Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Evaluation of Field Capacities of Manual, Semi-Automatic and Mobile Robot Based Autonomous Soil Drilling Machines

Yıl 2025, Cilt: 8 Sayı: 3, 572 - 578, 15.05.2025
https://doi.org/10.34248/bsengineering.1596672

Öz

Soil augers are simple machines that usually have spiral blades placed around a rotating metal rod that can open holes in the soil in various sizes and depths. They are widely used for agricultural and industrial applications such as opening sapling holes in orchards, erecting fences, electricity, road signs and marking posts. There are manual, semi-automatic, and tractor three-point coupling type soil augers on the market. Recently, with the effect of technological developments, studies have been carried out on mobile robot-based autonomous soil augers that eliminate the use of operators. Especially when it is necessary to open large amounts of holes, it is of critical importance which type of soil auger system should be used in terms of intensive labor, operating cost and time. In this study, the comparative performances of manual, semi-automatic and mobile robot-based autonomous soil augers developed by us were evaluated based on field capacity. The field study was carried out by operating three different machines for a total of 76 hole points in an area of approximately 0.31 ha. The hole points were determined to be 6 meters apart from each other in horizontal and vertical directions. While determining the field capacity, main processing, going from one point to another and setting times were used. As a result of the calculations, field capacity values were determined as 11.62 holes/hour, 30.04 holes/hour, 70.38 holes/hour for manual, semi-automatic and mobile robot-based autonomous soil auger machines, respectively. The obtained values show that the mobile robot-based autonomous soil auger machine drills holes faster and without requiring manpower than the other two machines, as expected. The study has the feature of being enriched to include different agricultural management methods and cost analysis elements.

Kaynakça

  • Adamchuk VI, Grisso R, Kocher MF. 2011. Spatial variability of field machinery use and efficiency. CRC Press, Boca Raton, Florida, USA, pp: 135–146.
  • ASAE. 1999. EP496.2 Agricultural machinery management. URL: https://www.academia.edu/41779575/S_T_A_N_D_A_R_D_ASAE_EP496_2_DEC99_Agricultural_Machinery_Management (accessed date: December 04, 2024).
  • Bac WC, van Henten EJ, Hemming J, Edan Y. 2014. Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. J Field Rob, 31(6): 888–911.
  • Bochtis D, Griepentrog HW, Vougioukas S, Busato P, Berruto R, Zhou K. 2015. Route planning for orchard operations. Comput Electron Agric, 113: 51–60.
  • Botterill T, Paulin S, Green R, Williams S, Lin J. 2017. A robot system for pruning grape vines. J Field Rob, 34(6): 1100–1122.
  • Chen K, Li T, Yan T, Xie F, Feng Q, Zhu Q, Zhao C. 2022. A soft gripper design for apple harvesting with force feedback and fruit slip detection. Agri, 12(11): 1802.
  • Chi Y, Zhou W, Wang Z, Hu Y, Han X. 2021. The ınfluence paths of agricultural mechanization on green agricultural development. Sustainabil, 13(23): 12984.
  • Eceoğlu O, Ünal İ. 2024. Optimizing orchard planting efficiency with a gıs-ıntegrated autonomous soil-drilling robot. Agri Engin, 6(3): 2870-2890.
  • El-Gendy H, Abd El-Halim S, Morghany H, Aboukarima A. 2009. Evaluating performance of a post hole digger. J Soil Sci Agric Eng, 34(5): 5783–5793.
  • FACE/WA. 2010. Orchard laborer caught in tractor-mounted post hole digger. URL: https://nasdonline.org/7285/d002499/washington-face-orchard-laborer-caught-in-tractor-mounted.html (accessed date: December 04, 2024).
  • Gonzalez Nieto L, Wallis A, Clements J, Miranda Sazo M, Kahlke C, Kon TM, Robinson TL. 2023. Evaluation of computer vision systems and applications to estimate trunk cross-sectional area, flower cluster number, thinning efficacy and yield of apple. Horticulturae, 9(8): 880.
  • Jia L, Wang Y, Ma L, He Z, Li Z, Cui Y. 2023. İntegrated positioning system of kiwifruit orchard mobile robot based on UWB/LiDAR/ODOM. Sensors, 23(17): 7570.
  • Jurgensen MF, Larsen MJ, Harvey AE. 1977. A soil sampler for steep, rocky sites. Research note INT‐217. U. S. Department of Agriculture, Forest Service, Inter‐mountain Forest and Range Experiment Station. URL: https://archive.org/details/soilsamplerforst217jurg/page/n7/mode/2up (accessed date: December 04, 2024).
  • Kaur B, Mansi; Dimri S, Singh J, Mishra S, Chauhan N, Kukreti T, Sharma B, Singh SP, Arora S, et al. 2023. Insights into the harvesting tools and equipment’s for horticultural crops: From then to now. J Agric Food Res, 14: 100814.
  • Lei X, Yuan Q, Xyu T, Qi Y, Zeng J, Huang K, Sun Y, Herbst A, Lyu X. 2023. Technologies and equipment of mechanized blossom thinning in orchards: a review. agronomy, 13(11): 2753.
  • Liu L, Liu Y, He X, Liu W. 2022. precision variable-rate spraying robot by using single 3D LIDAR in orchards. Agronomy, 12(10): 2509.
  • Lo Bianco R, Proietti P, Regni L, Caruso T. 2021. Planting systems for modern olive growing: Strengths and weaknesses. Agri, 11(6): 494.
  • Miller J, Fragar L, Franklin R. 2006. Farm machinery safety. Injuries associated with posthole diggers. Australian Centre for Agricultural Health and Safety and Rural Industries Research and Development Corporation. URL: https://agrifutures.com.au/product/farm-machinery-safety-injuries-associated-with-posthole-diggers/ (accessed date: December 04, 2024).
  • Onishi Y, Yoshida T, Kurita H, Fukao T, Arihara H, Iwai A. 2019. An automated fruit harvesting robot by using deep learning. Robomech J, 6: 13.
  • Pica AD, Boja F, Teuşdea A, Fora C, Moatar M, Boja N. 2021. The usage motor drill in forestry planting. Actual Tasks on Agricultural Engineering. In Proceedings of the 48th International Symposium, March 2–4, Zagreb, Croatia, pp: 237–248.
  • RSHA04. 2024. Mobile plant safety on farm: practices and perceptions. Snapshot report. URL: https://rsha.com.au/wp-content/uploads/2024/06/RSHA04-practices-May-2025.pdf (accessed date: December 04, 2024).
  • Silwal A, Davidson JR, Karkee M, Mo C, Zhang Q, Lewis K. 2017. Design, integration, and field evaluation of a robotic apple harvester. J Field Rob, 34(6): 1140–1159.
  • Verbiest R, Ruysen K, Vanwalleghem T, Demeester E, Kellens K. 2021. Automation and robotics in the cultivation of pome fruit: Where do we stand today? J Field Rob, 38(4): 513–531.
  • Xiong Z, Feng Q, Li T, Xie F, Liu C, Liu L, Guo X, Zhao C. 2022. Dual-Manipulator Optimal Design for Apple Robotic Harvesting. Agron, 12(12): 3128.
  • Zhang K, Lammers K, Chu P, Li Z, Lu R. 2021. System design and control of an apple harvesting robot. Mechatron, 79: 102644.

Manuel, Yarı Otomatik ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi

Yıl 2025, Cilt: 8 Sayı: 3, 572 - 578, 15.05.2025
https://doi.org/10.34248/bsengineering.1596672

Öz

Toprak burguları, genellikle toprakta çeşitli boyut ve derinliklerde çukurlar açabilen dönen bir metal çubuk etrafına yerleştirilmiş spiral bıçaklara sahip basit makinelerdir. Meyve bahçelerinde fidan çukuru açılması başta olmak üzere, çit, elektrik, yol işaretlerinin ve işaretleme direklerinin dikilmesi gibi tarım ve endüstriyel uygulamalar için yaygın şekilde kullanılmaktadır. Piyasada, manuel, yarı otomatik, traktör üç nokta bağlantı noktasına akuple edilen tipte toprak burguları mevcuttur. Son zamanlarda teknolojik gelişmelerin de etkisiyle operatör kullanımını ortadan kaldıran mobil robot tabanlı otonom toprak burguları üzerine de çalışmalar yapılmaktadır. Özellikle, büyük miktarlarda çukurların açılması gerektiğinde yoğun işçilik, işletme maliyeti ve zaman açısından hangi tip toprak burgu sisteminin kullanılması gerektiği kritik öneme sahiptir. Bu çalışmada, manuel, yarı otomatik ve tarafımızca geliştirilen mobil robot tabanlı otonom toprak burgusunun alan kapasitesi temelinde karşılaştırmalı performansları değerlendirilmiştir. Alan çalışması, yaklaşık 0.31 hektarlık alanda toplam 76 çukur noktası için üç farklı makinenin çalıştırılması ile gerçekleştirilmiştir. Çukur noktaları, yatay ve dikey yönde birbirlerinden 6 metre mesafede olacak şekilde belirlenmiştir. Alan kapasitesi belirlenirken, esas işleme, bir noktadan diğer noktaya gidiş ve ayar zamanları kullanılmıştır. Yapılan hesaplamalar sonucunda, alan kapasite değerleri manuel, yarı otomatik ve mobil robot tabanlı otonom toprak burgu makinelerine göre sırasıyla 11.62 çukur/saat, 30.04 çukur/saat, 70.38 çukur/saat olarak belirlenmiştir. Elde edilen değerler, beklenildiği gibi mobil robot tabanlı otonom toprak burgu makinesinin diğer iki makineye göre daha hızlı ve insan gücü gerektirmeden çukur açtığını göstermektedir. Yapılan çalışma, farklı tarımsal işletmecilik yöntemleri ve maliyet analizi unsurlarını da kapsayacak şekilde zenginleştirilme özelliğine sahiptir.

Kaynakça

  • Adamchuk VI, Grisso R, Kocher MF. 2011. Spatial variability of field machinery use and efficiency. CRC Press, Boca Raton, Florida, USA, pp: 135–146.
  • ASAE. 1999. EP496.2 Agricultural machinery management. URL: https://www.academia.edu/41779575/S_T_A_N_D_A_R_D_ASAE_EP496_2_DEC99_Agricultural_Machinery_Management (accessed date: December 04, 2024).
  • Bac WC, van Henten EJ, Hemming J, Edan Y. 2014. Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. J Field Rob, 31(6): 888–911.
  • Bochtis D, Griepentrog HW, Vougioukas S, Busato P, Berruto R, Zhou K. 2015. Route planning for orchard operations. Comput Electron Agric, 113: 51–60.
  • Botterill T, Paulin S, Green R, Williams S, Lin J. 2017. A robot system for pruning grape vines. J Field Rob, 34(6): 1100–1122.
  • Chen K, Li T, Yan T, Xie F, Feng Q, Zhu Q, Zhao C. 2022. A soft gripper design for apple harvesting with force feedback and fruit slip detection. Agri, 12(11): 1802.
  • Chi Y, Zhou W, Wang Z, Hu Y, Han X. 2021. The ınfluence paths of agricultural mechanization on green agricultural development. Sustainabil, 13(23): 12984.
  • Eceoğlu O, Ünal İ. 2024. Optimizing orchard planting efficiency with a gıs-ıntegrated autonomous soil-drilling robot. Agri Engin, 6(3): 2870-2890.
  • El-Gendy H, Abd El-Halim S, Morghany H, Aboukarima A. 2009. Evaluating performance of a post hole digger. J Soil Sci Agric Eng, 34(5): 5783–5793.
  • FACE/WA. 2010. Orchard laborer caught in tractor-mounted post hole digger. URL: https://nasdonline.org/7285/d002499/washington-face-orchard-laborer-caught-in-tractor-mounted.html (accessed date: December 04, 2024).
  • Gonzalez Nieto L, Wallis A, Clements J, Miranda Sazo M, Kahlke C, Kon TM, Robinson TL. 2023. Evaluation of computer vision systems and applications to estimate trunk cross-sectional area, flower cluster number, thinning efficacy and yield of apple. Horticulturae, 9(8): 880.
  • Jia L, Wang Y, Ma L, He Z, Li Z, Cui Y. 2023. İntegrated positioning system of kiwifruit orchard mobile robot based on UWB/LiDAR/ODOM. Sensors, 23(17): 7570.
  • Jurgensen MF, Larsen MJ, Harvey AE. 1977. A soil sampler for steep, rocky sites. Research note INT‐217. U. S. Department of Agriculture, Forest Service, Inter‐mountain Forest and Range Experiment Station. URL: https://archive.org/details/soilsamplerforst217jurg/page/n7/mode/2up (accessed date: December 04, 2024).
  • Kaur B, Mansi; Dimri S, Singh J, Mishra S, Chauhan N, Kukreti T, Sharma B, Singh SP, Arora S, et al. 2023. Insights into the harvesting tools and equipment’s for horticultural crops: From then to now. J Agric Food Res, 14: 100814.
  • Lei X, Yuan Q, Xyu T, Qi Y, Zeng J, Huang K, Sun Y, Herbst A, Lyu X. 2023. Technologies and equipment of mechanized blossom thinning in orchards: a review. agronomy, 13(11): 2753.
  • Liu L, Liu Y, He X, Liu W. 2022. precision variable-rate spraying robot by using single 3D LIDAR in orchards. Agronomy, 12(10): 2509.
  • Lo Bianco R, Proietti P, Regni L, Caruso T. 2021. Planting systems for modern olive growing: Strengths and weaknesses. Agri, 11(6): 494.
  • Miller J, Fragar L, Franklin R. 2006. Farm machinery safety. Injuries associated with posthole diggers. Australian Centre for Agricultural Health and Safety and Rural Industries Research and Development Corporation. URL: https://agrifutures.com.au/product/farm-machinery-safety-injuries-associated-with-posthole-diggers/ (accessed date: December 04, 2024).
  • Onishi Y, Yoshida T, Kurita H, Fukao T, Arihara H, Iwai A. 2019. An automated fruit harvesting robot by using deep learning. Robomech J, 6: 13.
  • Pica AD, Boja F, Teuşdea A, Fora C, Moatar M, Boja N. 2021. The usage motor drill in forestry planting. Actual Tasks on Agricultural Engineering. In Proceedings of the 48th International Symposium, March 2–4, Zagreb, Croatia, pp: 237–248.
  • RSHA04. 2024. Mobile plant safety on farm: practices and perceptions. Snapshot report. URL: https://rsha.com.au/wp-content/uploads/2024/06/RSHA04-practices-May-2025.pdf (accessed date: December 04, 2024).
  • Silwal A, Davidson JR, Karkee M, Mo C, Zhang Q, Lewis K. 2017. Design, integration, and field evaluation of a robotic apple harvester. J Field Rob, 34(6): 1140–1159.
  • Verbiest R, Ruysen K, Vanwalleghem T, Demeester E, Kellens K. 2021. Automation and robotics in the cultivation of pome fruit: Where do we stand today? J Field Rob, 38(4): 513–531.
  • Xiong Z, Feng Q, Li T, Xie F, Liu C, Liu L, Guo X, Zhao C. 2022. Dual-Manipulator Optimal Design for Apple Robotic Harvesting. Agron, 12(12): 3128.
  • Zhang K, Lammers K, Chu P, Li Z, Lu R. 2021. System design and control of an apple harvesting robot. Mechatron, 79: 102644.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hassas Tarım Teknolojileri, Tarım Makine Sistemleri
Bölüm Research Articles
Yazarlar

Osman Eceoğlu 0000-0001-5778-6655

İlker Ünal 0000-0002-5188-4438

Yayımlanma Tarihi 15 Mayıs 2025
Gönderilme Tarihi 5 Aralık 2024
Kabul Tarihi 15 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

APA Eceoğlu, O., & Ünal, İ. (2025). Manuel, Yarı Otomatik ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi. Black Sea Journal of Engineering and Science, 8(3), 572-578. https://doi.org/10.34248/bsengineering.1596672
AMA Eceoğlu O, Ünal İ. Manuel, Yarı Otomatik ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi. BSJ Eng. Sci. Mayıs 2025;8(3):572-578. doi:10.34248/bsengineering.1596672
Chicago Eceoğlu, Osman, ve İlker Ünal. “Manuel, Yarı Otomatik Ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi”. Black Sea Journal of Engineering and Science 8, sy. 3 (Mayıs 2025): 572-78. https://doi.org/10.34248/bsengineering.1596672.
EndNote Eceoğlu O, Ünal İ (01 Mayıs 2025) Manuel, Yarı Otomatik ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi. Black Sea Journal of Engineering and Science 8 3 572–578.
IEEE O. Eceoğlu ve İ. Ünal, “Manuel, Yarı Otomatik ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi”, BSJ Eng. Sci., c. 8, sy. 3, ss. 572–578, 2025, doi: 10.34248/bsengineering.1596672.
ISNAD Eceoğlu, Osman - Ünal, İlker. “Manuel, Yarı Otomatik Ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi”. Black Sea Journal of Engineering and Science 8/3 (Mayıs 2025), 572-578. https://doi.org/10.34248/bsengineering.1596672.
JAMA Eceoğlu O, Ünal İ. Manuel, Yarı Otomatik ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi. BSJ Eng. Sci. 2025;8:572–578.
MLA Eceoğlu, Osman ve İlker Ünal. “Manuel, Yarı Otomatik Ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi”. Black Sea Journal of Engineering and Science, c. 8, sy. 3, 2025, ss. 572-8, doi:10.34248/bsengineering.1596672.
Vancouver Eceoğlu O, Ünal İ. Manuel, Yarı Otomatik ve Mobil Robot Tabanlı Otonom Toprak Burgu Makinelerinin Alan Kapasitelerinin Karşılaştırmalı Değerlendirilmesi. BSJ Eng. Sci. 2025;8(3):572-8.

                                                24890