This paper examines the existence, uniqueness, and Ulam-Hyers stability of solutions to nonlinear $\mho$-fractional differential equations with boundary conditions with a $\mho$-Caputo fractional derivative. The acquired results for the suggested problem are validated using a novel technique and minimum assumptions about the function $f$. The analysis reduces the problem to a similar integral equation and uses Banach and Sadovskii fixed point theorems to reach the desired findings. Finally, the inquiry is demonstrated by illustrative example to validate the theoretical findings.
Banach Contraction mapping Caputo fractional derivative $\mho$-Caputo fractional derivative Fixed point theorem Fractional differential equations Stability analysis Ulam-Hyers stability
Birincil Dil | İngilizce |
---|---|
Konular | Adi Diferansiyel Denklemler, Fark Denklemleri ve Dinamik Sistemler, Temel Matematik (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 12 Aralık 2024 |
Yayımlanma Tarihi | 31 Aralık 2024 |
Gönderilme Tarihi | 26 Eylül 2024 |
Kabul Tarihi | 27 Kasım 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 7 Sayı: 4 |
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..