In this article, we consider the definition of the Fibonacci polynomial sequence with the second-order linear recurrence relation, where coefficients and initial conditions depend on the variable $t$. And then, we introduce the functional binomial matrix depending on the coefficients of the second-order linear recurrence relation. In the following, we study the spectral properties of the functional binomial matrix using the Fibonacci polynomial sequence and we obtain a diagonal decomposition for it using the Vandermunde matrix. Finally, by applying some linear algebra tools we obtain a number of combinatorial identities involving the Fibonacci polynomial sequence.
Functional Fibonacci matrix generalized Fibonacci sequence generalized Fibonacci polynomial characteristic polynomial Pascal matrix functional binomial matrix
Birincil Dil | İngilizce |
---|---|
Konular | Kombinatorik ve Ayrık Matematik (Fiziksel Kombinatorik Hariç) |
Bölüm | Research Article |
Yazarlar | |
Yayımlanma Tarihi | 27 Eylül 2024 |
Gönderilme Tarihi | 15 Eylül 2023 |
Kabul Tarihi | 18 Nisan 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 73 Sayı: 3 |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.
This work is licensed under a Creative Commons Attribution 4.0 International License.