanolic Flower Extracts from Rosa damascena against Pathogenic Micro-Organisms

Yıl 2025, Cilt: 8 Sayı: 3, 304 - 322, 15.05.2025
https://doi.org/10.47115/bsagriculture.1583192

Öz

This study investigates the antimicrobial potential of Rosa damascena flower extract, with a focus on its antibacterial and antifungal properties. The primary objective was to assess the inhibitory activity of the ethanolic extract against a spectrum of bacterial and fungal pathogens. Using the agar disc diffusion method, the extract was evaluated at a concentration of 100 µg/ml against two Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus), one Gram-negative bacterium (Escherichia coli), and four fungal strains (Aspergillus fumigatus AF293, Aspergillus niger ATCC 16404, Candida albicans SC5314, and Monascus purpureus ATCC 1008). The zones of inhibition produced by the extract were compared to those of standard antibiotics: ciprofloxacin for antibacterial activity and fluconazole for antifungal activity. The findings revealed significant antibacterial effects, particularly against Gram-positive bacteria, with clear zones of inhibition, suggesting that Rosa damascena harbors a diverse array of bioactive secondary metabolites, the extract demonstrated notable antifungal activity, with inhibition observed across several fungal strains. These results underscore the extract's promising antimicrobial potential, highlighting its efficacy as a source of bioactive compounds, the study suggests that Rosa damascena could serve as a valuable resource for the development of novel antimicrobial agents, particularly in light of increasing resistance to conventional antibiotics. Further investigation into the specific mechanisms of action, toxicity, and the isolation of active compounds is warranted to advance its potential as a therapeutic agent in the pharmaceutical industry. The synergistic effects with other natural compounds could enhance its therapeutic efficacy and expand its potential applications in clinical settings.

Kaynakça

  • Abdel-Malek AR, Moustafa AY, Salem SH. 2024. Antimicrobial and cytotoxic activities of flavonoid and phenolics extracted from Sepia pharaonis ink (Mollusca: Cephalopoda). BMC Biotechnol, 24(1): 54. https://doi.org/10.1186/s12896-024-02005-0
  • Abdel-Nasser A, Badr AN, Fathy HM, Ghareeb MA, Barakat OS, Hathout AS. 2024. Antifungal, antiaflatoxigenic, and cytotoxic properties of bioactive secondary metabolites derived from Bacillus species. Sci Rep, 14(1): 16590. https://doi.org/10.1038/s41598-024-21204-1
  • Acharya T, Hare J. 2022. Sabouraud agar and other fungal growth media. In: Laboratory protocols in fungal biology: Current methods in fungal biology. Cham: Springer Int Publ, London, UK, pp: 69-86. https://doi.org/10.1007/978-3-030-83793-5_6
  • Akram M, Riaz M, Munir N, Akhter N, Zafar S, Jabeen F. 2020. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: A literature review. J Pharm Pharmacol, 72(2): 161-174. https://doi.org/10.1111/jphp.13144
  • Amirullah NA, Abidin NZ, Abdullah N, Manickam S. 2021. Application of ultrasound towards improving the composition of phenolic compounds and enhancing in vitro bioactivities of Pleurotus pulmonarius (Fr.) Quél extracts. Biocatal Agric Biotechnol, 31: 101881. https://doi.org/10.1016/j.bcab.2021.101881
  • Andrews JM. 2001. Determination of minimum inhibitory concentrations. J Antimicrob Chemother, 48(suppl_1): 5-16. https://doi.org/10.1093/jac/48.suppl_1.5
  • Anokwuru CP, Anyasor GN, Ajibaye O, Fakoya O, Okebugwu P. 2011. Effect of extraction solvents on phenolic, flavonoid, and antioxidant activities of three Nigerian medicinal plants. Nat Sci, 9(7): 53-61. https://doi.org/10.7537/marsnsj090711.09
  • Antoniadou M, Rozos G, Vaou N, Zaralis K, Ersanli C, Alexopoulos A. 2024. Comprehensive bio-screening of phytochemistry and biological capacity of Origanum vulgare and Salvia triloba extracts against oral cariogenic and food-origin pathogenic bacteria. Biomolecules, 14(6): 619. https://doi.org/10.3390/biom14060619
  • Azizi A, Mahboob M, Monib AW, Hassand MH, Sediqi S, Niazi P. 2023. The role of plants in human health. Br J Biol Stud, 3(1): 8-12. https://doi.org/10.1234/bjbs.2023.0301
  • Bari LR, Nazari R, Amiri S. 2024. Rosa. In Edible flowers. Academic Press, Cambridge, USA, pp: 231-247.
  • Bhadange YA, Carpenter J, Saharan VK. 2024. A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega, 9(29): 31274-31297. https://doi.org/10.1021/acsomega.4c01639
  • Bi S, Srivastava R, Ahmad T. 2024. The potential antifungal activity of the developed palladium nanoparticles. Biom Pharm J, 17(4).
  • Brüssow H. 2024. The antibiotic resistance crisis and the development of new antibiotics. Microb Biotechnol, 17(7): e14510. https://doi.org/10.1111/1751-7915.14510
  • Budiman J. 2016. Comparing methods. Asian J Appl Sci, 4(2). https://doi.org/10.3923/ajaps.2016.123.129
  • Carvalho TM. 2016. Extraction of raw plant material using supercritical carbon dioxide. PhD Thesis, Warsaw Univ Tech, Warsaw, Poland, pp: 12.
  • Catalfomo P, Schultz HW. 1966. Small tube method for the evaluation of antifungal and antibacterial activity. J Pharm Sci, 55(1): 117-119. https://doi.org/10.1002/jps.2600550117
  • Chaughule RS, Barve RS. 2024. Role of herbal medicines in the treatment of infectious diseases. Vegetos, 37(1): 41-51. https://doi.org/10.1007/s42535-022-00549-2
  • Cheng CC. 2003. Recovery of polycyclic aromatic hydrocarbons during solvent evaporation with a rotary evaporator. Polycycl Aromat Compd, 23(3): 315-325. https://doi.org/10.1080/10406630390220639
  • Chroho M, Bouymajane A, Oulad El Majdoub Y, Cacciola F, Mondello L, Aazza M, Zair T, Bouissane L. 2022. Phenolic composition, antioxidant, and antibacterial activities of extract from flowers of Rosa damascena from Morocco. Separations, 9(9): 247. https://doi.org/10.3390/separations9090247
  • Colclough A, Corander J, Sheppard SK, Bayliss SC, Vos M. 2019. Patterns of cross‐resistance and collateral sensitivity between clinical antibiotics and natural antimicrobials. Evolutionary applications, 12(5): 878-887. https://doi.org/10.1111/eva.12762
  • Curtis H, Noll U, Störmann J, Slusarenko AJ. 2004. Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi, and Oomycetes. Physiol Mol Plant Pathol, 65(2): 79-89. https://doi.org/10.1016/j.pmpp.2004.08.002
  • Deattu N, Suseela L, Narayanan N. 2012. Evaluation of antibacterial and antifungal activities of ethanolic polyherbal extract. J Drug Deliv Ther, 2(6): 54. https://doi.org/10.22270/jddt.v2i6.467
  • Dini S, Singh S, Fatemi F. 2024. The hepatoprotective possessions of specific Iranian medicinal plants. J Food Biochem, 2024(1): 8783113. https://doi.org/10.1111/jfbc.8783113
  • El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, AbuQamar SF. 2022. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Fron Plan Sci, 13: 923880. https://doi.org/10.3389/fpls.2022.923880
  • El-Shouny WA, Ali SS, Alnabarawy AM. 2016. In vitro antibacterial potential of Rosa damascena and Terminalia chebula against bacterial peritonitis. Glob J Biol Agric Health Sci, 5: 40-49.
  • Farooq S, Qayum A, Nalli Y, Lauro G, Chini MG, Bifulco G, Chaubey A, Singh SK, Riyaz-Ul-Hassan S, Ali A. 2020. Discovery of a secalonic acid derivative from Aspergillus aculeatus, an endophyte of Rosa damascena Mill., triggers apoptosis in MDA-MB-231 triple-negative breast cancer cells. ACS Omega, 5(38): 24296-24310. https://doi.org/10.1021/acsomega.0c03304
  • Fathima SN, Murthy SV. 2019. Pharmacognostic study of petals Rosa damascena. Asian J Pharm Pharmacol, 5: 779-785. https://doi.org/10.22377/ajpp.v5i3.123
  • Fayaz F, Singh K, Gairola S, Ahmed Z, Shah BA. 2024. A comprehensive review on phytochemistry and pharmacology of Rosa species (Rosaceae). Curr Top Med Chem, 24(4): 364-378. https://doi.org/10.2174/1389201024666230210120744
  • Francis AL, Namasivayam SK, Kavisri M, Moovendhan M. 2024. Anti-microbial efficacy and notable biocompatibility of Rosa damascena and Citrus sinensis biomass-derived metabolites. Biomass Convers Biorefinery, 14(19): 24787-24807. https://doi.org/10.1007/s13399-023-04696-0
  • Gavra DI, Marian E, Pallag A, Vicaș LG, Lucaciu RL, Micle O, Ionescu C, Bacskay I, Hangan AC, Sevastre B, Páll E. 2022. Phytochemical screening and biological activity of ethanolic extract of Rosa x damascena Mill. cultivated in the western region of Romania. Farmacia, 70(2): 1-8.
  • Ghavam, M. 2024. Rosa× damascena Herrm. From Azaran region, Kashan: rich in saturated and unsaturated fatty acids with inhibitory effect against Proteus mirabilis. BMC Complementary Medicine and Therapies, 24(1), 256. https://doi.org/10.1186/s12906-024-04562-7
  • Golus J, Sawicki R, Widelski J, Ginalska G. 2016. The agar microdilution method—a new method for antimicrobial susceptibility testing for essential oils and plant extracts. J Appl Microbiol, 121(5): 1291-1299. https://doi.org/10.1111/jam.13347
  • Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. 2024. Lead toxicity in plants: Mechanistic insights into toxicity, physiological responses of plants, and mitigation strategies. Plant Signal Behav, 19(1): Article 2365576. https://doi.org/10.1080/15592324.2024.2365576
  • Hafidh RR, Abdulamir AS, Vern LS, Bakar FA, Abas F, Jahanshiri F, Sekawi Z. 2011. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J, 5: 96-104. https://doi.org/10.2174/1874285801105010096
  • Hassand MH, Omirbekova A, Baseer AQ, Monib AW, Sediqi S, Niazi P. 2024. Petroleum hydrocarbons biodegradation uncovering the variety and capabilities of oil-oxidizing microbes. Eur J Theor Appl Sci, 2(2): 319-333. https://doi.org/10.1234/ejtas.2024.0202
  • Hrubesh LW, Coronado PR, Satcher Jr JH. 2001. Solvent removal from water with hydrophobic aerogels. J Non-Cryst Solids, 285(1-3): 328-332. https://doi.org/10.1016/S0022-3093(01)00776-1
  • Ignatov I, Huether F, Popova TP, Ignatov AI, Iliev MT, Stoyanov C. 2024. Effects of electromagnetic waves on parameters, hydration and in vitro antimicrobial activity of the Brassica oleracea L. var. italica Plenck. and water. Plant SciToday, 11(2). https://doi.org/10.14719/pst.2987
  • Islam A, Rahat I, Rejeeth C, Sharma D, Sharma A. 2025. Recent advances on plant-based bioengineered nanoparticles using secondary metabolites and their potential in lung cancer management. J Future Foods, 5(1): 1-20. https://doi.org/10.1016/j.jff.2024.01.001
  • Kakar UM, Sarwari A, Rahime M, Hassand MH, Niazi P. 2024. Revolutionizing food processing: A comprehensive review of microwave applications. Eur J Theor Appl Sci, 2(2): 38-47. https://doi.org/10.1234/ejtas.2024.0202
  • Laftouhi A, Mahraz MA, Hmamou A, Assouguem A, Ullah R, Bari A, Lahlali R, Ercisli S, Kaur S, Idrissi AM, Eloutassi N. 2024. Analysis of primary and secondary metabolites, physical properties, antioxidant and antidiabetic activities, and chemical composition of Rosmarinus officinalis essential oils under differential water stress conditions. ACS Omega, 9(14): 16656-16664. https://doi.org/10.1021/acsomega.2c05646
  • Lee Y, Park E, Jang B, Hwang J, Lee J, Oh ES. 2023. Antifungal activity of Bulgarian Rosa damascena oil against vaginitis-causing opportunistic fungi. Evid-Based Complement Altern Med, 2023: Article 5054865. https://doi.org/10.1155/2023/5054865
  • López-Bascón MA, De Castro ML. 2020. Soxhlet extraction. In Liquid-phase extraction. Elsevier, Washington, USA, pp. 327-354. https://doi.org/10.1016/B978-0-12-816104-5.00016-4
  • Mailu JK, Nguta JM, Mbaria JM, Okumu MO. 2021. Qualitative and quantitative phytochemical composition, antimicrobial activity, and brine shrimp cytotoxicity of different solvent extracts of Acanthus polystachyus, Keetia gueinzii, and Rhynchosia elegans. Future J Pharm Sci, 7: 1-11. https://doi.org/10.1186/s43094-021-00342-z
  • Majedi S, Yassen AO, Issa SY. 2024. Assessing the combination of three plant species: Thyme (Thymus vulgaris), Damask Rose (Rosa damascena), and Stachys lavandulifolia vahl, to determine their synergistic effects on antimicrobial properties. Chem Rev Lett, 7(2): 294-310. https://doi.org/10.22034/crl.2024.437005.1286
  • Martín Á, Rodríguez-Rojo S, Navarrete A, de Paz E, Queiroz J, José Cocero M. 2022. Post-extraction processes: Improvement of functional characteristics of extracts. Food Eng Rev, 516: 285-313. https://doi.org/10.1007/s12393-020-09264-3
  • Mazzola PG, Jozala AF, Novaes LCDL, Moriel P, Penna TCV. 2009. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz J Pharm Sci, 45: 241-248. https://doi.org/10.1590/S1984-82502009000200008
  • Minteguiaga M, Dellacassa E, Rodríguez-Rego C, Fagúndez E, Ferreira F, Pavarino M, Rubiolo P, Cagliero C, Sgorbini B. 2023. Essential oil composition of Lithraea molleoides (Vell.) Engler (Anacardiaceae), a controversial medicinal, edible, and allergenic species from South America. 53rd International Symposium On Essential Oils, September 13-16, Milazzo, Messina, Italy, pp: 95.
  • Monib AW, Niazi P, Azizi A, Sediqi S, Baseer AQ. 2024. Heavy metal contamination in urban soils: Health impacts on humans and plants: A review. Eur J Theor Appl Sci, 2(1): 546-565. https://doi.org/10.1234/ejtas.2024.0101
  • Moussaoui F, Alaoui T. 2016. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac J Trop Biomed, 6(1): 32-37. https://doi.org/10.1016/j.apjtb.2015.11.002
  • Niazi P, Monib AW, Azizi A. 2023. A review on plants and plant/microbial systems in reducing exposure. J Res Appl Sci Biotechnol, 2(2): 1-7. https://doi.org/10.1234/jrasb.2023.0202
  • Niazi P, Monib AW. 2024. The role of plants in traditional and modern medicine. J Pharm Phyt, 13(2): 643-647. doi: 10.22271/phyto.2024.v13.i2d.14905
  • Niazi P. 2024. Isolation and characterization of a (surfactin-like molecule) produced by Bacillus subtilis: Antagonistic impact on root-knot nematodes. Sci Res Commun, 4(2). https://doi.org/10.52460/src.2024.010
  • Oargă DP, Cornea-Cipcigan M, Cordea MI. 2024. Unveiling the mechanisms for the development of rosehip-based dermatological products: An updated review. Front Phar, 15: 1390419. https://doi.org/10.3389/fphar.2024.1390419
  • Poonia SK, Topno SE, Kerketta A. 2024. Integrated pest and disease management in cucumber and muskmelon. Monthly Peer Rev Mag Agric Allied Sci, 1: 1-8.
  • Qader KO, Al-Saadi SA, Allami RH. 2022. Evaluation of antibacterial activity of Xanthium strumarium L. against pathogenic bacteria. J Pure Appl Microbiol, 14(1): 243-250. https://doi.org/10.22207/JPAM.14.1.34
  • Rahimi A, Karimipour Fard H, Mohamadzadeh H. 2024. A review of secondary metabolites and inhibitory effect of medicinal plants on some plant pathogens. J Med Plants By-Prod. https://doi.org/10.22034/jmpb.2024.364494.1643
  • Rajesh Y, Khan NM, Shaikh AR, Mane VS, Daware G, Dabhade G. 2023. Investigation of geranium oil extraction performance by using Soxhlet extraction. Mater Today Proc, 72: 2610-2617. https://doi.org/10.1016/j.matpr.2023.01.208
  • Reisi-Vanani V, Gholipour A, Maghareh-Dehkordi S, Lorigooini Z. 2024. Combination of medicinal plants with antibiotics against Klebsiella pneumoniae and Acinetobacter baumannii. J Shahrekord Univ Med Sci, 26(3): 94-100. https://doi.org/10.34172/jsums.816
  • Saghafi F, Mirzaie F, Gorji E, Nabimeybodi R, Fattahi M, Mahmoodian H, Zareshahi R. 2021. Antibacterial and anti-Trichomonas vaginalis effects of Rosa damascena Mill petal oil (a Persian medicine product), aqueous and hydroalcoholic extracts. BMC Complement Med Ther, 21(1): 1-10. https://doi.org/10.1186/s12906-021-03305-1
  • Saini R, Ali MI, Pant M, Warghane A. 2024. Current status of potential antiviral drugs derived from plant, marine, and microbial sources. Anti-Infect Agents, 22(2): 61-73. https://doi.org/10.2174/18715230102222040161
  • Samad A, Saeed S. 2024. Major Diseases of Aromatic Plants. In: Diseases of Ornamental, Aromatic and Medicinal Plants, Bentham Science Publishers. pp: 207-231. https://doi.org/10.2174/97898152230711240101
  • Sarwari A, Abdieva GZ, Hassand MH, Mohammad UK, Niazi P. 2024. Role of microbial communities in compost and plant growth: Structure and function. Eur J Theor Appl Sci, 2(2): 23-37. https://doi.org/10.1234/ejtas.2024.0202
  • Seidel V, Peyfoon E, Watson DG, Fearnley J. 2008. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones. Phytotherapy Res, 22(9): 1256-1263. https://doi.org/10.1002/ptr.2480
  • Shi Z, Zhang J, Wang Y, Hao S, Tian L, Ke C, Yang X, Lu Q, Zhao Q, Li H, Liang C. 2024. Antibacterial effect and mechanisms of action of forsythoside B, alone and in combination with antibiotics, against Acinetobacter baumannii and Pseudomonas aeruginosa, Phytomedicine, 2024: 156038. https://doi.org/10.1016/j.phymed.2024.156038
  • Shohayeb M, Abdel-Hameed ES, Bazaid SA, Maghrabi I. 2014. Antibacterial and antifungal activity of Rosa damascena MILL. essential oil, different extracts of rose petals. Global J Pharmacol, 8(1): 1-7. https://doi.org/10.5829/idosi.gjp.2014.8.1.83164
  • Simin N, Živanović N, Božanić Tanjga B, Lesjak M, Narandžić T, Ljubojević M. 2024. New garden rose (Rosa× hybrida) genotypes with intensely colored flowers as rich sources of bioactive compounds. Plants, 13(3): 424. https://doi.org/10.3390/plants13030424
  • Siriamornpun S, Kaisoon O, Meeso N. 2012. Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J Funct Foods, 4(4): 757-766. https://doi.org/10.1016/j.jff.2012.04.002
  • Talib WH, Mahasneh AM. 2010. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules, 15(3): 1811-1824. https://doi.org/10.3390/molecules15031811
  • Tavoosi N, Akhavan Sepahi A., Kiarostami V, Amoozegar MA. 2024. Arsenite tolerance and removal potential of the indigenous halophilic bacterium, Halomonas elongata SEK2. BioMetals, 1-17. https://doi.org/10.1007/s10534-024-00612-2
  • Trendafilova A, Staleva P, Petkova Z, Ivanova V, Evstatieva Y, Nikolova D, Rasheva I, Atanasov N, Topouzova-Hristova T, Veleva R, Moskova-Doumanova V. 2023. Phytochemical profile, antioxidant potential, antimicrobial activity, and cytotoxicity of dry extract from Rosa damascena Mill. Molecules, 28(22): 7666. https://doi.org/10.3390/molecules28227666
  • Trivedi S, Srivastava A, Saxena D, Ali D, Alarifi S, Solanki VS, Yadav VK. 2025. Phytofabrication of silver nanoparticles by using Cucurbita maxima leaf extract and its potential anticancer activity and pesticide degradation. Materials Tech, 40(1): 2440907. https://doi.org/10.1080/10667857.2024.2440907
  • Verešová A, Vukic MD, Vukovic NL, Terentjeva M, Ban Z, Li L, Kačániová M. 2024. Chemical composition, biological activity, and application of rosa damascena essential oil as an antimicrobial agent in minimally processed eggplant inoculated with salmonella enterica. Foods, 13(22): 3579. https://doi.org/10.3390/foods13223579
  • Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Alghamdi S. 2024. A Comprehensive review of the diversity of fungal secondary metabolites and their emerging applications in healthcare and environment. Mycobiology, 2024: 1-53. https://doi.org/10.1080/12298093.2024.2416736
  • Waksman SA, Reilly HC. 1945. Agar-streak method for assaying antibiotic substances. Ind Eng Chem Anal Ed, 17(9): 556-558. https://doi.org/10.1021/i560070a021
  • Wang H. 2024. Beneficial medicinal effects and material applications of rose. Heliyon, 10(1): e23530. https://doi.org/10.1016/j.heliyon.2023.e23530
  • White WD. 1965. Antibacterial bacteriological swab. Br Med J, 2(5455): 229. https://doi.org/10.1136/bmj.2.5455.229
  • Woldemichael D. 2022. Efficacy of Ethiopian medicinal plant extracts for lower limb care (lymphoedema) in in vitro models. Doctoral dissertation, University of Brighton, Brighton, UK, pp: 208.
  • Zhang H, Mao YT, Ma MX, Tao GC, Wei TP, Jiang YL. 2024. Culturable endophytic Sordariomycetes from Rosa roxburghii: New species and lifestyles. J Syst Evol, 62(4): 637-676. https://doi.org/10.1111/jse.13035
  • Zhao L, Fan H, Zhang M, Chitrakar B, Bhandari B, Wang B. 2019. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res Int, 126: 108660. https://doi.org/10.1016/j.foodres.2019.108660

Assessment of Antibacterial and Antifungal Activities of Ethanolic Flower Extracts from Rosa damascena against Pathogenic Micro-Organisms

Yıl 2025, Cilt: 8 Sayı: 3, 304 - 322, 15.05.2025
https://doi.org/10.47115/bsagriculture.1583192

Öz

This study investigates the antimicrobial potential of Rosa damascena flower extract, with a focus on its antibacterial and antifungal properties. The primary objective was to assess the inhibitory activity of the ethanolic extract against a spectrum of bacterial and fungal pathogens. Using the agar disc diffusion method, the extract was evaluated at a concentration of 100 µg/ml against two Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus), one Gram-negative bacterium (Escherichia coli), and four fungal strains (Aspergillus fumigatus AF293, Aspergillus niger ATCC 16404, Candida albicans SC5314, and Monascus purpureus ATCC 1008). The zones of inhibition produced by the extract were compared to those of standard antibiotics: ciprofloxacin for antibacterial activity and fluconazole for antifungal activity. The findings revealed significant antibacterial effects, particularly against Gram-positive bacteria, with clear zones of inhibition, suggesting that Rosa damascena harbors a diverse array of bioactive secondary metabolites, the extract demonstrated notable antifungal activity, with inhibition observed across several fungal strains. These results underscore the extract's promising antimicrobial potential, highlighting its efficacy as a source of bioactive compounds, the study suggests that Rosa damascena could serve as a valuable resource for the development of novel antimicrobial agents, particularly in light of increasing resistance to conventional antibiotics. Further investigation into the specific mechanisms of action, toxicity, and the isolation of active compounds is warranted to advance its potential as a therapeutic agent in the pharmaceutical industry. The synergistic effects with other natural compounds could enhance its therapeutic efficacy and expand its potential applications in clinical settings.

Kaynakça

  • Abdel-Malek AR, Moustafa AY, Salem SH. 2024. Antimicrobial and cytotoxic activities of flavonoid and phenolics extracted from Sepia pharaonis ink (Mollusca: Cephalopoda). BMC Biotechnol, 24(1): 54. https://doi.org/10.1186/s12896-024-02005-0
  • Abdel-Nasser A, Badr AN, Fathy HM, Ghareeb MA, Barakat OS, Hathout AS. 2024. Antifungal, antiaflatoxigenic, and cytotoxic properties of bioactive secondary metabolites derived from Bacillus species. Sci Rep, 14(1): 16590. https://doi.org/10.1038/s41598-024-21204-1
  • Acharya T, Hare J. 2022. Sabouraud agar and other fungal growth media. In: Laboratory protocols in fungal biology: Current methods in fungal biology. Cham: Springer Int Publ, London, UK, pp: 69-86. https://doi.org/10.1007/978-3-030-83793-5_6
  • Akram M, Riaz M, Munir N, Akhter N, Zafar S, Jabeen F. 2020. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: A literature review. J Pharm Pharmacol, 72(2): 161-174. https://doi.org/10.1111/jphp.13144
  • Amirullah NA, Abidin NZ, Abdullah N, Manickam S. 2021. Application of ultrasound towards improving the composition of phenolic compounds and enhancing in vitro bioactivities of Pleurotus pulmonarius (Fr.) Quél extracts. Biocatal Agric Biotechnol, 31: 101881. https://doi.org/10.1016/j.bcab.2021.101881
  • Andrews JM. 2001. Determination of minimum inhibitory concentrations. J Antimicrob Chemother, 48(suppl_1): 5-16. https://doi.org/10.1093/jac/48.suppl_1.5
  • Anokwuru CP, Anyasor GN, Ajibaye O, Fakoya O, Okebugwu P. 2011. Effect of extraction solvents on phenolic, flavonoid, and antioxidant activities of three Nigerian medicinal plants. Nat Sci, 9(7): 53-61. https://doi.org/10.7537/marsnsj090711.09
  • Antoniadou M, Rozos G, Vaou N, Zaralis K, Ersanli C, Alexopoulos A. 2024. Comprehensive bio-screening of phytochemistry and biological capacity of Origanum vulgare and Salvia triloba extracts against oral cariogenic and food-origin pathogenic bacteria. Biomolecules, 14(6): 619. https://doi.org/10.3390/biom14060619
  • Azizi A, Mahboob M, Monib AW, Hassand MH, Sediqi S, Niazi P. 2023. The role of plants in human health. Br J Biol Stud, 3(1): 8-12. https://doi.org/10.1234/bjbs.2023.0301
  • Bari LR, Nazari R, Amiri S. 2024. Rosa. In Edible flowers. Academic Press, Cambridge, USA, pp: 231-247.
  • Bhadange YA, Carpenter J, Saharan VK. 2024. A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega, 9(29): 31274-31297. https://doi.org/10.1021/acsomega.4c01639
  • Bi S, Srivastava R, Ahmad T. 2024. The potential antifungal activity of the developed palladium nanoparticles. Biom Pharm J, 17(4).
  • Brüssow H. 2024. The antibiotic resistance crisis and the development of new antibiotics. Microb Biotechnol, 17(7): e14510. https://doi.org/10.1111/1751-7915.14510
  • Budiman J. 2016. Comparing methods. Asian J Appl Sci, 4(2). https://doi.org/10.3923/ajaps.2016.123.129
  • Carvalho TM. 2016. Extraction of raw plant material using supercritical carbon dioxide. PhD Thesis, Warsaw Univ Tech, Warsaw, Poland, pp: 12.
  • Catalfomo P, Schultz HW. 1966. Small tube method for the evaluation of antifungal and antibacterial activity. J Pharm Sci, 55(1): 117-119. https://doi.org/10.1002/jps.2600550117
  • Chaughule RS, Barve RS. 2024. Role of herbal medicines in the treatment of infectious diseases. Vegetos, 37(1): 41-51. https://doi.org/10.1007/s42535-022-00549-2
  • Cheng CC. 2003. Recovery of polycyclic aromatic hydrocarbons during solvent evaporation with a rotary evaporator. Polycycl Aromat Compd, 23(3): 315-325. https://doi.org/10.1080/10406630390220639
  • Chroho M, Bouymajane A, Oulad El Majdoub Y, Cacciola F, Mondello L, Aazza M, Zair T, Bouissane L. 2022. Phenolic composition, antioxidant, and antibacterial activities of extract from flowers of Rosa damascena from Morocco. Separations, 9(9): 247. https://doi.org/10.3390/separations9090247
  • Colclough A, Corander J, Sheppard SK, Bayliss SC, Vos M. 2019. Patterns of cross‐resistance and collateral sensitivity between clinical antibiotics and natural antimicrobials. Evolutionary applications, 12(5): 878-887. https://doi.org/10.1111/eva.12762
  • Curtis H, Noll U, Störmann J, Slusarenko AJ. 2004. Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi, and Oomycetes. Physiol Mol Plant Pathol, 65(2): 79-89. https://doi.org/10.1016/j.pmpp.2004.08.002
  • Deattu N, Suseela L, Narayanan N. 2012. Evaluation of antibacterial and antifungal activities of ethanolic polyherbal extract. J Drug Deliv Ther, 2(6): 54. https://doi.org/10.22270/jddt.v2i6.467
  • Dini S, Singh S, Fatemi F. 2024. The hepatoprotective possessions of specific Iranian medicinal plants. J Food Biochem, 2024(1): 8783113. https://doi.org/10.1111/jfbc.8783113
  • El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, AbuQamar SF. 2022. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Fron Plan Sci, 13: 923880. https://doi.org/10.3389/fpls.2022.923880
  • El-Shouny WA, Ali SS, Alnabarawy AM. 2016. In vitro antibacterial potential of Rosa damascena and Terminalia chebula against bacterial peritonitis. Glob J Biol Agric Health Sci, 5: 40-49.
  • Farooq S, Qayum A, Nalli Y, Lauro G, Chini MG, Bifulco G, Chaubey A, Singh SK, Riyaz-Ul-Hassan S, Ali A. 2020. Discovery of a secalonic acid derivative from Aspergillus aculeatus, an endophyte of Rosa damascena Mill., triggers apoptosis in MDA-MB-231 triple-negative breast cancer cells. ACS Omega, 5(38): 24296-24310. https://doi.org/10.1021/acsomega.0c03304
  • Fathima SN, Murthy SV. 2019. Pharmacognostic study of petals Rosa damascena. Asian J Pharm Pharmacol, 5: 779-785. https://doi.org/10.22377/ajpp.v5i3.123
  • Fayaz F, Singh K, Gairola S, Ahmed Z, Shah BA. 2024. A comprehensive review on phytochemistry and pharmacology of Rosa species (Rosaceae). Curr Top Med Chem, 24(4): 364-378. https://doi.org/10.2174/1389201024666230210120744
  • Francis AL, Namasivayam SK, Kavisri M, Moovendhan M. 2024. Anti-microbial efficacy and notable biocompatibility of Rosa damascena and Citrus sinensis biomass-derived metabolites. Biomass Convers Biorefinery, 14(19): 24787-24807. https://doi.org/10.1007/s13399-023-04696-0
  • Gavra DI, Marian E, Pallag A, Vicaș LG, Lucaciu RL, Micle O, Ionescu C, Bacskay I, Hangan AC, Sevastre B, Páll E. 2022. Phytochemical screening and biological activity of ethanolic extract of Rosa x damascena Mill. cultivated in the western region of Romania. Farmacia, 70(2): 1-8.
  • Ghavam, M. 2024. Rosa× damascena Herrm. From Azaran region, Kashan: rich in saturated and unsaturated fatty acids with inhibitory effect against Proteus mirabilis. BMC Complementary Medicine and Therapies, 24(1), 256. https://doi.org/10.1186/s12906-024-04562-7
  • Golus J, Sawicki R, Widelski J, Ginalska G. 2016. The agar microdilution method—a new method for antimicrobial susceptibility testing for essential oils and plant extracts. J Appl Microbiol, 121(5): 1291-1299. https://doi.org/10.1111/jam.13347
  • Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. 2024. Lead toxicity in plants: Mechanistic insights into toxicity, physiological responses of plants, and mitigation strategies. Plant Signal Behav, 19(1): Article 2365576. https://doi.org/10.1080/15592324.2024.2365576
  • Hafidh RR, Abdulamir AS, Vern LS, Bakar FA, Abas F, Jahanshiri F, Sekawi Z. 2011. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J, 5: 96-104. https://doi.org/10.2174/1874285801105010096
  • Hassand MH, Omirbekova A, Baseer AQ, Monib AW, Sediqi S, Niazi P. 2024. Petroleum hydrocarbons biodegradation uncovering the variety and capabilities of oil-oxidizing microbes. Eur J Theor Appl Sci, 2(2): 319-333. https://doi.org/10.1234/ejtas.2024.0202
  • Hrubesh LW, Coronado PR, Satcher Jr JH. 2001. Solvent removal from water with hydrophobic aerogels. J Non-Cryst Solids, 285(1-3): 328-332. https://doi.org/10.1016/S0022-3093(01)00776-1
  • Ignatov I, Huether F, Popova TP, Ignatov AI, Iliev MT, Stoyanov C. 2024. Effects of electromagnetic waves on parameters, hydration and in vitro antimicrobial activity of the Brassica oleracea L. var. italica Plenck. and water. Plant SciToday, 11(2). https://doi.org/10.14719/pst.2987
  • Islam A, Rahat I, Rejeeth C, Sharma D, Sharma A. 2025. Recent advances on plant-based bioengineered nanoparticles using secondary metabolites and their potential in lung cancer management. J Future Foods, 5(1): 1-20. https://doi.org/10.1016/j.jff.2024.01.001
  • Kakar UM, Sarwari A, Rahime M, Hassand MH, Niazi P. 2024. Revolutionizing food processing: A comprehensive review of microwave applications. Eur J Theor Appl Sci, 2(2): 38-47. https://doi.org/10.1234/ejtas.2024.0202
  • Laftouhi A, Mahraz MA, Hmamou A, Assouguem A, Ullah R, Bari A, Lahlali R, Ercisli S, Kaur S, Idrissi AM, Eloutassi N. 2024. Analysis of primary and secondary metabolites, physical properties, antioxidant and antidiabetic activities, and chemical composition of Rosmarinus officinalis essential oils under differential water stress conditions. ACS Omega, 9(14): 16656-16664. https://doi.org/10.1021/acsomega.2c05646
  • Lee Y, Park E, Jang B, Hwang J, Lee J, Oh ES. 2023. Antifungal activity of Bulgarian Rosa damascena oil against vaginitis-causing opportunistic fungi. Evid-Based Complement Altern Med, 2023: Article 5054865. https://doi.org/10.1155/2023/5054865
  • López-Bascón MA, De Castro ML. 2020. Soxhlet extraction. In Liquid-phase extraction. Elsevier, Washington, USA, pp. 327-354. https://doi.org/10.1016/B978-0-12-816104-5.00016-4
  • Mailu JK, Nguta JM, Mbaria JM, Okumu MO. 2021. Qualitative and quantitative phytochemical composition, antimicrobial activity, and brine shrimp cytotoxicity of different solvent extracts of Acanthus polystachyus, Keetia gueinzii, and Rhynchosia elegans. Future J Pharm Sci, 7: 1-11. https://doi.org/10.1186/s43094-021-00342-z
  • Majedi S, Yassen AO, Issa SY. 2024. Assessing the combination of three plant species: Thyme (Thymus vulgaris), Damask Rose (Rosa damascena), and Stachys lavandulifolia vahl, to determine their synergistic effects on antimicrobial properties. Chem Rev Lett, 7(2): 294-310. https://doi.org/10.22034/crl.2024.437005.1286
  • Martín Á, Rodríguez-Rojo S, Navarrete A, de Paz E, Queiroz J, José Cocero M. 2022. Post-extraction processes: Improvement of functional characteristics of extracts. Food Eng Rev, 516: 285-313. https://doi.org/10.1007/s12393-020-09264-3
  • Mazzola PG, Jozala AF, Novaes LCDL, Moriel P, Penna TCV. 2009. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz J Pharm Sci, 45: 241-248. https://doi.org/10.1590/S1984-82502009000200008
  • Minteguiaga M, Dellacassa E, Rodríguez-Rego C, Fagúndez E, Ferreira F, Pavarino M, Rubiolo P, Cagliero C, Sgorbini B. 2023. Essential oil composition of Lithraea molleoides (Vell.) Engler (Anacardiaceae), a controversial medicinal, edible, and allergenic species from South America. 53rd International Symposium On Essential Oils, September 13-16, Milazzo, Messina, Italy, pp: 95.
  • Monib AW, Niazi P, Azizi A, Sediqi S, Baseer AQ. 2024. Heavy metal contamination in urban soils: Health impacts on humans and plants: A review. Eur J Theor Appl Sci, 2(1): 546-565. https://doi.org/10.1234/ejtas.2024.0101
  • Moussaoui F, Alaoui T. 2016. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac J Trop Biomed, 6(1): 32-37. https://doi.org/10.1016/j.apjtb.2015.11.002
  • Niazi P, Monib AW, Azizi A. 2023. A review on plants and plant/microbial systems in reducing exposure. J Res Appl Sci Biotechnol, 2(2): 1-7. https://doi.org/10.1234/jrasb.2023.0202
  • Niazi P, Monib AW. 2024. The role of plants in traditional and modern medicine. J Pharm Phyt, 13(2): 643-647. doi: 10.22271/phyto.2024.v13.i2d.14905
  • Niazi P. 2024. Isolation and characterization of a (surfactin-like molecule) produced by Bacillus subtilis: Antagonistic impact on root-knot nematodes. Sci Res Commun, 4(2). https://doi.org/10.52460/src.2024.010
  • Oargă DP, Cornea-Cipcigan M, Cordea MI. 2024. Unveiling the mechanisms for the development of rosehip-based dermatological products: An updated review. Front Phar, 15: 1390419. https://doi.org/10.3389/fphar.2024.1390419
  • Poonia SK, Topno SE, Kerketta A. 2024. Integrated pest and disease management in cucumber and muskmelon. Monthly Peer Rev Mag Agric Allied Sci, 1: 1-8.
  • Qader KO, Al-Saadi SA, Allami RH. 2022. Evaluation of antibacterial activity of Xanthium strumarium L. against pathogenic bacteria. J Pure Appl Microbiol, 14(1): 243-250. https://doi.org/10.22207/JPAM.14.1.34
  • Rahimi A, Karimipour Fard H, Mohamadzadeh H. 2024. A review of secondary metabolites and inhibitory effect of medicinal plants on some plant pathogens. J Med Plants By-Prod. https://doi.org/10.22034/jmpb.2024.364494.1643
  • Rajesh Y, Khan NM, Shaikh AR, Mane VS, Daware G, Dabhade G. 2023. Investigation of geranium oil extraction performance by using Soxhlet extraction. Mater Today Proc, 72: 2610-2617. https://doi.org/10.1016/j.matpr.2023.01.208
  • Reisi-Vanani V, Gholipour A, Maghareh-Dehkordi S, Lorigooini Z. 2024. Combination of medicinal plants with antibiotics against Klebsiella pneumoniae and Acinetobacter baumannii. J Shahrekord Univ Med Sci, 26(3): 94-100. https://doi.org/10.34172/jsums.816
  • Saghafi F, Mirzaie F, Gorji E, Nabimeybodi R, Fattahi M, Mahmoodian H, Zareshahi R. 2021. Antibacterial and anti-Trichomonas vaginalis effects of Rosa damascena Mill petal oil (a Persian medicine product), aqueous and hydroalcoholic extracts. BMC Complement Med Ther, 21(1): 1-10. https://doi.org/10.1186/s12906-021-03305-1
  • Saini R, Ali MI, Pant M, Warghane A. 2024. Current status of potential antiviral drugs derived from plant, marine, and microbial sources. Anti-Infect Agents, 22(2): 61-73. https://doi.org/10.2174/18715230102222040161
  • Samad A, Saeed S. 2024. Major Diseases of Aromatic Plants. In: Diseases of Ornamental, Aromatic and Medicinal Plants, Bentham Science Publishers. pp: 207-231. https://doi.org/10.2174/97898152230711240101
  • Sarwari A, Abdieva GZ, Hassand MH, Mohammad UK, Niazi P. 2024. Role of microbial communities in compost and plant growth: Structure and function. Eur J Theor Appl Sci, 2(2): 23-37. https://doi.org/10.1234/ejtas.2024.0202
  • Seidel V, Peyfoon E, Watson DG, Fearnley J. 2008. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones. Phytotherapy Res, 22(9): 1256-1263. https://doi.org/10.1002/ptr.2480
  • Shi Z, Zhang J, Wang Y, Hao S, Tian L, Ke C, Yang X, Lu Q, Zhao Q, Li H, Liang C. 2024. Antibacterial effect and mechanisms of action of forsythoside B, alone and in combination with antibiotics, against Acinetobacter baumannii and Pseudomonas aeruginosa, Phytomedicine, 2024: 156038. https://doi.org/10.1016/j.phymed.2024.156038
  • Shohayeb M, Abdel-Hameed ES, Bazaid SA, Maghrabi I. 2014. Antibacterial and antifungal activity of Rosa damascena MILL. essential oil, different extracts of rose petals. Global J Pharmacol, 8(1): 1-7. https://doi.org/10.5829/idosi.gjp.2014.8.1.83164
  • Simin N, Živanović N, Božanić Tanjga B, Lesjak M, Narandžić T, Ljubojević M. 2024. New garden rose (Rosa× hybrida) genotypes with intensely colored flowers as rich sources of bioactive compounds. Plants, 13(3): 424. https://doi.org/10.3390/plants13030424
  • Siriamornpun S, Kaisoon O, Meeso N. 2012. Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J Funct Foods, 4(4): 757-766. https://doi.org/10.1016/j.jff.2012.04.002
  • Talib WH, Mahasneh AM. 2010. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules, 15(3): 1811-1824. https://doi.org/10.3390/molecules15031811
  • Tavoosi N, Akhavan Sepahi A., Kiarostami V, Amoozegar MA. 2024. Arsenite tolerance and removal potential of the indigenous halophilic bacterium, Halomonas elongata SEK2. BioMetals, 1-17. https://doi.org/10.1007/s10534-024-00612-2
  • Trendafilova A, Staleva P, Petkova Z, Ivanova V, Evstatieva Y, Nikolova D, Rasheva I, Atanasov N, Topouzova-Hristova T, Veleva R, Moskova-Doumanova V. 2023. Phytochemical profile, antioxidant potential, antimicrobial activity, and cytotoxicity of dry extract from Rosa damascena Mill. Molecules, 28(22): 7666. https://doi.org/10.3390/molecules28227666
  • Trivedi S, Srivastava A, Saxena D, Ali D, Alarifi S, Solanki VS, Yadav VK. 2025. Phytofabrication of silver nanoparticles by using Cucurbita maxima leaf extract and its potential anticancer activity and pesticide degradation. Materials Tech, 40(1): 2440907. https://doi.org/10.1080/10667857.2024.2440907
  • Verešová A, Vukic MD, Vukovic NL, Terentjeva M, Ban Z, Li L, Kačániová M. 2024. Chemical composition, biological activity, and application of rosa damascena essential oil as an antimicrobial agent in minimally processed eggplant inoculated with salmonella enterica. Foods, 13(22): 3579. https://doi.org/10.3390/foods13223579
  • Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Alghamdi S. 2024. A Comprehensive review of the diversity of fungal secondary metabolites and their emerging applications in healthcare and environment. Mycobiology, 2024: 1-53. https://doi.org/10.1080/12298093.2024.2416736
  • Waksman SA, Reilly HC. 1945. Agar-streak method for assaying antibiotic substances. Ind Eng Chem Anal Ed, 17(9): 556-558. https://doi.org/10.1021/i560070a021
  • Wang H. 2024. Beneficial medicinal effects and material applications of rose. Heliyon, 10(1): e23530. https://doi.org/10.1016/j.heliyon.2023.e23530
  • White WD. 1965. Antibacterial bacteriological swab. Br Med J, 2(5455): 229. https://doi.org/10.1136/bmj.2.5455.229
  • Woldemichael D. 2022. Efficacy of Ethiopian medicinal plant extracts for lower limb care (lymphoedema) in in vitro models. Doctoral dissertation, University of Brighton, Brighton, UK, pp: 208.
  • Zhang H, Mao YT, Ma MX, Tao GC, Wei TP, Jiang YL. 2024. Culturable endophytic Sordariomycetes from Rosa roxburghii: New species and lifestyles. J Syst Evol, 62(4): 637-676. https://doi.org/10.1111/jse.13035
  • Zhao L, Fan H, Zhang M, Chitrakar B, Bhandari B, Wang B. 2019. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res Int, 126: 108660. https://doi.org/10.1016/j.foodres.2019.108660
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Research Articles
Yazarlar

Parwiz Niazi 0009-0006-9628-8337

Abdul Bari Hejran 0009-0000-0443-0305

Obaidullah Alimyar 0009-0009-3253-2371

Yayımlanma Tarihi 15 Mayıs 2025
Gönderilme Tarihi 12 Kasım 2024
Kabul Tarihi 15 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

APA Niazi, P., Hejran, A. B., & Alimyar, O. (2025). Assessment of Antibacterial and Antifungal Activities of Ethanolic Flower Extracts from Rosa damascena against Pathogenic Micro-Organisms. Black Sea Journal of Agriculture, 8(3), 304-322. https://doi.org/10.47115/bsagriculture.1583192

                                                  24890