Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of different levels of irrigation and nitrogen interactions on yield and water productivity in watermelon irrigated by drip method

Yıl 2025, Cilt: 39 Sayı: 1, 55 - 70, 18.06.2025
https://doi.org/10.20479/bursauludagziraat.1574975

Öz

Water and nitrogen (N) are the main determinants affecting watermelon plants' vegetative and generative growth. This study aimed to determine the yield response and water-yield relationships of watermelon plants grown in Bursa ecological conditions and clay soils under different irrigation and N levels. Four irrigation levels (IR-100, IR-75, IR-50, and IR-25) and five N ratios (kg ha-1) (N0, N75, N150, N225 and N300) were considered as experimental treatments. In the study, a split-plot experimental design was used. While irrigation water was applied to thetreatments between 214 and 603 mm, actual crop evapotranspiration varied between 288 and 687 mm. Among the irrigation treatments, the IR-100 yielded the highest fruit yield. With the decrease in irrigation levels, the yield also decreased. Fruit yield, weight, and size increased to a N level of 225 kg ha-1 and decreased at higher levels. Irrigation and N interaction showed a statistically significant effect (p<0.01) on fruit yield and some yield components. While the highest yield and yield components were obtained at N225 and N150 N rates under IR-100 treatment, the second highest yield was obtained from the IR75×N225 interaction. Second-degree polynomial equations were obtained between the irrigation amount and yield, in addition to the N ratio and yield. Relatively higher water productivity was found at low irrigation levels (IR-25 and IR-50) and increasing N rates up to 225 kg ha-1. Yield response factor varied between 0.67 and 1.08 for different N doses. As a result, to obtain high watermelon yield and increase water productivity, IR-75 irrigation treatment and a N rate of 225 kg ha-1. As a result of these conditions, the amount of applied irrigation water, actual evapotranspiration, fruit yield, and water productivity values were determined as 476 mm, 582 mm, 100.2 3t ha-1, and 17.22 kg m-3, respectively.

Kaynakça

  • Anonymous. 2023. Karpuz Bonus F1. https://www.nevtohum.com.tr/Home/ProductDetail/34 (Date of access: 11.08.2024)
  • Çamoğlu, G., Aşık, Ş., Genç, L., ve Demirel, K. 2010. Damla sulama ile sulanan karpuzda su stresinin bitki su tüketimine, su kullanım randımanına, verime ve kalite parametrelerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 47(2): 135-144.
  • Çetin, Ö., Yıldırım, O., Uygan, D. and Boyacı, H. 2002. Irrigation scheduling of drip-irrigated tomatoes using class a pan evaporation, Turkish Journal of Agriculture and Forestry, 26: 171-178.
  • Daşgan, H. Y., Kılınç, M., Dere, S. ve İkiz, B. 2021. Çukurova ekolojik koşullarına uygun bazı karpuz çeşitlerinin kuraklığa tolerans seviyelerinin belirlenmesi. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 7(3): 388-403. https://doi.org/10.24180/ijaws.977431
  • Devi, P., Lukas, S. and Miles, C. 2020. Advances in watermelon grafting to ıncrease efficiency and automation. Horticulturae, 6(4):88. https://doi.org/10.3390/horticulturae6040088
  • Doorenbos, J. and Kassam, A. H. 1979. Yield response to water. Irrigation and drainage paper, 33, 257.
  • Duraktekin, G., Çolak, Y. B., Atağ, G., Özfidaner, M., Baydar, A. and Gönen, E. 2018. Effect of deficit irrigation on yield and water use efficiency of watermelon. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı: 218-222.
  • Duraktekin, G., Çolak, Y. B., Özfidaner, M., Baydar, A. ve Gönen, E. 2019. Karpuzda farklı sulama programlarının klorofil içeriğine etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 24: 179-187.
  • Erdem, Y. and Yüksel, A.N. 2003. Yield response of watermelon to irrigation shortage. Scientia Horticulturae, 98: 365- 383.
  • Erdem, Y., Erdem, T., Orta, A.H. and Okursoy, H. 2005. Irrigation scheduling for watermelon with crop water stress index (CWSI). Journal of Central European Agriculture, 4: 449-460.
  • FAO 2024. Food and Agriculture Organization of the United States, FAOSTAT. https://www.fao.org/faostat/en/#home (Date of access: 11.08.2024).
  • Ghawi, I. and Battikhi, A.M. 2008. Watermelon (Citrullus lanatus) production under mulch and trickle irrigation in the Jordan valley. Journal of Agronomy and Crop Science, 156 (4): 225-236.
  • Goreta, S., Perica, S., Dumicic, G., Bucan, L. and Zanic, K. 2005. Growth and yield of watermelon on polyethylene mulch with different spacings and nitrogen rates. HortScience, 40(2): 366-369.
  • James, L. G. 1988. Principles of farm irrigation systems design. John wiley and Sons, New York. Kirnak, H. and Dogan, E. 2009 Effect of seasonal water stress imposed on drip irrigated second crop watermelon grown in semi-arid climatic conditions. Irrigation Science, 27: 155-164.
  • Kuscu, H., Turhan, A., Ozmen, N., Aydinol, P. and Demir, A.O. 2014. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic. Environ. Biotechnol., 55:103-114. Kuşçu, H., Turhan, A., Özmen, N., Aydınol, P., Büyükcangaz, H. and Demir, A.O. 2015. Deficit irrigation effects on watermelon (Citrullus vulgaris) in a subhumid environment. Turkey. The Journal of Animal and Plant Sciences, 25(6): 1652-1659.
  • Leskovar, D. I., Bang, H., Kolenda, K., Franco, J. A. and Perkins-Veazie, P. 2002. August. Deficit irrigation influences yield and lycopene content of diploid and triploid watermelon. In XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture, 628: 147-151.
  • Lorite, I. J., Mateos, L., Orgaz, F. and Fereres, E. 2007. Assessing deficit irrigation strategies at the level of an irrigation district. Agricultural Water Management, 91(1-3): 51-60.
  • McCann, L., Kee, E., Adkins, J., Ernest, E. and Ernest, J. 2007. Effect of irrigation rate on yield of drip-irrigated seedless watermelon in a humid region. Scientia Horticulturae, 113: 155-161.
  • Mushtaq, S.and Moghaddasi, M. 2011. Evaluating the potentials of deficit irrigation as an adaptive response to climate change and environmental demand. Environmental Science and Policy, 14(8): 1139-1150.
  • Nuruddin, M.M., Madramootoo, C.A. and Dodds, G.T. 2003. Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience, 38(7): 1389-1393.
  • Oktay, A., ve Doran, İ. 2005. Türkiye’nin en iri karpuzu sürme çeşidinin meyve verim ve kalitesi üzerine azotlu gübrelemenin etkileri. Akdeniz Üniv. Ziraat Fak. Derg., 18(3): 305-311.
  • Orta, A.H., Erdem, Y. and Erdem, T. 2003. Crop water stress index for watermelon. Scientia Horticulturae, 98: 121-130.
  • Özmen, S., Kanber, R., Sarı, N. and Ünlü, M. 2015. The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon. Journal of Integrative Agriculture, 14(5): 966-976.
  • Page, A.L., Miller, R.H. and Keeny, D.R. 1982. Methods of soil analysis, Chemical and microbiological Properties. Publisher Madison, Wisconsin USA, 167-169. Part 3. Chemical methods. SSSA Book Ser. 5. SSSA, Madison, WI.
  • Pereira, L. S., Paredes, P., Сholpankulov, E. D., Inchenkova, O. P., Teodoro, P. R. and Horst, M. G. 2009. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia. Agricultural Water Management, 96(5): 723-735.
  • Pereira, L. D. S., Silva, E. M. D., Ferreira, J. O. P., Santos, V. L. G., Lima, C. J. G. D. S., and Silva, G. B. D. 2019. Watermelon yield and efficiency of use of water and nitrogen. Revista Caatinga, 32(3): 769-777.
  • Rouphael, Y., Carderelli, and M., Colla, G. 2008. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43(3): 730-736.
  • Sarwar, A. and Perry, C. 2002. Increasing water productivity through deficit irrigation: evidence from the Indus plains of Pakistan. Irrigation and Drainage, 51(1): 87-92.
  • Sezgin, F., Baş, T., Yoltaş, T. ve Baş, S. 2000. Farklı sulama aralığı ve ekim zamanı uygulamasının karpuzun su verim ilişkileri üzerine etkisi. 3. Sebze Tarımı Sempozyumu, Isparta, 443-447.
  • Şimşek, M., Kaçıra, M. and Tonkaz, T. 2004. The effects of different drip irrigation regimes on watermelon [Citrullus lanatus (Thunb.)] yield and yield components under semi-arid climatic conditions. Australian Journal of Agricultural Research, 55(11): 1149-1157.
  • TUIK 2024. Turkish Statistical Institute, Crop Production Statics. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Date of access: 11.08.2024).
  • Wang, Y., Xie, Z.K., Li, F. and Zhang, Z. 2004. The effect of supplemental irrigation on watermelon (Citrullus lanatus) production in gravel and sand mulched fields in the Loess Plateau of northwest China. Agricultural Water Management, 69: 29-41.
  • Wang, X. C., Liu, R., Luo, J. N., Zhu, P. F., Wang, Y. S., Pan, X. C. and Shu, L. Z. 2022. Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation. Agricultural Water Management, 271, 107785.
  • Yang, H., Liu, H., Zheng, J. and Huang, Q. 2018. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrigation Science, 36(1): 61-74.
  • Yetik, A.K. and Candoğan, B.N. 2024. Climate change impacts on precipitation dynamics in the Southern Marmara Region of Turkey. Bursa Uludag Üniv. Ziraat Fak. Derg., 38(1): 123-141. https://doi.org/10.20479/bursauludagziraat.1442146
  • Zokirov, K. 2023. Irrigation regimes for drip irrigation of watermelon in mulched and non-mulched fields. In E3S Web of Conferences (Vol. 389, p. 03068). EDP Sciences.

Damla yöntemiyle sulanan karpuzda farklı seviyelerdeki sulama ve azot etkileşimlerinin verim ve su verimliliği üzerindeki etkileri

Yıl 2025, Cilt: 39 Sayı: 1, 55 - 70, 18.06.2025
https://doi.org/10.20479/bursauludagziraat.1574975

Öz

Su ve azot (N), karpuz bitkisinin vejetatif ve generatif gelişimini etkileyen temel belirleyicilerdir. Bu çalışmada, farklı sulama ve azot seviyeleri altında Bursa ekolojik koşullarında ve kil bünyeli topraklarlarda yetiştirilen karpuz bitkisinin verim tepkisi ve su-verim ilişkilerinin belirlenmesi amaçlanmıştır. Dört sulama seviyesi (IR-100, IR-75, IR-50 ve IR-25) ve beş nitrogen oranı (N, kg ha-1) (N0, N75, N150, N225 ve N300) deneme konusu olarak ele alınmıştır. Araştırmada, bölünmüş parseller deneme deseni kullanılmıştır. Deneme konularına 214 ile 603 mm arasında sulama suyu uygulanırken bitki su tüketimi 288 ile 687 mm arasında değişiklik göstermiştir. En yüksek meyve verimi, IR-100 konusundan elde edilmiştir. Sulama seviyelerindeki azalmayla birlikte verim de azalmıştır. Meyve verimi, fruit weight and fruit size 225 kg ha-1 azot seviyesine kadar artış göstermiş daha yüksek seviyelerde azalmıştır. Meyve verimi ve verim bileşenleri, sulama ve azot interaksiyonundan önemli (p<0.01) düzeyde etkilenmiştir. En yüksek verim ve verim bileşenleri IR-100×N225 ve IR-100×N150 interaksiyonlarında, ikinci en yüksek verim IR75×N225 interaksiyonundan elde edilmiştir. Sulama miktarı ve verim ile N oranı ile verim arasında ikinci dereceden polinom biçiminde eşitlikler bulunmuştur. Sulama suyu kısıdı yüksek olan konularda ve 225 kg ha-1’e kadar artan azot oranlarında daha yüksek su üretkenliği saptanmıştır. Verim tepki etmeni, farklı azot dozları için 0.67 ile 1.08 arasında değişiklik göstermiştir. Sonuçta, makul seviyede yüksek karpuz verimi almak ve su verimliliğini iyileştirmek için IR-75 sulama konusu ve 225 kg ha-1 N oranı tavsiye edilebilir. Bu durumda, sulama miktarı, karpuz su tüketimi, birim alan başına verim ve su verimliliği sırasıyla 476 mm, 582 mm, 100.23 t ha-1 ve 17.22 kg m-3 olarak saptanmıştır.

Kaynakça

  • Anonymous. 2023. Karpuz Bonus F1. https://www.nevtohum.com.tr/Home/ProductDetail/34 (Date of access: 11.08.2024)
  • Çamoğlu, G., Aşık, Ş., Genç, L., ve Demirel, K. 2010. Damla sulama ile sulanan karpuzda su stresinin bitki su tüketimine, su kullanım randımanına, verime ve kalite parametrelerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 47(2): 135-144.
  • Çetin, Ö., Yıldırım, O., Uygan, D. and Boyacı, H. 2002. Irrigation scheduling of drip-irrigated tomatoes using class a pan evaporation, Turkish Journal of Agriculture and Forestry, 26: 171-178.
  • Daşgan, H. Y., Kılınç, M., Dere, S. ve İkiz, B. 2021. Çukurova ekolojik koşullarına uygun bazı karpuz çeşitlerinin kuraklığa tolerans seviyelerinin belirlenmesi. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 7(3): 388-403. https://doi.org/10.24180/ijaws.977431
  • Devi, P., Lukas, S. and Miles, C. 2020. Advances in watermelon grafting to ıncrease efficiency and automation. Horticulturae, 6(4):88. https://doi.org/10.3390/horticulturae6040088
  • Doorenbos, J. and Kassam, A. H. 1979. Yield response to water. Irrigation and drainage paper, 33, 257.
  • Duraktekin, G., Çolak, Y. B., Atağ, G., Özfidaner, M., Baydar, A. and Gönen, E. 2018. Effect of deficit irrigation on yield and water use efficiency of watermelon. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı: 218-222.
  • Duraktekin, G., Çolak, Y. B., Özfidaner, M., Baydar, A. ve Gönen, E. 2019. Karpuzda farklı sulama programlarının klorofil içeriğine etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 24: 179-187.
  • Erdem, Y. and Yüksel, A.N. 2003. Yield response of watermelon to irrigation shortage. Scientia Horticulturae, 98: 365- 383.
  • Erdem, Y., Erdem, T., Orta, A.H. and Okursoy, H. 2005. Irrigation scheduling for watermelon with crop water stress index (CWSI). Journal of Central European Agriculture, 4: 449-460.
  • FAO 2024. Food and Agriculture Organization of the United States, FAOSTAT. https://www.fao.org/faostat/en/#home (Date of access: 11.08.2024).
  • Ghawi, I. and Battikhi, A.M. 2008. Watermelon (Citrullus lanatus) production under mulch and trickle irrigation in the Jordan valley. Journal of Agronomy and Crop Science, 156 (4): 225-236.
  • Goreta, S., Perica, S., Dumicic, G., Bucan, L. and Zanic, K. 2005. Growth and yield of watermelon on polyethylene mulch with different spacings and nitrogen rates. HortScience, 40(2): 366-369.
  • James, L. G. 1988. Principles of farm irrigation systems design. John wiley and Sons, New York. Kirnak, H. and Dogan, E. 2009 Effect of seasonal water stress imposed on drip irrigated second crop watermelon grown in semi-arid climatic conditions. Irrigation Science, 27: 155-164.
  • Kuscu, H., Turhan, A., Ozmen, N., Aydinol, P. and Demir, A.O. 2014. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic. Environ. Biotechnol., 55:103-114. Kuşçu, H., Turhan, A., Özmen, N., Aydınol, P., Büyükcangaz, H. and Demir, A.O. 2015. Deficit irrigation effects on watermelon (Citrullus vulgaris) in a subhumid environment. Turkey. The Journal of Animal and Plant Sciences, 25(6): 1652-1659.
  • Leskovar, D. I., Bang, H., Kolenda, K., Franco, J. A. and Perkins-Veazie, P. 2002. August. Deficit irrigation influences yield and lycopene content of diploid and triploid watermelon. In XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture, 628: 147-151.
  • Lorite, I. J., Mateos, L., Orgaz, F. and Fereres, E. 2007. Assessing deficit irrigation strategies at the level of an irrigation district. Agricultural Water Management, 91(1-3): 51-60.
  • McCann, L., Kee, E., Adkins, J., Ernest, E. and Ernest, J. 2007. Effect of irrigation rate on yield of drip-irrigated seedless watermelon in a humid region. Scientia Horticulturae, 113: 155-161.
  • Mushtaq, S.and Moghaddasi, M. 2011. Evaluating the potentials of deficit irrigation as an adaptive response to climate change and environmental demand. Environmental Science and Policy, 14(8): 1139-1150.
  • Nuruddin, M.M., Madramootoo, C.A. and Dodds, G.T. 2003. Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience, 38(7): 1389-1393.
  • Oktay, A., ve Doran, İ. 2005. Türkiye’nin en iri karpuzu sürme çeşidinin meyve verim ve kalitesi üzerine azotlu gübrelemenin etkileri. Akdeniz Üniv. Ziraat Fak. Derg., 18(3): 305-311.
  • Orta, A.H., Erdem, Y. and Erdem, T. 2003. Crop water stress index for watermelon. Scientia Horticulturae, 98: 121-130.
  • Özmen, S., Kanber, R., Sarı, N. and Ünlü, M. 2015. The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon. Journal of Integrative Agriculture, 14(5): 966-976.
  • Page, A.L., Miller, R.H. and Keeny, D.R. 1982. Methods of soil analysis, Chemical and microbiological Properties. Publisher Madison, Wisconsin USA, 167-169. Part 3. Chemical methods. SSSA Book Ser. 5. SSSA, Madison, WI.
  • Pereira, L. S., Paredes, P., Сholpankulov, E. D., Inchenkova, O. P., Teodoro, P. R. and Horst, M. G. 2009. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia. Agricultural Water Management, 96(5): 723-735.
  • Pereira, L. D. S., Silva, E. M. D., Ferreira, J. O. P., Santos, V. L. G., Lima, C. J. G. D. S., and Silva, G. B. D. 2019. Watermelon yield and efficiency of use of water and nitrogen. Revista Caatinga, 32(3): 769-777.
  • Rouphael, Y., Carderelli, and M., Colla, G. 2008. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43(3): 730-736.
  • Sarwar, A. and Perry, C. 2002. Increasing water productivity through deficit irrigation: evidence from the Indus plains of Pakistan. Irrigation and Drainage, 51(1): 87-92.
  • Sezgin, F., Baş, T., Yoltaş, T. ve Baş, S. 2000. Farklı sulama aralığı ve ekim zamanı uygulamasının karpuzun su verim ilişkileri üzerine etkisi. 3. Sebze Tarımı Sempozyumu, Isparta, 443-447.
  • Şimşek, M., Kaçıra, M. and Tonkaz, T. 2004. The effects of different drip irrigation regimes on watermelon [Citrullus lanatus (Thunb.)] yield and yield components under semi-arid climatic conditions. Australian Journal of Agricultural Research, 55(11): 1149-1157.
  • TUIK 2024. Turkish Statistical Institute, Crop Production Statics. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Date of access: 11.08.2024).
  • Wang, Y., Xie, Z.K., Li, F. and Zhang, Z. 2004. The effect of supplemental irrigation on watermelon (Citrullus lanatus) production in gravel and sand mulched fields in the Loess Plateau of northwest China. Agricultural Water Management, 69: 29-41.
  • Wang, X. C., Liu, R., Luo, J. N., Zhu, P. F., Wang, Y. S., Pan, X. C. and Shu, L. Z. 2022. Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation. Agricultural Water Management, 271, 107785.
  • Yang, H., Liu, H., Zheng, J. and Huang, Q. 2018. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrigation Science, 36(1): 61-74.
  • Yetik, A.K. and Candoğan, B.N. 2024. Climate change impacts on precipitation dynamics in the Southern Marmara Region of Turkey. Bursa Uludag Üniv. Ziraat Fak. Derg., 38(1): 123-141. https://doi.org/10.20479/bursauludagziraat.1442146
  • Zokirov, K. 2023. Irrigation regimes for drip irrigation of watermelon in mulched and non-mulched fields. In E3S Web of Conferences (Vol. 389, p. 03068). EDP Sciences.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyosistem, Sulama Sistemleri
Bölüm Araştırma Makaleleri
Yazarlar

Hind Arar 0009-0009-4346-3631

Hayrettin Kuşçu 0000-0001-9600-7685

Yayımlanma Tarihi 18 Haziran 2025
Gönderilme Tarihi 30 Ekim 2024
Kabul Tarihi 15 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 1

Kaynak Göster

APA Arar, H., & Kuşçu, H. (2025). Effects of different levels of irrigation and nitrogen interactions on yield and water productivity in watermelon irrigated by drip method. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 39(1), 55-70. https://doi.org/10.20479/bursauludagziraat.1574975

 25056 

Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.