In this paper, by using some classical Mulholland type inequality, Berezin symbols and reproducing kernel technique, we prove the power inequalities for the Berezin number $ber(A)$ for some self-adjoint operators $A$ on ${H}(\Omega )$. Namely, some Mulholland type inequality for reproducing kernel Hilbert space operators are established. By applying this inequality, we prove that $(ber(A))^{n}\leq C_{1}ber(A^{n})$ for any positive operator $A$ on ${H}(\Omega )$.
Mulholland type inequality Berezin number positive operator reproducing kernel Hilbert space Berezin symbol
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Research Article |
Yazarlar | |
Yayımlanma Tarihi | 30 Mart 2022 |
Gönderilme Tarihi | 24 Nisan 2021 |
Kabul Tarihi | 26 Ağustos 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 71 Sayı: 1 |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
This work is licensed under a Creative Commons Attribution 4.0 International License.