Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 101 - 108, 30.06.2020
https://doi.org/10.33434/cams.712571

Öz

Kaynakça

  • [1] A. H. Nayfeh, Perturbation Method, John Wiley & Sons, New York, 1973.
  • [2] A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, John Wiley & Sons, New York, 1979.
  • [3] P. A. Lagerstrom, Matched asymptotic expansions: ideas and techniques, Applied Mathematical sciences, Springer-verlag, New York, 76, 1988.
  • [4] N. Popovic, P. Szmolyan, A geometric analysis of the Lagerstrom model problem, J. Diff. Eqs., 199(2) (2004), 290-325.
  • [5] N. Popovic, P. Szmolyan, Rigorous asymptotic expansions for Lagerstrom’s model equation—a geometric approach, Nonlinear Analysis, 59 (2004), 531–565.
  • [6] S. Kaplun, P.A. Lagerstrom, Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mech., 6 (1957), 585-593.
  • [7] N. Fenichel, Geometric Singular Perturbation Theory for Ordinary Differential Equations, J. Diff. Eqs., 31 (1979), 53-98.
  • [8] K. K. Alymkulov, D. A. Tursunov, Perturbed Differential Equations with Singular Points, Perturbation Theory, Dimo I, Uzunov, Intech Open, London, UK, 2017.
  • [9] P. A. Lagerstrom, R. G. Casten, Basic concepts underlying singular perturbation techniques, SIAM rev., 14(1) (1972), 63-120.
  • [10] P. A. Lagerstrom, A course on perturbation methods, Lecture Notes by M. Mortell, National University of Ireland, Cork, 1966.
  • [11] J. He, Homotopy perturbation method: A new nonlinear analytical technique, Applied Mathematics and Computational, 135 (2003), 73-79.
  • [12] J. He, Variational iteration method-Some recent results and new interpretations, Journal of Computational and applied Mathematics, 207 ( 2007), 3-17.

An Approximate Technique for Solving Lagerstrom Equation

Yıl 2020, , 101 - 108, 30.06.2020
https://doi.org/10.33434/cams.712571

Öz

The Lagerstrom’s equation has been solved by an approximate technique combining both homotopy perturbation and variational iteration method. By this technique the solution of Lagerstrom’s equation can be determined for viscous flow past a solid at low Reynolds number where a significance mater is the occurrence of logarithmic term. In this technique ExpIntegralEi function has been used for simplifying the calculation. The results have been calculated by this technique shows a good agreement with those obtained by numerical method.

Kaynakça

  • [1] A. H. Nayfeh, Perturbation Method, John Wiley & Sons, New York, 1973.
  • [2] A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, John Wiley & Sons, New York, 1979.
  • [3] P. A. Lagerstrom, Matched asymptotic expansions: ideas and techniques, Applied Mathematical sciences, Springer-verlag, New York, 76, 1988.
  • [4] N. Popovic, P. Szmolyan, A geometric analysis of the Lagerstrom model problem, J. Diff. Eqs., 199(2) (2004), 290-325.
  • [5] N. Popovic, P. Szmolyan, Rigorous asymptotic expansions for Lagerstrom’s model equation—a geometric approach, Nonlinear Analysis, 59 (2004), 531–565.
  • [6] S. Kaplun, P.A. Lagerstrom, Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mech., 6 (1957), 585-593.
  • [7] N. Fenichel, Geometric Singular Perturbation Theory for Ordinary Differential Equations, J. Diff. Eqs., 31 (1979), 53-98.
  • [8] K. K. Alymkulov, D. A. Tursunov, Perturbed Differential Equations with Singular Points, Perturbation Theory, Dimo I, Uzunov, Intech Open, London, UK, 2017.
  • [9] P. A. Lagerstrom, R. G. Casten, Basic concepts underlying singular perturbation techniques, SIAM rev., 14(1) (1972), 63-120.
  • [10] P. A. Lagerstrom, A course on perturbation methods, Lecture Notes by M. Mortell, National University of Ireland, Cork, 1966.
  • [11] J. He, Homotopy perturbation method: A new nonlinear analytical technique, Applied Mathematics and Computational, 135 (2003), 73-79.
  • [12] J. He, Variational iteration method-Some recent results and new interpretations, Journal of Computational and applied Mathematics, 207 ( 2007), 3-17.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Md. Zahangir Alam 0000-0003-0128-6920

Md. Shamsul Alam 0000-0002-6325-6797

Md. Nazmul Sharif 0000-0003-4234-6651

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 1 Nisan 2020
Kabul Tarihi 24 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Alam, M. Z., Alam, M. S., & Sharif, M. N. (2020). An Approximate Technique for Solving Lagerstrom Equation. Communications in Advanced Mathematical Sciences, 3(2), 101-108. https://doi.org/10.33434/cams.712571
AMA Alam MZ, Alam MS, Sharif MN. An Approximate Technique for Solving Lagerstrom Equation. Communications in Advanced Mathematical Sciences. Haziran 2020;3(2):101-108. doi:10.33434/cams.712571
Chicago Alam, Md. Zahangir, Md. Shamsul Alam, ve Md. Nazmul Sharif. “An Approximate Technique for Solving Lagerstrom Equation”. Communications in Advanced Mathematical Sciences 3, sy. 2 (Haziran 2020): 101-8. https://doi.org/10.33434/cams.712571.
EndNote Alam MZ, Alam MS, Sharif MN (01 Haziran 2020) An Approximate Technique for Solving Lagerstrom Equation. Communications in Advanced Mathematical Sciences 3 2 101–108.
IEEE M. Z. Alam, M. S. Alam, ve M. N. Sharif, “An Approximate Technique for Solving Lagerstrom Equation”, Communications in Advanced Mathematical Sciences, c. 3, sy. 2, ss. 101–108, 2020, doi: 10.33434/cams.712571.
ISNAD Alam, Md. Zahangir vd. “An Approximate Technique for Solving Lagerstrom Equation”. Communications in Advanced Mathematical Sciences 3/2 (Haziran 2020), 101-108. https://doi.org/10.33434/cams.712571.
JAMA Alam MZ, Alam MS, Sharif MN. An Approximate Technique for Solving Lagerstrom Equation. Communications in Advanced Mathematical Sciences. 2020;3:101–108.
MLA Alam, Md. Zahangir vd. “An Approximate Technique for Solving Lagerstrom Equation”. Communications in Advanced Mathematical Sciences, c. 3, sy. 2, 2020, ss. 101-8, doi:10.33434/cams.712571.
Vancouver Alam MZ, Alam MS, Sharif MN. An Approximate Technique for Solving Lagerstrom Equation. Communications in Advanced Mathematical Sciences. 2020;3(2):101-8.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..