Araştırma Makalesi
BibTex RIS Kaynak Göster

The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence

Yıl 2024, , 168 - 177, 29.09.2024
https://doi.org/10.33434/cams.1524027

Öz

In this study, we investigate a generalization of the modified Pell sequence, which is called $(s,t)$-modified Pell sequence. By considering this sequence, we define the matrix sequence whose elements are $(s,t)$-modified Pell numbers. Furthermore, we define various binomial transforms for modified $ (s,t)$-Pell matrix sequence. Finally, we give some relationships for $(s,t)$-modified Pell matrix sequences such as Binet formulas, the generating functions, and some sum formulas.

Kaynakça

  • [1] S. Falcon, A. Plaza, Binomial transforms of the k-Fibonacci sequence, Int. J. Nonlinear Sci. Numer. Simul., 10(11-12) (2009), 1527-1538.
  • [2] N. Yilmaz, N. Taskara, Binomial sransforms of the Padovan and Perrin matrix sequences, Abstr. Appl. Anal., 2013 (2013), Article ID 497418, 7 pages.
  • [3] P. Bhadouria, D. Jhala, B. Singh, Binomial transforms of the k-Lucas sequence, J. Math. Comput. Sci., 8(1) (2014), 81-92.
  • [4] S. Uygun, A. Erdo˘gdu, Binominal transforms of k-Jacobsthal sequences, J. Math. Comput. Sci., 7(6) (2017), 1100-1114.
  • [5] C. Kızılateş, N. Tuglu, B. Çekim, Binomial transform of quadrapell sequences and quadrapell matrix sequences, J. Sci. Arts, 1(38) (2017), 69-80.
  • [6] S. Uygun, The binomial transforms of the generalized (s; t) -Jacobsthal matrix sequence, Int. J. Adv. Appl. Math. Mech., 6(3) (2019), 14-20.
  • [7] Y. Kwon, Binomial transforms of the modified k-Fibonacci-like sequence, Int. J. Math. Comput. Sci., 14(1) (2019), 47-59.
  • [8] S. Uygun, Binominal transforms of k-Jacobsthal Lucas sequences, Rom. J. Math. Comput. Sci., 2(10) (2020), 43-54.
  • [9] N. Yılmaz, Binomial transforms of the Balancing and Lucas-Balancingpolynomials, Contributions Discrete Math., 15(3) (2020), 133-144.
  • [10] Y. Soykan, Binomial transform of the generalized tribonacci sequence, Asian Res. J. Math., 16(10) (2020), 26-55.
  • [11] Y. Soykan, Binomial transform of the generalized third orde Pell sequence, Commun. Math. Appl., 12(1) (2021), 71-94.
  • [12] Y. Soykan, Binomial transform of the generalized fourth order Pell sequence, Arch. Current Res. Internat., 21(6) (2021),9-31.
  • [13] Y. Soykan, On binomial transform of the generalized fifth order Pell Sequence, Asian J. Adv. Res. Rep., 5(9) (2021), 18-29.
  • [14] Y. Soykan, Notes on binomial transform of the generalized Narayana sequence, Earthline J. Math. Sci., 7(1) (2021), 77-111.
  • [15] Y. Soykan, Binomial transform of the generalized pentanacci sequence, Asian Res. J. Current Sci., 3(1) (2021), 209-231.
  • [16] Y. Soykan, E. Taşdemir, N. Ozmen, On binomial transform of the generalized Jacobsthal-Padovan numbers, Int. J. Nonlinear Anal. Appl., 14(1) (2023), 643-666.
  • [17] K. N. Boyadzhiev, Notes on the Binomial Transform: Theory and Table with Appendix on Stirling Transform, World Scientific Publishing, Singapore, 2018.
  • [18] S. K. Ghosal, J.K. Mandal, Binomial transform based fragile watermarking for image authentication, J. Inf. Secur. Appl., 19(4-5) (2014), 272-281.
  • [19] A. A. Wani, P. Catarino, S. Halici, On a study of generalized Pell sequence and its matrix sequence, Punjab Univ. J. Math., 51(9) (2020), 17-39.
  • [20] A. Özkoç Öztuürk, E. Gündüz, Binomial transform for quadra Fibona-Pell sequence and Quadra Fibona-Pell quaternion, Univ. J. Math. Appl., 5(4) (2022), 145-155.
  • [21] A. F. Horadam, Pell identities, Fibonacci Quart., 9(3) (1971), 245-252.
  • [22] N. Karaaslan, T. Yağmur, (s; t)-Modified Pell sequence and its matrix representation, Erzincan Univ. J. Sci. Tech., 12(2) (2019), 863-873.

The Properties of Binomial Transforms for Modified $(s,t)$-Pell Matrix Sequence

Yıl 2024, , 168 - 177, 29.09.2024
https://doi.org/10.33434/cams.1524027

Öz

In this study, we investigate a generalization of the modified Pell sequence, which is called $(s,t)$-modified Pell sequence. By considering this sequence, we define the matrix sequence whose elements are $(s,t)$-modified Pell numbers. Furthermore, we define various binomial transforms for modified $ (s,t)$-Pell matrix sequence. Finally, we give some relationships for $(s,t)$-modified Pell matrix sequences such as Binet formulas, the generating functions, and some sum formulas.

Kaynakça

  • [1] S. Falcon, A. Plaza, Binomial transforms of the k-Fibonacci sequence, Int. J. Nonlinear Sci. Numer. Simul., 10(11-12) (2009), 1527-1538.
  • [2] N. Yilmaz, N. Taskara, Binomial sransforms of the Padovan and Perrin matrix sequences, Abstr. Appl. Anal., 2013 (2013), Article ID 497418, 7 pages.
  • [3] P. Bhadouria, D. Jhala, B. Singh, Binomial transforms of the k-Lucas sequence, J. Math. Comput. Sci., 8(1) (2014), 81-92.
  • [4] S. Uygun, A. Erdo˘gdu, Binominal transforms of k-Jacobsthal sequences, J. Math. Comput. Sci., 7(6) (2017), 1100-1114.
  • [5] C. Kızılateş, N. Tuglu, B. Çekim, Binomial transform of quadrapell sequences and quadrapell matrix sequences, J. Sci. Arts, 1(38) (2017), 69-80.
  • [6] S. Uygun, The binomial transforms of the generalized (s; t) -Jacobsthal matrix sequence, Int. J. Adv. Appl. Math. Mech., 6(3) (2019), 14-20.
  • [7] Y. Kwon, Binomial transforms of the modified k-Fibonacci-like sequence, Int. J. Math. Comput. Sci., 14(1) (2019), 47-59.
  • [8] S. Uygun, Binominal transforms of k-Jacobsthal Lucas sequences, Rom. J. Math. Comput. Sci., 2(10) (2020), 43-54.
  • [9] N. Yılmaz, Binomial transforms of the Balancing and Lucas-Balancingpolynomials, Contributions Discrete Math., 15(3) (2020), 133-144.
  • [10] Y. Soykan, Binomial transform of the generalized tribonacci sequence, Asian Res. J. Math., 16(10) (2020), 26-55.
  • [11] Y. Soykan, Binomial transform of the generalized third orde Pell sequence, Commun. Math. Appl., 12(1) (2021), 71-94.
  • [12] Y. Soykan, Binomial transform of the generalized fourth order Pell sequence, Arch. Current Res. Internat., 21(6) (2021),9-31.
  • [13] Y. Soykan, On binomial transform of the generalized fifth order Pell Sequence, Asian J. Adv. Res. Rep., 5(9) (2021), 18-29.
  • [14] Y. Soykan, Notes on binomial transform of the generalized Narayana sequence, Earthline J. Math. Sci., 7(1) (2021), 77-111.
  • [15] Y. Soykan, Binomial transform of the generalized pentanacci sequence, Asian Res. J. Current Sci., 3(1) (2021), 209-231.
  • [16] Y. Soykan, E. Taşdemir, N. Ozmen, On binomial transform of the generalized Jacobsthal-Padovan numbers, Int. J. Nonlinear Anal. Appl., 14(1) (2023), 643-666.
  • [17] K. N. Boyadzhiev, Notes on the Binomial Transform: Theory and Table with Appendix on Stirling Transform, World Scientific Publishing, Singapore, 2018.
  • [18] S. K. Ghosal, J.K. Mandal, Binomial transform based fragile watermarking for image authentication, J. Inf. Secur. Appl., 19(4-5) (2014), 272-281.
  • [19] A. A. Wani, P. Catarino, S. Halici, On a study of generalized Pell sequence and its matrix sequence, Punjab Univ. J. Math., 51(9) (2020), 17-39.
  • [20] A. Özkoç Öztuürk, E. Gündüz, Binomial transform for quadra Fibona-Pell sequence and Quadra Fibona-Pell quaternion, Univ. J. Math. Appl., 5(4) (2022), 145-155.
  • [21] A. F. Horadam, Pell identities, Fibonacci Quart., 9(3) (1971), 245-252.
  • [22] N. Karaaslan, T. Yağmur, (s; t)-Modified Pell sequence and its matrix representation, Erzincan Univ. J. Sci. Tech., 12(2) (2019), 863-873.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Şükran Uygun 0000-0002-7878-2175

Ozan Haklıdır 0009-0005-3449-9342

Erken Görünüm Tarihi 29 Eylül 2024
Yayımlanma Tarihi 29 Eylül 2024
Gönderilme Tarihi 29 Temmuz 2024
Kabul Tarihi 26 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Uygun, Ş., & Haklıdır, O. (2024). The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence. Communications in Advanced Mathematical Sciences, 7(3), 168-177. https://doi.org/10.33434/cams.1524027
AMA Uygun Ş, Haklıdır O. The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence. Communications in Advanced Mathematical Sciences. Eylül 2024;7(3):168-177. doi:10.33434/cams.1524027
Chicago Uygun, Şükran, ve Ozan Haklıdır. “The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence”. Communications in Advanced Mathematical Sciences 7, sy. 3 (Eylül 2024): 168-77. https://doi.org/10.33434/cams.1524027.
EndNote Uygun Ş, Haklıdır O (01 Eylül 2024) The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence. Communications in Advanced Mathematical Sciences 7 3 168–177.
IEEE Ş. Uygun ve O. Haklıdır, “The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence”, Communications in Advanced Mathematical Sciences, c. 7, sy. 3, ss. 168–177, 2024, doi: 10.33434/cams.1524027.
ISNAD Uygun, Şükran - Haklıdır, Ozan. “The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence”. Communications in Advanced Mathematical Sciences 7/3 (Eylül 2024), 168-177. https://doi.org/10.33434/cams.1524027.
JAMA Uygun Ş, Haklıdır O. The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence. Communications in Advanced Mathematical Sciences. 2024;7:168–177.
MLA Uygun, Şükran ve Ozan Haklıdır. “The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence”. Communications in Advanced Mathematical Sciences, c. 7, sy. 3, 2024, ss. 168-77, doi:10.33434/cams.1524027.
Vancouver Uygun Ş, Haklıdır O. The Properties of Binomial Transforms for Modified (s,t)-Pell Matrix Sequence. Communications in Advanced Mathematical Sciences. 2024;7(3):168-77.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..