Derleme
BibTex RIS Kaynak Göster

Probability in Early Childhood: A Look from the Current Situation to the Future

Yıl 2025, Cilt: 54 Sayı: 1, 460 - 496, 30.04.2025
https://doi.org/10.14812/cuefd.1413232

Öz

In recent years there has been a growing interest in fostering probabilistic thinking in early childhood. An increasing number of countries include the subject of probability in their early childhood curricula, and the topic has attracted greater attention in academic research. The aim of this study is to critically review the theoretical and developmental aspects of probability in early childhood education and to draw conclusions based on the results of previous research. The study also provides recommendations for the future regarding this concept, which has not yet been adequately addressed in the early childhood education level in Türkiye. Existing research emphasizes the importance of probability by stressing that probabilistic thinking, which begins to develop in early childhood, supports a lifelong perspective. This study discusses probability, the basic components of probability, the framework of probabilistic thinking, probabilistic thinking in early childhood and existing studies, relevant curricula in early childhood education and their scope, instructional planning for teaching probabilistic thinking, and the place of probability in early childhood education in Türkiye.

Kaynakça

  • Alsina, Á. (2017). Contextos y propuestas para la enseñanza de la estadística y la probabilidad en Educación Infantil: Un itinerario didáctico. Épsilon, 95, 25-48. https://www.researchgate.net/publication/318701650.
  • Alsina, Á., & Vásquez, C. (2017). Hacia una enseñanza eficaz de la estadística y la probabilidad en las primeras edades. Revista Didasc@lia: Didáctica y Educación, 8(4), 199-212. https://dialnet.unirioja.es/servlet/articulo?codigo=6681326.
  • Australian Curriculum, Assessment and Reporting Authority. (2020). Australian Curriculum Version 9.0: Mathematics – Foundation Year. https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics/foundation-year.
  • Ben-Zvi, D., Makar, K., & Garfield, J. (2017). International handbook of research in statistics education. Springer.
  • Bryant, P., & Nunes, T. (2012). Children’s understanding of probability: A literature review (full report). Nuffield Foundation.
  • Bullock, M., & Gelman, R. (1979). Preschool children's assumptions about cause and effect: Temporal ordering. Child Development, s89-96. https://doi.org/10.2307/1129045.
  • Canadian Ontario Ministry of Education. (2016). The Kindergarten Program. https://files.ontario.ca/books/edu_the_kindergarten_program_english_aoda_web_oct7.pdf.
  • Colorado Department of Education. (2010). Colorado Academic Standards: Mathematics. http://www.cde.state.co.us/cdeassess/UAS/AdoptedAcademicStandards/Math_Standards2010.pdf.
  • Collins Australian Pocket English Dictionary (1981). Probabiliy. Collins & Sons.
  • Core State Standards (2013). Common Core State Standards for Mathematics http://www.corestandards.org/wp-content/uploads/Math_ Standards.pdf.
  • Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportion: Research implications. In D. T. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 159–178). New York: Macmillan.
  • Cronin, P., Ryan, F., & Coughlan, M. (2008). Undertaking a literature review: a step-by-step approach. British journal of nursing, 17(1), 38-43. https://pubmed.ncbi.nlm.nih.gov/18399395/.
  • Davies, C. M. (1965). Development of the probability concept in children. Child Development, 36, 779-788. https://doi.org/10.2307/1126923.
  • Doruk, B.K. (2021). Etkinlik temelli olasılık ve istatistik öğretimi. S. Baltacı ve S. Ö. Bütüner (Eds.), Olasılıkla ilgili temel kavramlar ve öğretimi (s. 33- 84). Nobel.
  • English, L. (1991). Young children's combinatoric strategies. Educational Studies in Mathematics, 22, 451–474. https://link.springer.com/article/10.1007/BF00367908.
  • Estrella, S., Mendez-Reina, M., Olfos, R., & Aguilera, J. (2022). Early statistics in kindergarten: Analysis of an educator's pedagogical content knowledge in lessons promoting informal inferential reasoning. International Journal for Lesson & Learning Studies, 11(1), 1-13. https://www.researchgate.net/publication/357886094_Early_statistics_in_kindergarten_analysis_of_an_educator's_pedagogical_content_knowledge_in_lessons_promoting_informal_inferential_reasoning.
  • Illinois Learning Standards (2013). Illinois Early Learning and Development Standards. https://www.isbe.net/Documents/early_learning_standards.pdf.
  • Falk, R., Falk, R., & Levin, I. (1980). A potential for learning probability in young children. Educational Studies in Mathematics, 11, 181-204. https://link.springer.com/article/10.1007/BF00304355.
  • Falk, R., Yudilevich-Assouline, P., & Elstein, A. (2012). Children’s concept of probability as inferred from their binary choices. Educational Studies in Mathematics, 81, 207–233. https://www.researchgate.net/publication/257557272_Children's_concept_of_probability_as_inferred_from_their_binary_choices-revisited.
  • Fischbein, H. (1975). The intuitive sources of probabilistic thinking in children (Vol. 85). Springer Science & Business Media.
  • Gelman, R., & Brenneman, K. (2004). Science learning pathways for young children. Early Childhood Research Quarterly, 19(1), 150-158. https://www.academia.edu/40887078/Science_learning_pathways_for_young_children.
  • Groth, R. E. (2018). Statistics in early childhood and primary education: Supporting early statistical and probabilistic thinking. In A. Leavy, M. Meletiou-Mavrotheris & E. Paparistodemou (Eds.), Unpacking implicit disagreements among early childhood standards for statistics and probability (pp. 149-162). Springer.
  • Goldberg, S. (1966). Probability judgments by preschool children: Task conditions and performance, Child Development, 37, ss. 157-167. https://psycnet.apa.org/record/1966-05250-001.
  • Hawkins, A.S., & Kapadia, R. (1984). Children's conceptions of probability—a psychological and pedagogical review. Educational Studies in Mathematics, 15, 349-377. https://link.springer.com/article/10.1007/BF00311112.
  • Higgins, J. P., Altman, D. G., & Sterne, J. A. C. (2011). Assessing risk of bias in included studies. In: Higgins J., P., T. & Green S. (Eds.). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration. https://training.cochrane.org/handbook/archive/v5.1/.
  • HodnikČadež, T., & Škrbec, M. (2011). Understanding the concepts in probability of pre-school and early school children. Eurasia Journal of Mathematics, Science and Technology Education, 7(4), 263-279. https://doi.org/10.12973/ejmste/75203.
  • Jones, G.A., Langrall, C.W., Thornton, C.A., & Mogill, A.T. (1997). A framework for assessing and nurturing young children ‘s thinking in probability. Educational Studies in Mathematics, 32(2), 101-125. https://www.academia.edu/15657979/A_framework_for_assessing_and_nurturing_young_childrens_thinking_in_probability.
  • Jones, G.A., & Thornton, C.A. (2005). An overview of research into the teaching and learning of probability. Exploring probability in school: Challenges for Teaching and Learning, 65-92. https://www.researchgate.net/publication/29451584_An_Overview_of_Research_into_the_Teaching_and_Learning_of_Probability.
  • Keren, G. (1984) On the importance of identifying the correct problem space. Cognition, 16, 121–128. https://pubmed.ncbi.nlm.nih.gov/6540651/.
  • Kafoussi, S. (2002). Learning opportunities in a kindergarten about the concept of probability. In A. D. Cockburn & E. Nardi (Ed.), Proceedings of the 26 th conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 161–168). Norwich, England: UEA. https://www.researchgate.net/publication/32231091_Learning_opportunities_in_a_kindergarten_about_the_concept_of_probability.
  • Kafoussi, S. (2004). Can kindergarten children be successfully involved in probabilistic tasks? Statistics Education Research Journal, 3(1), 29-39. https://iase-web.org/documents/SERJ/SERJ3(1)_kafoussi.pdf?1402525004.
  • Kinnear, V.A. (2013). Young children’s statistical reasoning: A tale of two contexts. Community [Unpublished doctoral dissertation]. Queensland University of Technology.
  • Kuzmak, S.D. (1983). The influence of information types on judgments of predictability. In Bulletin of the Psychonomic Society, 21, 344-344.
  • Kuzmak, S.D., & Gelman, R. (1986). Young children's understanding of random phenomena. Child Development, 559-566. https://psycnet.apa.org/record/1986-26835-001.
  • MEB (2013). Okul Öncesi Eğitim Programı. Devlet Kitapları Müdürlüğü.
  • MEB (2018). Öğretim programlarını izleme ve değerlendirme sistemi öğretim programları. Devlet Kitapları Müdürlüğü.
  • MEB (2023). Güncellenen Okul Öncesi Eğitim Programı. Devlet Kitapları Müdürlüğü.
  • MEB (2024). Türkiye Maarif Modeli Okul Öncesi Eğitim Programı. Devlet Kitapları Müdürlüğü.
  • Missouri Department of Elementary and Secondary Education, Early Childhood Section (2001). Missouri Pre-K Standards. http://www.dese.state.mo.us/divimprove/fedprog/earlychild/PreK_Standards.html
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Nikiforidou, Z. (2018). Probabilistic thinking and young children: Theory and pedagogy. In A. Leavy, M. Meletiou-Mavrotheris, & E. Paparistodemou (Eds.), Statistics in early childhood and primary education (pp. 21–34). Springer.
  • Nikiforidou, Z., & Pange, J. (2010). The notions of chance and probabilities in preschoolers. Early Childhood Education Journal, 38, 305-311. https://doi.org/10.1007/s10643-010-0417-x.
  • Nikiforidou, Z., Pange, J., & Chadjipadelis, T. (2013). Intuitive and informal knowledge in preschoolers’ development of probabilistic thinking. International Journal of Early Childhood, 45, 347-357. https://link.springer.com/article/10.1007/s13158-013-0081-6.
  • Ortiz, C. V., & Alsina, Á. (2019). Intuitive ideas about chance and probability in children from 4 to 6 years old. Acta Scientiae, 21(3), https://www.researchgate.net/publication/334067307_Intuitive_ideas_about_chance_and_probability_in_children_from_4_to_6_years_old.
  • Paparistodemou, E., & Noss, R. (2004). Designing for local and global meanings of randomness. Proceedings of the 28th Conf of the Int Group for the Psych of Math Ed. 2004, 3, 497–504 https://files.eric.ed.gov/fulltext/ED489616.pdf.
  • Paparistodemou, E., Noss, R., & Pratt, D. (2008). The interplay between fairness and randomness in a spatial computer game. International Journal of Computers for Mathematical Learning, 13, 89-110. https://doi.org/10.1007/s10758-008-9132-8.
  • Pange, J. (2006). Assessing and educating preschool teachers on probability concepts in the classroom. Proceedings of the Seventh International Conference on Teaching Statistics, ICOTS7, Salvador, Brazil, IASE,[Online]. http://www. stat. auckland. ac. nz/~ iase/publications/17/3H2_PANG. pdf.
  • Pennsylvania Department of Education & Pennsylvania Association of Intermediate Units (2001). Early childhood learning continuum indicators. Pennsylvania Department of Education. http://www.pde.state.pa.us/nclb/lib/nclb/earlychildhoodcontinuum.pdf.
  • Piaget, J., & Inhelder, B. (Eds.). (1975). The origin of the idea of chance in children. Routledge & Kegan Paul.
  • Polaki, M.V., Lefoka, P. J., & Jones, G.A. (2000). Developing a cognitive framework for describing and predicting Basotho students’ probabilistic thinking. BOLESWA Educational Research Journal, 17, 1–20. https://www.africabib.org/rec.php?RID=Q00029041.
  • Polit, D., & Beck, C. (2012). Essentials of nursing research. Ethics, 23(2), 145-160.
  • Sharma, S. (2014). Teaching probability: A socio-constructivist perspective. Teaching Statistics, 78–84. https://doi.org/10.1111/test.12075.
  • Shtulman, A., & Carey, S. (2007). Improbable or impossible? How children reason about the possibility of extraordinary events. Child Development, 78(3), 1015-1032. https://doi.org/10.1111/j.1467-8624.2007.01047.x.
  • Skoumpourdi, C., Kafoussi, S., ve Tatsis, K. (2009). Designing probabilistic tasks for kindergartners. Journal of Early Childhood Research, 7(2), 153-172. https://www.researchgate.net/publication/233421142_Designing_probabilistic_tasks_for_kindergartners.
  • South Carolina Department of Education (2015). South Carolina College- and Career-Ready Standards for Mathematics. http://ed.sc.gov/instruction/standards-learning/mathematics/standards/scccr-standards-for-mathematics-final-print-on-one-side/.
  • Sutton, A., Clowes, M., Preston, L., & Booth, A. (2019). Meeting the review family: exploring review types and associated information retrieval requirements. Health Information & Libraries Journal, 36(3), 202-222. https://doi.org/10.1111/hir.12276.
  • Tarr, J.E. (2002). The confounding effects of “50–50 chance” in making conditional probability judgments. Focus on Learning Problems in Mathematics, 24, 35–53.
  • Threlfall, J. (2004). Uncertainty in mathematics teaching: the National Curriculum experiment in teaching probability to primary pupils. Cambridge Journal of Education, 34(3), 297-314. https://doi.org/10.1080/0305764042000289938.
  • TDK (2023). Genel açıklamalı sözlük. TDK Yayınları.
  • Yost, P.A., Siegel, A.E., & Andrews, J.M. (1962). Nonverbal probability judgments by young children. Child Development, 769-780. https://psycnet.apa.org/record/1963-06459-001.
  • Way, J. (2003). The development of children's notions of probability [Doctoral dissertation, Western Sydney University]. Western Sydney University Research Portal. https://researchers.westernsydney.edu.au/en/studentTheses/the-development-of-childrens-notions-of-probability.
  • Xu, F., & Garcia, V. (2008). Intuitive statistics by 8-month-old infants. Proceedings of the National Academy of Sciences, 105(13), 5012-5015. https://doi.org/10.1073/pnas.0704450105.

Erken Çocuklukta Olasılık: Mevcut Durumdan Geleceğe Bir Bakış

Yıl 2025, Cilt: 54 Sayı: 1, 460 - 496, 30.04.2025
https://doi.org/10.14812/cuefd.1413232

Öz

Son yıllarda çocukların erken olasılıksal düşünmesine yönelik artan bir ilgi bulunmaktadır. Her geçen gün daha fazla ülke erken çocukluk müfredatında olasılık konusuna yer vermekte ve ilgili literatürde olasılık daha fazla sayıda araştırmanın konusu haline gelmektedir. Bu çalışmanın amacı, erken çocukluk döneminde olasılık konusunu teorik ve gelişimsel olarak ele alarak eleştirel bir bakış ile gözden geçirmek ve geçmiş araştırmaların sonuçlarından bir çıkarıma varmaktır. Çalışmada ayrıca, ülkemizde erken çocukluk eğitimi düzeyinde henüz yeterince ele alınmayan bu kavramla ilgili geleceğe yönelik öneriler ele alınmıştır. Mevcut araştırmalar, erken çocukluk döneminde gelişmeye başlayan olasılık düşüncesinin yaşam boyu sürecek bir bakış açısını desteklediğinin altını çizerek olasılığın önemine vurgu yapmaktadır. Buradan hareketle bu çalışmada olasılık, olasılığı oluşturan temel bileşenler, olasılıksal düşünme çerçevesi, erken çocukluk döneminde olasılık düşüncesi ve mevcut çalışmalar, erken çocukluk döneminde olasılık içeren müfredatlar ve kapsamları, olasılıksal düşünmeye yönelik öğretimin planlanması ve Türkiye’de erken çocukluk eğitiminde olasılığın yeri konuları ele alınmıştır.

Kaynakça

  • Alsina, Á. (2017). Contextos y propuestas para la enseñanza de la estadística y la probabilidad en Educación Infantil: Un itinerario didáctico. Épsilon, 95, 25-48. https://www.researchgate.net/publication/318701650.
  • Alsina, Á., & Vásquez, C. (2017). Hacia una enseñanza eficaz de la estadística y la probabilidad en las primeras edades. Revista Didasc@lia: Didáctica y Educación, 8(4), 199-212. https://dialnet.unirioja.es/servlet/articulo?codigo=6681326.
  • Australian Curriculum, Assessment and Reporting Authority. (2020). Australian Curriculum Version 9.0: Mathematics – Foundation Year. https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics/foundation-year.
  • Ben-Zvi, D., Makar, K., & Garfield, J. (2017). International handbook of research in statistics education. Springer.
  • Bryant, P., & Nunes, T. (2012). Children’s understanding of probability: A literature review (full report). Nuffield Foundation.
  • Bullock, M., & Gelman, R. (1979). Preschool children's assumptions about cause and effect: Temporal ordering. Child Development, s89-96. https://doi.org/10.2307/1129045.
  • Canadian Ontario Ministry of Education. (2016). The Kindergarten Program. https://files.ontario.ca/books/edu_the_kindergarten_program_english_aoda_web_oct7.pdf.
  • Colorado Department of Education. (2010). Colorado Academic Standards: Mathematics. http://www.cde.state.co.us/cdeassess/UAS/AdoptedAcademicStandards/Math_Standards2010.pdf.
  • Collins Australian Pocket English Dictionary (1981). Probabiliy. Collins & Sons.
  • Core State Standards (2013). Common Core State Standards for Mathematics http://www.corestandards.org/wp-content/uploads/Math_ Standards.pdf.
  • Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportion: Research implications. In D. T. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 159–178). New York: Macmillan.
  • Cronin, P., Ryan, F., & Coughlan, M. (2008). Undertaking a literature review: a step-by-step approach. British journal of nursing, 17(1), 38-43. https://pubmed.ncbi.nlm.nih.gov/18399395/.
  • Davies, C. M. (1965). Development of the probability concept in children. Child Development, 36, 779-788. https://doi.org/10.2307/1126923.
  • Doruk, B.K. (2021). Etkinlik temelli olasılık ve istatistik öğretimi. S. Baltacı ve S. Ö. Bütüner (Eds.), Olasılıkla ilgili temel kavramlar ve öğretimi (s. 33- 84). Nobel.
  • English, L. (1991). Young children's combinatoric strategies. Educational Studies in Mathematics, 22, 451–474. https://link.springer.com/article/10.1007/BF00367908.
  • Estrella, S., Mendez-Reina, M., Olfos, R., & Aguilera, J. (2022). Early statistics in kindergarten: Analysis of an educator's pedagogical content knowledge in lessons promoting informal inferential reasoning. International Journal for Lesson & Learning Studies, 11(1), 1-13. https://www.researchgate.net/publication/357886094_Early_statistics_in_kindergarten_analysis_of_an_educator's_pedagogical_content_knowledge_in_lessons_promoting_informal_inferential_reasoning.
  • Illinois Learning Standards (2013). Illinois Early Learning and Development Standards. https://www.isbe.net/Documents/early_learning_standards.pdf.
  • Falk, R., Falk, R., & Levin, I. (1980). A potential for learning probability in young children. Educational Studies in Mathematics, 11, 181-204. https://link.springer.com/article/10.1007/BF00304355.
  • Falk, R., Yudilevich-Assouline, P., & Elstein, A. (2012). Children’s concept of probability as inferred from their binary choices. Educational Studies in Mathematics, 81, 207–233. https://www.researchgate.net/publication/257557272_Children's_concept_of_probability_as_inferred_from_their_binary_choices-revisited.
  • Fischbein, H. (1975). The intuitive sources of probabilistic thinking in children (Vol. 85). Springer Science & Business Media.
  • Gelman, R., & Brenneman, K. (2004). Science learning pathways for young children. Early Childhood Research Quarterly, 19(1), 150-158. https://www.academia.edu/40887078/Science_learning_pathways_for_young_children.
  • Groth, R. E. (2018). Statistics in early childhood and primary education: Supporting early statistical and probabilistic thinking. In A. Leavy, M. Meletiou-Mavrotheris & E. Paparistodemou (Eds.), Unpacking implicit disagreements among early childhood standards for statistics and probability (pp. 149-162). Springer.
  • Goldberg, S. (1966). Probability judgments by preschool children: Task conditions and performance, Child Development, 37, ss. 157-167. https://psycnet.apa.org/record/1966-05250-001.
  • Hawkins, A.S., & Kapadia, R. (1984). Children's conceptions of probability—a psychological and pedagogical review. Educational Studies in Mathematics, 15, 349-377. https://link.springer.com/article/10.1007/BF00311112.
  • Higgins, J. P., Altman, D. G., & Sterne, J. A. C. (2011). Assessing risk of bias in included studies. In: Higgins J., P., T. & Green S. (Eds.). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration. https://training.cochrane.org/handbook/archive/v5.1/.
  • HodnikČadež, T., & Škrbec, M. (2011). Understanding the concepts in probability of pre-school and early school children. Eurasia Journal of Mathematics, Science and Technology Education, 7(4), 263-279. https://doi.org/10.12973/ejmste/75203.
  • Jones, G.A., Langrall, C.W., Thornton, C.A., & Mogill, A.T. (1997). A framework for assessing and nurturing young children ‘s thinking in probability. Educational Studies in Mathematics, 32(2), 101-125. https://www.academia.edu/15657979/A_framework_for_assessing_and_nurturing_young_childrens_thinking_in_probability.
  • Jones, G.A., & Thornton, C.A. (2005). An overview of research into the teaching and learning of probability. Exploring probability in school: Challenges for Teaching and Learning, 65-92. https://www.researchgate.net/publication/29451584_An_Overview_of_Research_into_the_Teaching_and_Learning_of_Probability.
  • Keren, G. (1984) On the importance of identifying the correct problem space. Cognition, 16, 121–128. https://pubmed.ncbi.nlm.nih.gov/6540651/.
  • Kafoussi, S. (2002). Learning opportunities in a kindergarten about the concept of probability. In A. D. Cockburn & E. Nardi (Ed.), Proceedings of the 26 th conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 161–168). Norwich, England: UEA. https://www.researchgate.net/publication/32231091_Learning_opportunities_in_a_kindergarten_about_the_concept_of_probability.
  • Kafoussi, S. (2004). Can kindergarten children be successfully involved in probabilistic tasks? Statistics Education Research Journal, 3(1), 29-39. https://iase-web.org/documents/SERJ/SERJ3(1)_kafoussi.pdf?1402525004.
  • Kinnear, V.A. (2013). Young children’s statistical reasoning: A tale of two contexts. Community [Unpublished doctoral dissertation]. Queensland University of Technology.
  • Kuzmak, S.D. (1983). The influence of information types on judgments of predictability. In Bulletin of the Psychonomic Society, 21, 344-344.
  • Kuzmak, S.D., & Gelman, R. (1986). Young children's understanding of random phenomena. Child Development, 559-566. https://psycnet.apa.org/record/1986-26835-001.
  • MEB (2013). Okul Öncesi Eğitim Programı. Devlet Kitapları Müdürlüğü.
  • MEB (2018). Öğretim programlarını izleme ve değerlendirme sistemi öğretim programları. Devlet Kitapları Müdürlüğü.
  • MEB (2023). Güncellenen Okul Öncesi Eğitim Programı. Devlet Kitapları Müdürlüğü.
  • MEB (2024). Türkiye Maarif Modeli Okul Öncesi Eğitim Programı. Devlet Kitapları Müdürlüğü.
  • Missouri Department of Elementary and Secondary Education, Early Childhood Section (2001). Missouri Pre-K Standards. http://www.dese.state.mo.us/divimprove/fedprog/earlychild/PreK_Standards.html
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Nikiforidou, Z. (2018). Probabilistic thinking and young children: Theory and pedagogy. In A. Leavy, M. Meletiou-Mavrotheris, & E. Paparistodemou (Eds.), Statistics in early childhood and primary education (pp. 21–34). Springer.
  • Nikiforidou, Z., & Pange, J. (2010). The notions of chance and probabilities in preschoolers. Early Childhood Education Journal, 38, 305-311. https://doi.org/10.1007/s10643-010-0417-x.
  • Nikiforidou, Z., Pange, J., & Chadjipadelis, T. (2013). Intuitive and informal knowledge in preschoolers’ development of probabilistic thinking. International Journal of Early Childhood, 45, 347-357. https://link.springer.com/article/10.1007/s13158-013-0081-6.
  • Ortiz, C. V., & Alsina, Á. (2019). Intuitive ideas about chance and probability in children from 4 to 6 years old. Acta Scientiae, 21(3), https://www.researchgate.net/publication/334067307_Intuitive_ideas_about_chance_and_probability_in_children_from_4_to_6_years_old.
  • Paparistodemou, E., & Noss, R. (2004). Designing for local and global meanings of randomness. Proceedings of the 28th Conf of the Int Group for the Psych of Math Ed. 2004, 3, 497–504 https://files.eric.ed.gov/fulltext/ED489616.pdf.
  • Paparistodemou, E., Noss, R., & Pratt, D. (2008). The interplay between fairness and randomness in a spatial computer game. International Journal of Computers for Mathematical Learning, 13, 89-110. https://doi.org/10.1007/s10758-008-9132-8.
  • Pange, J. (2006). Assessing and educating preschool teachers on probability concepts in the classroom. Proceedings of the Seventh International Conference on Teaching Statistics, ICOTS7, Salvador, Brazil, IASE,[Online]. http://www. stat. auckland. ac. nz/~ iase/publications/17/3H2_PANG. pdf.
  • Pennsylvania Department of Education & Pennsylvania Association of Intermediate Units (2001). Early childhood learning continuum indicators. Pennsylvania Department of Education. http://www.pde.state.pa.us/nclb/lib/nclb/earlychildhoodcontinuum.pdf.
  • Piaget, J., & Inhelder, B. (Eds.). (1975). The origin of the idea of chance in children. Routledge & Kegan Paul.
  • Polaki, M.V., Lefoka, P. J., & Jones, G.A. (2000). Developing a cognitive framework for describing and predicting Basotho students’ probabilistic thinking. BOLESWA Educational Research Journal, 17, 1–20. https://www.africabib.org/rec.php?RID=Q00029041.
  • Polit, D., & Beck, C. (2012). Essentials of nursing research. Ethics, 23(2), 145-160.
  • Sharma, S. (2014). Teaching probability: A socio-constructivist perspective. Teaching Statistics, 78–84. https://doi.org/10.1111/test.12075.
  • Shtulman, A., & Carey, S. (2007). Improbable or impossible? How children reason about the possibility of extraordinary events. Child Development, 78(3), 1015-1032. https://doi.org/10.1111/j.1467-8624.2007.01047.x.
  • Skoumpourdi, C., Kafoussi, S., ve Tatsis, K. (2009). Designing probabilistic tasks for kindergartners. Journal of Early Childhood Research, 7(2), 153-172. https://www.researchgate.net/publication/233421142_Designing_probabilistic_tasks_for_kindergartners.
  • South Carolina Department of Education (2015). South Carolina College- and Career-Ready Standards for Mathematics. http://ed.sc.gov/instruction/standards-learning/mathematics/standards/scccr-standards-for-mathematics-final-print-on-one-side/.
  • Sutton, A., Clowes, M., Preston, L., & Booth, A. (2019). Meeting the review family: exploring review types and associated information retrieval requirements. Health Information & Libraries Journal, 36(3), 202-222. https://doi.org/10.1111/hir.12276.
  • Tarr, J.E. (2002). The confounding effects of “50–50 chance” in making conditional probability judgments. Focus on Learning Problems in Mathematics, 24, 35–53.
  • Threlfall, J. (2004). Uncertainty in mathematics teaching: the National Curriculum experiment in teaching probability to primary pupils. Cambridge Journal of Education, 34(3), 297-314. https://doi.org/10.1080/0305764042000289938.
  • TDK (2023). Genel açıklamalı sözlük. TDK Yayınları.
  • Yost, P.A., Siegel, A.E., & Andrews, J.M. (1962). Nonverbal probability judgments by young children. Child Development, 769-780. https://psycnet.apa.org/record/1963-06459-001.
  • Way, J. (2003). The development of children's notions of probability [Doctoral dissertation, Western Sydney University]. Western Sydney University Research Portal. https://researchers.westernsydney.edu.au/en/studentTheses/the-development-of-childrens-notions-of-probability.
  • Xu, F., & Garcia, V. (2008). Intuitive statistics by 8-month-old infants. Proceedings of the National Academy of Sciences, 105(13), 5012-5015. https://doi.org/10.1073/pnas.0704450105.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Okul Öncesi Eğitim
Bölüm Makaleler
Yazarlar

Pınar Gürler Ağaçkıran 0000-0002-2068-9234

Durmuş Aslan 0000-0001-5204-7749

Kamuran Tarım 0000-0002-2048-5207

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 2 Ocak 2024
Kabul Tarihi 17 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 1

Kaynak Göster

APA Gürler Ağaçkıran, P., Aslan, D., & Tarım, K. (2025). Probability in Early Childhood: A Look from the Current Situation to the Future. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 54(1), 460-496. https://doi.org/10.14812/cuefd.1413232

Copyright © 2011

Cukurova University Faculty of Education

All rights reserved