Araştırma Makalesi
BibTex RIS Kaynak Göster

The Pomological and Morphological Characterization of Different Foreign Almond Cultivars and the Local Type Grown under Ecological Conditions of Çanakkale

Yıl 2025, Cilt: 13 Sayı: 1, 79 - 88, 07.07.2025
https://doi.org/10.33202/comuagri.1609500

Öz

The present study aims to investigate the pomological and morphological characteristics of different almond [Prunus dulcis (Miller) D.A. Webb] cultivars and genotypes cultivated in Çanakkale ecological conditions. Within the scope of the study, Ferragnes, Ferraduel, Texas, Laurenne and Nonpareil were used as almond cultivars, while Alçıtepe genotype was selected as genotype. Two-year data were used in the study. In 2023 and 2024, fruit characteristics of the cultivars and genotypes harvested in August-September, shelled and ushelled measurements, leaf and petiole characteristics and SPAD values indicating photosynthetic capacity were compared to obtain in-depth information about the production potential and quality parameters of different cultivars and genotypes. With regard to shelled and unshelled characteristics, the Ferraduel cultivar exhibited the longest shell width (23.32 mm), the Nonpareil cultivar demonstrated the longest shell length (38.99 mm), while the Ferragnes and Texas cultivars exhibited shorter shell characteristics. The highest unshelled fruit weight was found in cultivar Laurenne (2.46 g), while genotype Alçıtepe had the lowest unshelled weight (1.30 g). Regarding the unshelled yield ratio, the cultivars Texas (40.31%) and Ferragnes (33.23%) had the highest yield ratios. These results show that there is a large variation in shelled yield ratio between cultivars. When leaf and petiole characteristics were analysed, Ferraduel cultivar had the largest leaf (32.80 mm), while Alçıtepe genotype and Texas cultivar had smaller leaves. In terms of SPAD value, Laurenne (42.16) and Alçıtepe (41.60) had the highest values, while Texas (37.38) and Ferragnes (38.56) had lower SPAD values. This shows that there are significant differences in the photosynthetic capacity of different cultivars and this is an important factor in terms of productivity. In conclusion, this study revealed significant differences in pomological and morphological characteristics of some important almond cultivars and genotypes and highlighted that some cultivars provide larger fruits and higher yields. It is predicted that the results obtained will be an important guide for the selection of productive cultivars in almond production and the improvement of production techniques for almond genotypes.

Destekleyen Kurum

Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit

Proje Numarası

FDK-2024-4787

Teşekkür

This research article was prepared with the findings obtained from a part of the doctoral thesis titled “Morphological and Molecular Characterization with Determination of Aroma Profiles of Some Local Genotypes in Prunus Genus”. This work was supported by Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit, Project number: FDK-2024-4787.

Kaynakça

  • Agegnehu, G., Ghizaw, A., Sinebo, W., 2006. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur. J. Agron. 25: 202-207.
  • Aktas, T., Polat, R., Atay, U., 2007. Comparison of mechanical properties of some selected almond cultivars with hard and soft shell under compression loading. Journal of Food Process Engineering. 30(6): 773-789.
  • April, V. P., 2024. Health benefits and uses of almond oil. Benefits.
  • Calle, A., Aparicio-Durán, L., Batlle, I., Eduardo, I., Miarnau, X., 2024. Review of agronomic and kernel quality traits of 273 almond cultivars. Genetic Resources and Crop Evolution. 1-46.
  • Chukwuma, I. F., Ossai, E. C., Nworah, F. N., Apeh, V. O., Abiaziem, E. O., Iheagwam, F. N., Korzeniowska, M., 2024. Changes in nutritional, health benefits, and pharmaceutical potential of raw and roasted tropical almond (Terminalia catappa Linn.) nuts from Nigeria. Plos one. 19(1): e0287840.
  • Du, F., Tan, T., 2021. Recent studies in mechanical properties of selected hard-shelled seeds: A review. JOM. 73(6): 1723-1735.
  • Egea, G., González-Real, M. M., Baille, A., Nortes, P. A., Conesa, M. R., Ruiz-Salleres, I., 2012. Effects of water stress on irradiance acclimation of leaf traits in almond trees. Tree Physiology. 32(4): 450-463.
  • El Bernoussi, S., Boujemaa, I., El Guezzane, C., Bou-Ouzoukni, Y., Nounah, I., Bouyahya, A., Tabyaoui, M., 2024. Comparative analysis of nutritional value and antioxidant activity in sweet and bitter almonds. LWT. 206: 116587.
  • FAO, 2023. Food and Agriculture Organization, Crop Statistics. http://fao.org/faostat/en/#data/QC, Erişim Tarihi: 28.12.2024.
  • Gohari, S., Imani, A., Talaei, A. R., Abdossi, V., Asghari, M. R., 2023. Physiological responses of almond genotypes to drought stress. Russian Journal of Plant Physiology. 70(6): 141.
  • Gouta, H., Laaribi, I., Ksia, E., Juan, T., Estopañan, G., Martínez-Gómez, P., 2021. Physical properties, biochemical and antioxidant contents of new promising Tunisian almond genotypes: traits stability, quality aspects and post-harvest attributes. Journal of Food Composition and Analysis. 98: 103840.
  • Khadivi, A., Goodarzi, S., Sarkhosh, A., 2019. Identification of late-blooming almond (Prunus dulcis L.) genotypes with high kernel quality. Euphytica. 215: 1-12.
  • Khadivi-Khub, A., Etemadi-Khah, A., 2015. Phenotypic diversity and relationships between morphological traits in selected almond (Prunus amygdalus) germplasm. Agroforestry Systems. 89: 205-216.
  • Khojand, S., Zeinalabedini, M., Azizinezhad, R., Imani, A., Ghaffari, M. R., 2024. Identification of the core collection in Iranian almond germplasm: utilizing morphological traits and evaluating biochemical properties of the collection. Genetic Resources and Crop Evolution. 71(6): 3037-3059.
  • Ladizinsky, G., 1999. On the origin of almond. Genetic Resources and Crop Evolution. 46: 143-147.
  • Ledbetter, C. A., 2008. Shell cracking strength in almond (Prunus dulcis [Mill.] DA Webb.) and its implication in uses as a value-added product. Bioresource Technology. 99(13): 5567-5573.
  • Li, X., Liu, Y., Hao, J., Wang, W., 2018. Study of almond shell characteristics. Materials. 11(9): 1782.
  • Lipan, L., Miarnau, X., Calle, A., Carbonell, Á., Sendra, E., Batlle, I., Romero, A., 2024. Factors influencing the almond kernel breakage during shelling processes and the impact of water conditioning on kernel color and free acidity. LWT. 117250.
  • Mitra S.K., 2020. Temperate Fruits: Nuts and Berries. DAYA Publishing House. ISBN:9390371228, Vol. II.
  • Moldero, D., López-Bernal, Á., Testi, L., Lorite, I. J., Fereres, E., Orgaz, F., 2021. Long-term almond yield response to deficit irrigation. Irrigation Science. 39: 409-420.
  • Nortes, P. A., Gonzalez-Real, M. M., Egea, G., Baille, A., 2009. Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond trees. Tree Physiology. 29(3): 375-388.
  • Prgomet, I., Pascual-Seva, N., Morais, M. C., Aires, A., Barreales, D., Ribeiro, A. C., Gonçalves, B., 2020. Physiological and biochemical performance of almond trees under deficit irrigation. Scientia Horticulturae. 261: 108990.
  • Rahemi, A., Gradziel, T. M., 2024. Characteristics of almond species. In the almonds and related species: Identification, characteristics and uses (pp. 49-113). Cham: Springer International Publishing.
  • Ranjbar, A., Imani, A., Piri, S., Abdoosi, V., 2021. Drought effects on photosynthetic parameters, gas exchanges and water use efficiency in almond cultivars on different rootstocks. Plant Physiology Reports. 26: 95-108.
  • Reisman, E. D., 2020. Orchard Entanglements: political ecologies of almond production in California and Spain. University of California, Santa Cruz.
  • Sideli, G. M., Mather, D., Wirthensohn, M., Dicenta, F., Goonetilleke, S. N., Martínez-García, P. J., Gradziel, T. M., 2023. Genome-wide association analysis and validation with KASP markers for nut and shell traits in almond (Prunus dulcis [Mill.] DA Webb). Tree Genetics & Genomes. 19(2): 13.
  • Singar, S., Kadyan, S., Patoine, C., Park, G., Arjmandi, B., Nagpal, R., 2024. The effects of almond consumption on cardiovascular health and gut microbiome: A comprehensive review. Nutrients. 16(12): 1964.
  • Uzun, A., Dirim, E., Yaman, M., Ünsal, H. T., 2024. Morphological and molecular evaluation of diversity in individuals obtained by intra-species hybridization in almond (Prunus dulcis L.). Genetic Resources and Crop Evolution. 71(3): 1291-1300.
  • Wang, W., Wang, W., Wang, Y., Yang, R., Tang, J., Zhao, Y., 2020. Hot-air assisted continuous radio frequency heating for improving drying efficiency and retaining quality of inshell hazelnuts (Corylus avellana L. cv. Barcelona). Journal of Food Engineering. 279: 109956.

Farklı Badem [Prunus dulcis (Miller) D.A. Webb] Çeşitlerinin ve Genotiplerinin Morfolojik ve Pomolojik Karakterizasyonu

Yıl 2025, Cilt: 13 Sayı: 1, 79 - 88, 07.07.2025
https://doi.org/10.33202/comuagri.1609500

Öz

Bu çalışma, Çanakkale ekolojik koşullarında yetiştirilen farklı badem [Prunus dulcis (Miller) D.A. Webb] çeşitlerinin ve genotiplerinin pomolojik ve morfolojik özelliklerini incelemeyi amaçlamaktadır. Çalışma kapsamında Ferragnes, Ferraduel, Texas, Laurenne ve Nonpareil badem çeşitleri ile Alçıtepe genotipi kullanılmıştır. Çalışmada iki yıllık veriler elde edilerek, 2023 ve 2024 yıllarında, Ağustos-Eylül döneminde hasat edilen çeşitlerin ve genotiplerin meyve özellikleri, kabuklu ve kabuksuz ölçümleri, yaprak ve petiol özellikleri ile fotosentetik kapasiteyi belirten SPAD değerleri karşılaştırılarak, farklı çeşitlerin ve genotiplerin üretim potansiyeli ve kalite parametreleri hakkında derinlemesine bilgi elde edilmiştir. Kabuklu ve kabuksuz özellikler açısından Ferraduel çeşidi en geniş kabuk genişliğine (23,32 mm) sahipken, Nonpareil çeşidi en uzun kabuk uzunluğunu (38,99 mm) göstermiştir. Buna ek olarak, Ferragnes ve Texas çeşitleri daha kısa kabuk özelliklere sahip olduğu belirlenmiştir. En yüksek kabuksuz meyve ağırlığı Laurenne çeşidinde (2,46 g) bulunurken, Alçıtepe genotipinin en düşük kabuksuz ağırlığa (1,30 g) sahip olduğu tespit edilmiştir. Kabuksuz verim oranı açısından Texas (40,31%) ve Ferragnes (33,23%) çeşitleri en yüksek verim oranlarına sahip olduğu belirlenmiştir. Bu sonuçlar, çeşitler arasında kabuksuz verim oranında büyük bir varyasyon olduğunu göstermektedir. Yaprak ve petiol özellikleri incelendiğinde, Ferraduel çeşidi en büyük yaprağa (32,80 mm) sahipken, Alçıtepe genotipi ve Texas çeşidi daha küçük yapraklara sahip olduğu gözlenmiştir. SPAD değeri açısından Laurenne (42,16) ve Alçıtepe (41,60) en yüksek değerlere sahipken, Texas (37,38) ve Ferragnes (38,56) daha düşük SPAD değerlerine sahip olduğu tespit edilmiştir. Bu durum, farklı çeşitlerin fotosentetik kapasitesinde önemli farklılıklar olduğunu ve bunun üretkenlik açısından önemli bir faktör olduğunu göstermektedir. Sonuç olarak, bu çalışma, bazı önemli badem çeşitleri ve genotiplerinin pomolojik ve morfolojik özelliklerinde önemli farklılıklar ortaya koymuş ve bazı çeşitlerin daha büyük meyveler ve daha yüksek verimler sağladığını vurgulamıştır. Elde edilen sonuçların, badem üretiminde verimli çeşitlerin seçimi ve badem genotiplerinin üretim tekniklerinin geliştirilmesi için önemli bir rehber olacağı öngörülmektedir.

Proje Numarası

FDK-2024-4787

Kaynakça

  • Agegnehu, G., Ghizaw, A., Sinebo, W., 2006. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur. J. Agron. 25: 202-207.
  • Aktas, T., Polat, R., Atay, U., 2007. Comparison of mechanical properties of some selected almond cultivars with hard and soft shell under compression loading. Journal of Food Process Engineering. 30(6): 773-789.
  • April, V. P., 2024. Health benefits and uses of almond oil. Benefits.
  • Calle, A., Aparicio-Durán, L., Batlle, I., Eduardo, I., Miarnau, X., 2024. Review of agronomic and kernel quality traits of 273 almond cultivars. Genetic Resources and Crop Evolution. 1-46.
  • Chukwuma, I. F., Ossai, E. C., Nworah, F. N., Apeh, V. O., Abiaziem, E. O., Iheagwam, F. N., Korzeniowska, M., 2024. Changes in nutritional, health benefits, and pharmaceutical potential of raw and roasted tropical almond (Terminalia catappa Linn.) nuts from Nigeria. Plos one. 19(1): e0287840.
  • Du, F., Tan, T., 2021. Recent studies in mechanical properties of selected hard-shelled seeds: A review. JOM. 73(6): 1723-1735.
  • Egea, G., González-Real, M. M., Baille, A., Nortes, P. A., Conesa, M. R., Ruiz-Salleres, I., 2012. Effects of water stress on irradiance acclimation of leaf traits in almond trees. Tree Physiology. 32(4): 450-463.
  • El Bernoussi, S., Boujemaa, I., El Guezzane, C., Bou-Ouzoukni, Y., Nounah, I., Bouyahya, A., Tabyaoui, M., 2024. Comparative analysis of nutritional value and antioxidant activity in sweet and bitter almonds. LWT. 206: 116587.
  • FAO, 2023. Food and Agriculture Organization, Crop Statistics. http://fao.org/faostat/en/#data/QC, Erişim Tarihi: 28.12.2024.
  • Gohari, S., Imani, A., Talaei, A. R., Abdossi, V., Asghari, M. R., 2023. Physiological responses of almond genotypes to drought stress. Russian Journal of Plant Physiology. 70(6): 141.
  • Gouta, H., Laaribi, I., Ksia, E., Juan, T., Estopañan, G., Martínez-Gómez, P., 2021. Physical properties, biochemical and antioxidant contents of new promising Tunisian almond genotypes: traits stability, quality aspects and post-harvest attributes. Journal of Food Composition and Analysis. 98: 103840.
  • Khadivi, A., Goodarzi, S., Sarkhosh, A., 2019. Identification of late-blooming almond (Prunus dulcis L.) genotypes with high kernel quality. Euphytica. 215: 1-12.
  • Khadivi-Khub, A., Etemadi-Khah, A., 2015. Phenotypic diversity and relationships between morphological traits in selected almond (Prunus amygdalus) germplasm. Agroforestry Systems. 89: 205-216.
  • Khojand, S., Zeinalabedini, M., Azizinezhad, R., Imani, A., Ghaffari, M. R., 2024. Identification of the core collection in Iranian almond germplasm: utilizing morphological traits and evaluating biochemical properties of the collection. Genetic Resources and Crop Evolution. 71(6): 3037-3059.
  • Ladizinsky, G., 1999. On the origin of almond. Genetic Resources and Crop Evolution. 46: 143-147.
  • Ledbetter, C. A., 2008. Shell cracking strength in almond (Prunus dulcis [Mill.] DA Webb.) and its implication in uses as a value-added product. Bioresource Technology. 99(13): 5567-5573.
  • Li, X., Liu, Y., Hao, J., Wang, W., 2018. Study of almond shell characteristics. Materials. 11(9): 1782.
  • Lipan, L., Miarnau, X., Calle, A., Carbonell, Á., Sendra, E., Batlle, I., Romero, A., 2024. Factors influencing the almond kernel breakage during shelling processes and the impact of water conditioning on kernel color and free acidity. LWT. 117250.
  • Mitra S.K., 2020. Temperate Fruits: Nuts and Berries. DAYA Publishing House. ISBN:9390371228, Vol. II.
  • Moldero, D., López-Bernal, Á., Testi, L., Lorite, I. J., Fereres, E., Orgaz, F., 2021. Long-term almond yield response to deficit irrigation. Irrigation Science. 39: 409-420.
  • Nortes, P. A., Gonzalez-Real, M. M., Egea, G., Baille, A., 2009. Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond trees. Tree Physiology. 29(3): 375-388.
  • Prgomet, I., Pascual-Seva, N., Morais, M. C., Aires, A., Barreales, D., Ribeiro, A. C., Gonçalves, B., 2020. Physiological and biochemical performance of almond trees under deficit irrigation. Scientia Horticulturae. 261: 108990.
  • Rahemi, A., Gradziel, T. M., 2024. Characteristics of almond species. In the almonds and related species: Identification, characteristics and uses (pp. 49-113). Cham: Springer International Publishing.
  • Ranjbar, A., Imani, A., Piri, S., Abdoosi, V., 2021. Drought effects on photosynthetic parameters, gas exchanges and water use efficiency in almond cultivars on different rootstocks. Plant Physiology Reports. 26: 95-108.
  • Reisman, E. D., 2020. Orchard Entanglements: political ecologies of almond production in California and Spain. University of California, Santa Cruz.
  • Sideli, G. M., Mather, D., Wirthensohn, M., Dicenta, F., Goonetilleke, S. N., Martínez-García, P. J., Gradziel, T. M., 2023. Genome-wide association analysis and validation with KASP markers for nut and shell traits in almond (Prunus dulcis [Mill.] DA Webb). Tree Genetics & Genomes. 19(2): 13.
  • Singar, S., Kadyan, S., Patoine, C., Park, G., Arjmandi, B., Nagpal, R., 2024. The effects of almond consumption on cardiovascular health and gut microbiome: A comprehensive review. Nutrients. 16(12): 1964.
  • Uzun, A., Dirim, E., Yaman, M., Ünsal, H. T., 2024. Morphological and molecular evaluation of diversity in individuals obtained by intra-species hybridization in almond (Prunus dulcis L.). Genetic Resources and Crop Evolution. 71(3): 1291-1300.
  • Wang, W., Wang, W., Wang, Y., Yang, R., Tang, J., Zhao, Y., 2020. Hot-air assisted continuous radio frequency heating for improving drying efficiency and retaining quality of inshell hazelnuts (Corylus avellana L. cv. Barcelona). Journal of Food Engineering. 279: 109956.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekoloji (Diğer)
Bölüm Makaleler
Yazarlar

Çağlar Kaya 0000-0002-7054-3081

Murat Şeker 0000-0002-6886-0547

Proje Numarası FDK-2024-4787
Yayımlanma Tarihi 7 Temmuz 2025
Gönderilme Tarihi 29 Aralık 2024
Kabul Tarihi 14 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kaya, Ç., & Şeker, M. (2025). The Pomological and Morphological Characterization of Different Foreign Almond Cultivars and the Local Type Grown under Ecological Conditions of Çanakkale. ÇOMÜ Ziraat Fakültesi Dergisi, 13(1), 79-88. https://doi.org/10.33202/comuagri.1609500