Araştırma Makalesi
BibTex RIS Kaynak Göster

Use of Yeast-Based Zinc Oxides in Food Dye Removal

Yıl 2025, Cilt: 12 Sayı: 1, 266 - 273, 30.05.2025
https://doi.org/10.35193/bseufbd.1552081

Öz

In the present study, zinc oxide (ZnO) nanoparticles were synthesized by green synthesis method using aqueous extract of Yarrowia lipolytica (yeast). X-ray diffraction (XRD) patterns and thermo gravimetric analysis confirmed the formation of well-crystallized ZnO nanoparticles using zinc sulfate solution (0.1 M) and yeast extract at 2:1 volume ratio at pH 12. The synthesized ZnO nanoparticles (1 h reaction time and pH 7) were used to remove amaranth food dye from an aqueous solution and the adsorption processes were investigated. The quantity of dye adsorbed per unit mass of adsorbent increased with rising initial dye concentration, resulting in enhanced dye removal efficiency. The maximum degradation efficiency was obtained using 1 g of ZnO per liter. The synthesized ZnO nanoparticles were an environmentally friendly and efficient method due to their unique properties, good adsorption capacity of 75% and synthesis without using chemical solvents.

Kaynakça

  • Salem, S. S. (2022). Baker’s yeast-mediated silver nanoparticles: Characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoScience, 12(4), 1220-1229. BŞEÜ Fen Bilimleri Dergisi / BSEU Journal of Science, 2025, 12(1): 266-273.
  • Shu, M., He, F., Li, Z., Zhu, X., Ma, Y., Zhou, Z., ... & Zeng, M. (2020). Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale research letters, 15, 1-9.
  • AswaMurillo-Rábago, E. I., Vilchis-Nestor, A. R., Juarez-Moreno, K., Garcia-Marin, L. E., Quester, K., & Castro-Longoria, E. (2022). Optimized synthesis of small and stable silver nanoparticles using intracellular and extracellular components of fungi: An alternative for bacterial inhibition. Antibiotics, 11(6), 800.
  • Roychoudhury, A. (2020). Yeast-mediated green synthesis of nanoparticles for biological applications. Indian J Pharm Biol Res, 8(03), 26-31.
  • Kiymaci, M. E., Şimşek, D., & Altanlar, N. (2022). Molecular Identification And Lipolytic Activity Of Yarrowia Lipolytica Isolated From Yoghurt Cream. Journal of Faculty of Pharmacy of Ankara University, 46(2), 450-457.
  • Gonçalves, F. A. G., Colen, G., & Takahashi, J. A. (2014). Yarrowia lipolytica and its multiple applications in the biotechnological industry. The Scientific World Journal, 2014.
  • Ünver, Y. (2022). Biyofarmasötik Proteinlerin Üretiminde Kullanilan Mayalar. Fen Bilimleri ve Matematikte Güncel Araştırmalar, 1940.Mart, 2022.
  • El-Khawaga, A. M., Elsayed, M. A., Gobara, M., Suliman, A. A., Hashem, A. H., Zaher, A. A., ... & Salem, S. S. (2023). Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conversion and Biorefinery, 1-12.
  • Boroumand Moghaddam, A., Moniri, M., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., ... & Mohamad, R. (2017). Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules, 22(6), 872.
  • Chauhan, R., Reddy, A., & Abraham, J. (2015). Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Applied nanoscience, 5, 63-71.
  • Llewellyn, G. C., Penberthy, J. K., & Parker, J. M. (2020). Food Color Additives in the US Food Supply: Review of Neurobehav-ioral Safety. J Pediatr Neurol Neurosci, 4(1), 55-72.
  • Palas, B., Ersöz, G., & Atalay, S. (2023). Tabakalı Çift Hidroksit Katalizörler Kullanılarak Peroksimonosülfat ve Hidrojen Peroksit Aktivasyonu ile Gıda Boyalarının Giderimi: Box-Behnken Tasarımı ile Reaksiyon Koşullarının Optimizasyonu. Journal of the Institute of Science and Technology, 13(4), 2790-2808.
  • Biswal, A. K., Sahoo, M., Suna, P. K., Panda, L., Lenka, C., & Misra, P. K. (2022). Exploring the adsorption efficiency of a novel cellulosic material for removal of food dye from water. Journal of molecular liquids, 350, 118577.
  • Esquerdo, V. M., Cadaval Jr, T. R. S., Dotto, G. L., & Pinto, L. A. A. (2014). Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. Journal of colloid and interface science, 424, 7-15.
  • Mittal, A. (2006). Removal of the dye, Amaranth from waste water using hen feathers as potential adsorbent. Electron. J. Environ. Agric. Food Chem, 5(2), 1296-1305.
  • Kilic, I. H., Karakucuk-Iyidogan, A., Al-Aaazi, N., Bayil-Oguzkan, S., & Ozaslan, M. (2018). Bioremediatign of wastewater contaminated with petroleum hydrocarbons from Baiji Thermal Power Station in Iraq. Fresenius Environmental Bulletin, 27(8), 5223-5229.
  • Avci, H., Öztürk, Ş., & Aslim, B. (2021). Farklı Adli Biyolojik Örnekler Üzerinde Gelişen Mantar Türleri ile İlgili Bazı Doğal Ekstraktların Antifungal Etkileri: Deneysel Çalışmalar. Turkiye Klinikleri Journal of Forensic Medicine & Forensic Sciences, 18(3).
  • Bokuniaeva, A. O., & Vorokh, A. S. (2019, December). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In journal of physics: Conference series (Vol. 1410, No. 1, p. 012057). IOP Publishing.
  • Kayani, Z. N., Saleemi, F., & Batool, I. (2015). Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A, 119, 713-720.
  • Dobe, N., Abia, D., Tcheka, C., Tejeogue, J. P. N., & Harouna, M. (2022). Removal of amaranth dye by modified Ngassa clay: Linear and non-linear equilibrium, kinetics and statistical study. Chemical Physics Letters, 801, 139707.
  • Sahinkaya, S., & Yakut, S. M. (2020). A comparative study on applicability of nano-sized iron (II, III) oxide in ultrasonicated Fenton process. Environmental Engineering Research, 25(1), 36-42.
  • Romdhane, D. F., Satlaoui, Y., Nasraoui, R., Charef, A., & Azouzi, R. (2020). Adsorption, Modeling, Thermodynamic, and Kinetic Studies of Methyl Red Removal from Textile‐Polluted Water Using Natural and Purified Organic Matter Rich Clays as Low‐Cost Adsorbent. Journal of Chemistry, 2020(1), 4376173.
  • Wang, F., Li, L., Iqbal, J., Yang, Z., & Du, Y. (2022). Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution. International Journal of Biological Macromolecules, 199, 234-242.
  • Rajashekarappa, K. K., Mahadevan, G. D., Neelagund, S. E., Sathynarayana, M., Vijaya, D., & Mulla, S. I. (2022). Decolorization of amaranth RI and fast red E azo dyes by thermophilic Geobacillus thermoleovorans KNG 112. Journal of Chemical Technology & Biotechnology, 97(2), 482-489.

Maya Bazlı Çinko Oksitlerin Gıda Boyası Gideriminde Kullanımı

Yıl 2025, Cilt: 12 Sayı: 1, 266 - 273, 30.05.2025
https://doi.org/10.35193/bseufbd.1552081

Öz

Mevcut çalışmada, Yarrowia lipolytica'nın (maya) sulu özütü kullanılarak yeşil sentez yöntemiyle çinko oksit (ZnO) nanopartikülleri sentezlenmiştir. X-ışını kırınımı (XRD) desenleri ve termogravimetrik analizler pH 12'de 2:1 hacim oranında çinko sülfat çözeltisi (0,1 M) ve maya özütü kullanılarak, iyi kristalleşmiş ZnO nanopartiküllerinin oluşumunu doğrulamıştır. Sentezlenen ZnO nanopartikülleri (1saatlik reaksiyon süresi ve pH 7), sulu bir çözeltiden amarant gıda boyasını uzaklaştırmak için kullanılmış ve adsorpsiyon süreçleri incelenmiştir. Adsorbanın kütlesi başına adsorbe edilen boya kütlesi, başlangıç boya konsantrasyonunun artırılmasıyla büyümüş ve daha çok boya giderim verimi elde edilmiştir. Maksimum bozunma verimliliği, litre başına 1g ZnO kullanılarak elde edilmiştir. Sentezlenen ZnO nanopartiküller, özgün özellikleri ve %75’lik iyi adsorpsiyon kapasitesi ve kimyasal çözücüler kullanılmadan gerçekleştirilen sentezi sayesinde çevre dostu ve verimli bir yöntem olmuştur.

Kaynakça

  • Salem, S. S. (2022). Baker’s yeast-mediated silver nanoparticles: Characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoScience, 12(4), 1220-1229. BŞEÜ Fen Bilimleri Dergisi / BSEU Journal of Science, 2025, 12(1): 266-273.
  • Shu, M., He, F., Li, Z., Zhu, X., Ma, Y., Zhou, Z., ... & Zeng, M. (2020). Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale research letters, 15, 1-9.
  • AswaMurillo-Rábago, E. I., Vilchis-Nestor, A. R., Juarez-Moreno, K., Garcia-Marin, L. E., Quester, K., & Castro-Longoria, E. (2022). Optimized synthesis of small and stable silver nanoparticles using intracellular and extracellular components of fungi: An alternative for bacterial inhibition. Antibiotics, 11(6), 800.
  • Roychoudhury, A. (2020). Yeast-mediated green synthesis of nanoparticles for biological applications. Indian J Pharm Biol Res, 8(03), 26-31.
  • Kiymaci, M. E., Şimşek, D., & Altanlar, N. (2022). Molecular Identification And Lipolytic Activity Of Yarrowia Lipolytica Isolated From Yoghurt Cream. Journal of Faculty of Pharmacy of Ankara University, 46(2), 450-457.
  • Gonçalves, F. A. G., Colen, G., & Takahashi, J. A. (2014). Yarrowia lipolytica and its multiple applications in the biotechnological industry. The Scientific World Journal, 2014.
  • Ünver, Y. (2022). Biyofarmasötik Proteinlerin Üretiminde Kullanilan Mayalar. Fen Bilimleri ve Matematikte Güncel Araştırmalar, 1940.Mart, 2022.
  • El-Khawaga, A. M., Elsayed, M. A., Gobara, M., Suliman, A. A., Hashem, A. H., Zaher, A. A., ... & Salem, S. S. (2023). Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conversion and Biorefinery, 1-12.
  • Boroumand Moghaddam, A., Moniri, M., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., ... & Mohamad, R. (2017). Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules, 22(6), 872.
  • Chauhan, R., Reddy, A., & Abraham, J. (2015). Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Applied nanoscience, 5, 63-71.
  • Llewellyn, G. C., Penberthy, J. K., & Parker, J. M. (2020). Food Color Additives in the US Food Supply: Review of Neurobehav-ioral Safety. J Pediatr Neurol Neurosci, 4(1), 55-72.
  • Palas, B., Ersöz, G., & Atalay, S. (2023). Tabakalı Çift Hidroksit Katalizörler Kullanılarak Peroksimonosülfat ve Hidrojen Peroksit Aktivasyonu ile Gıda Boyalarının Giderimi: Box-Behnken Tasarımı ile Reaksiyon Koşullarının Optimizasyonu. Journal of the Institute of Science and Technology, 13(4), 2790-2808.
  • Biswal, A. K., Sahoo, M., Suna, P. K., Panda, L., Lenka, C., & Misra, P. K. (2022). Exploring the adsorption efficiency of a novel cellulosic material for removal of food dye from water. Journal of molecular liquids, 350, 118577.
  • Esquerdo, V. M., Cadaval Jr, T. R. S., Dotto, G. L., & Pinto, L. A. A. (2014). Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. Journal of colloid and interface science, 424, 7-15.
  • Mittal, A. (2006). Removal of the dye, Amaranth from waste water using hen feathers as potential adsorbent. Electron. J. Environ. Agric. Food Chem, 5(2), 1296-1305.
  • Kilic, I. H., Karakucuk-Iyidogan, A., Al-Aaazi, N., Bayil-Oguzkan, S., & Ozaslan, M. (2018). Bioremediatign of wastewater contaminated with petroleum hydrocarbons from Baiji Thermal Power Station in Iraq. Fresenius Environmental Bulletin, 27(8), 5223-5229.
  • Avci, H., Öztürk, Ş., & Aslim, B. (2021). Farklı Adli Biyolojik Örnekler Üzerinde Gelişen Mantar Türleri ile İlgili Bazı Doğal Ekstraktların Antifungal Etkileri: Deneysel Çalışmalar. Turkiye Klinikleri Journal of Forensic Medicine & Forensic Sciences, 18(3).
  • Bokuniaeva, A. O., & Vorokh, A. S. (2019, December). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In journal of physics: Conference series (Vol. 1410, No. 1, p. 012057). IOP Publishing.
  • Kayani, Z. N., Saleemi, F., & Batool, I. (2015). Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A, 119, 713-720.
  • Dobe, N., Abia, D., Tcheka, C., Tejeogue, J. P. N., & Harouna, M. (2022). Removal of amaranth dye by modified Ngassa clay: Linear and non-linear equilibrium, kinetics and statistical study. Chemical Physics Letters, 801, 139707.
  • Sahinkaya, S., & Yakut, S. M. (2020). A comparative study on applicability of nano-sized iron (II, III) oxide in ultrasonicated Fenton process. Environmental Engineering Research, 25(1), 36-42.
  • Romdhane, D. F., Satlaoui, Y., Nasraoui, R., Charef, A., & Azouzi, R. (2020). Adsorption, Modeling, Thermodynamic, and Kinetic Studies of Methyl Red Removal from Textile‐Polluted Water Using Natural and Purified Organic Matter Rich Clays as Low‐Cost Adsorbent. Journal of Chemistry, 2020(1), 4376173.
  • Wang, F., Li, L., Iqbal, J., Yang, Z., & Du, Y. (2022). Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution. International Journal of Biological Macromolecules, 199, 234-242.
  • Rajashekarappa, K. K., Mahadevan, G. D., Neelagund, S. E., Sathynarayana, M., Vijaya, D., & Mulla, S. I. (2022). Decolorization of amaranth RI and fast red E azo dyes by thermophilic Geobacillus thermoleovorans KNG 112. Journal of Chemical Technology & Biotechnology, 97(2), 482-489.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel Nanoteknoloji ve Nanometroloji
Bölüm Makaleler
Yazarlar

Şennur Merve Yakut 0000-0001-9190-4061

Hüseyin Avci 0000-0001-9399-6457

Şahlan Öztürk 0000-0002-6064-3628

Yayımlanma Tarihi 30 Mayıs 2025
Gönderilme Tarihi 20 Eylül 2024
Kabul Tarihi 1 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

APA Yakut, Ş. M., Avci, H., & Öztürk, Ş. (2025). Maya Bazlı Çinko Oksitlerin Gıda Boyası Gideriminde Kullanımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 266-273. https://doi.org/10.35193/bseufbd.1552081