Araştırma Makalesi
BibTex RIS Kaynak Göster

Yönlendirilmiş Enerji Yığma (YEY) Yönteminde Termo-Mekanik Analiz: Distorsiyon ve Artık Gerilmelerin Tahmini

Yıl 2025, Cilt: 3 Sayı: 1, 55 - 63, 30.06.2025

Öz

Yönlendirilmiş Enerji Yığma (YEY), malzemenin lazer, elektron ışını ve ark gibi bir enerji kaynağı ile malzemeyi ergiterek katmanlar halinde biriktirilmesiyle karmaşık geometrilerin üretimine imkan sağlayan bir metal eklemeli imalat yöntemidir. Ancak, üretim esnasında oluşan yüksek sıcaklık gradyanları, artık gerilmeler ve çarpılmalara yol açarak üretilen parçaların mekanik özelliklerini olumsuz etkileyebilir. Bu çalışmada, YEY sürecindeki sıcaklık dağılımını, çarpılmaları ve artık gerilmeleri tahmin etmek amacıyla bir termo-mekanik sonlu elemanlar yöntemi kullanılarak bir sayısal model geliştirilmiştir. Abaqus yazılımı kullanılarak simülasyonlar gerçekleştirilmiştir. Bulgular, ilk katmanlarda hızlı ısıtma ve soğutmadan kaynaklanan en yüksek çarpılmalara neden olduğunu göstermektedir. Bu çalışma, YEY üretim esnasında, üretim kalitesini artırmak ve malzeme özelliklerini iyileştirmek için üretim parametrelerinin optimize edilmesine yönelik bilgiler sunmaktadır. Gelecekteki çalışmalar, model doğruluğunu artırmak için Marangoni, kaldırma kuvveti ve geri tepme basıncı gibi ileri akışkan dinamiği etkilerini içerebilir.

Destekleyen Kurum

TÜBİTAK, Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

223M403, FGA-2024-9152

Teşekkür

Bu çalışma, TÜBİTAK 1002 – Hızlı Destek Programı kapsamında desteklenen [Proje No: 223M403] numaralı proje ile Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından ADEP (Araştırma Destek Programı) kapsamında sağlanan [Proje No: FGA-2024-9152] desteğiyle gerçekleştirilmiştir. Sağlanan bu kıymetli desteklerden dolayı ilgili kurumlara teşekkür ederim.

Kaynakça

  • [1] Carter, D. C. (2017). A study on CAM based path planning for hybrid machining center with direct energy deposition. University of California, Davis.
  • [2] Vundru, C., Singh, R., Yan, W., & Karagadde, S. (2021). A comprehensive analytical-computational model of laser directed energy deposition to predict deposition geometry and integrity for sustainable repair. International Journal of Mechanical Sciences, 211, 106790.
  • [3] Biyikli, M., Karagoz, T., Calli, M., Muslim, T., Ozalp, A. A., & Bayram, A. (2023). Single track geometry prediction of laser metal deposited 316L-Si via multi-physics modelling and regression analysis with experimental validation. Metals and Materials International, 29(3), 807-820.
  • [4] Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A. L., Bose, S., Bandyopadhyay, A., ... & Eliaz, N. (2021). Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, 271-295.
  • [5] Noh, I., Jeon, J., & Lee, S. W. (2023). A Study on Metallographic and Machining Characteristics of Functionally Graded Material Produced by Directed Energy Deposition. Crystals, 13(10), 1491.
  • [6] Xin, B., Wang, Y., Zhu, W., Qin, J., & Cao, G. (2024). Evaluation of powder mixing homogeneity for laser-directed energy deposition (L-DED) of functionally graded materials. The International Journal of Advanced Manufacturing Technology, 134(9), 4729-4747.
  • [7] Nain, V., Engel, T., Carin, M., Boisselier, D., & Seguy, L. (2021). Development of an elongated ellipsoid heat Source model to reduce computation time for directed energy deposition process. Frontiers in Materials, 8, 747389.
  • [8] Pereira, J. C., Borovkov, H., Zubiri, F., Guerra, M. C., & Caminos, J. (2021). Optimization of thin walls with sharp corners in SS316L and IN718 alloys manufactured with laser metal deposition. Journal of Manufacturing and Materials Processing, 5(1), 5.
  • [9] Zhou, J., Shen, L., Yang, X., Li, R., & Pan, K. (2025). Tuning pores and mechanical properties for the heterogeneous interface of laser directed energy deposited IN718/316L laminate via in-situ laser surface remelting. Journal of Alloys and Compounds, 1010, 177872.
  • [10] Samad, Z., Nor, N. M., & Fauzi, E. R. I. (2019, June). Thermo-Mechanical Simulation of Temperature Distribution and Prediction of Heat-Affected Zone Size in MIG Welding Process on Aluminium Alloy EN AW 6082-T6. In IOP Conference Series: Materials Science and Engineering (Vol. 530, No. 1, p. 012016). IOP Publishing.
  • [11] Hagen, L., Yu, Z., Clarke, A., Clarke, K., Tate, S., Petrella, A., & Klemm-Toole, J. (2023). High deposition rate wire-arc directed energy deposition of 316L and 316LSi: Process exploration and modelling. Materials Science and Engineering: A, 145044.
  • [12] Dortkasli, K., Isik, M., & Demir, E. (2022). A thermal finite element model with efficient computation of surface heat fluxes for directed- energy deposition process and application to laser metal deposition of IN718. Journal of Manufacturing Processes, 79, 369-382.
  • [13] Song, X., Feih, S., Zhai, W., Sun, C. N., Li, F., Maiti, R., ... & Korsunsky, A. M. (2020). Advances in additive manufacturing process simulation: Residual stresses and distortion predictions in complex metallic components. Materials & design, 193, 108779.
  • [14] Kiran, A., Li, Y., Hodek, J., Brázda, M., Urbánek, M., & Džugan, J. (2022). Heat source modeling and residual stress analysis for metal directed energy deposition additive manufacturing. Materials, 15(7), 2545.
  • [15] Kiran, A., Hodek, J., Vavřík, J., Urbánek, M., & Džugan, J. (2020). Numerical simulation development and computational optimization for directed energy deposition additive manufacturing process. Materials, 13(11), 2666.
  • [16] Zhao, L., Li, Y., Xu, R., Guo, Z., Liu, Y., Feng, S., ... & Zheng, K. (2025). Numerical and experimental investigations on the thermomechanical oscillations of additively manufactured stainless steel parts. International Journal of Heat and Mass Transfer, 240, 126666.
  • [17] https://caeassistant.com/product/3d-printing-simulation-with-fusion-deposition-modeling-fdm-in-abaqus/#1699942463782-2948e770- c5c2
  • [18] https://help.3ds.com/2022x/English/DSDoc/SIMA3DXEXARefMap/simaexa-c-amdirectedenergydeposition.htm?contextscope= cloud &id=fc507aa8e1194ac7b74e0adbb35f2ace
  • [19] Ghanavati, R., Naffakh-Moosavy, H., Moradi, M., Gadalińska, E., & Saboori, A. (2023). Residual stresses and distortion in additively- manufactured SS316L-IN718 multi-material by laser-directed energy deposition: A validated numerical-statistical approach. Journal of Manufacturing Processes, 108, 292-309.
  • [20] Lu, X.; Lin, X.; Chiumenti, M.; Cervera, M.; Hu, Y.; Ji, X.; Ma, L.; Yang, H.; Huang, W. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by Directed Energy Deposition: Modelling and experimental calibration. Addit. Manuf. 2019, 26, 166– 179.
  • [21] Glaspell, A.; De la Peña, J.A.D.; Ryu, J.J.; Choo, K. Thermal Stress Characteristics of Dissimilar Joints Joining Ti-64 and CCM via Linear Friction Welding. Energies 2022, 15, 5588
  • [22]Mukherjee, T.; Zhang, W.; DebRoy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 2017, 126, 360–372.

THERMO-MECHANICAL ANALYSIS IN DIRECTED ENERGY DEPOSITION (DED) METHOD: PREDICTION OF DISTORTION AND RESIDUAL STRESSES

Yıl 2025, Cilt: 3 Sayı: 1, 55 - 63, 30.06.2025

Öz

Directed Energy Deposition (DED) is a metal additive manufacturing method that enables the production of complex geometries by melting and depositing material layer by layer using an energy source such as a laser, electron beam, or arc. However, the high temperature gradients that occur during the process can lead to residual stresses and distortions, which may negatively affect the mechanical properties of the fabricated parts. In this study, a thermo-mechanical finite element model was developed to predict the temperature distribution, distortions, and residual stresses during the DED process. Simulations were performed using Abaqus software. The results show that the highest distortions occur in the initial layers due to rapid heating and cooling. This study provides insights for optimizing manufacturing parameters to improve production quality and enhance material properties during the DED process. Future work may include advanced fluid dynamic effects such as Marangoni flow, buoyancy force, and recoil pressure to improve the accuracy of the model.

Proje Numarası

223M403, FGA-2024-9152

Kaynakça

  • [1] Carter, D. C. (2017). A study on CAM based path planning for hybrid machining center with direct energy deposition. University of California, Davis.
  • [2] Vundru, C., Singh, R., Yan, W., & Karagadde, S. (2021). A comprehensive analytical-computational model of laser directed energy deposition to predict deposition geometry and integrity for sustainable repair. International Journal of Mechanical Sciences, 211, 106790.
  • [3] Biyikli, M., Karagoz, T., Calli, M., Muslim, T., Ozalp, A. A., & Bayram, A. (2023). Single track geometry prediction of laser metal deposited 316L-Si via multi-physics modelling and regression analysis with experimental validation. Metals and Materials International, 29(3), 807-820.
  • [4] Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A. L., Bose, S., Bandyopadhyay, A., ... & Eliaz, N. (2021). Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, 271-295.
  • [5] Noh, I., Jeon, J., & Lee, S. W. (2023). A Study on Metallographic and Machining Characteristics of Functionally Graded Material Produced by Directed Energy Deposition. Crystals, 13(10), 1491.
  • [6] Xin, B., Wang, Y., Zhu, W., Qin, J., & Cao, G. (2024). Evaluation of powder mixing homogeneity for laser-directed energy deposition (L-DED) of functionally graded materials. The International Journal of Advanced Manufacturing Technology, 134(9), 4729-4747.
  • [7] Nain, V., Engel, T., Carin, M., Boisselier, D., & Seguy, L. (2021). Development of an elongated ellipsoid heat Source model to reduce computation time for directed energy deposition process. Frontiers in Materials, 8, 747389.
  • [8] Pereira, J. C., Borovkov, H., Zubiri, F., Guerra, M. C., & Caminos, J. (2021). Optimization of thin walls with sharp corners in SS316L and IN718 alloys manufactured with laser metal deposition. Journal of Manufacturing and Materials Processing, 5(1), 5.
  • [9] Zhou, J., Shen, L., Yang, X., Li, R., & Pan, K. (2025). Tuning pores and mechanical properties for the heterogeneous interface of laser directed energy deposited IN718/316L laminate via in-situ laser surface remelting. Journal of Alloys and Compounds, 1010, 177872.
  • [10] Samad, Z., Nor, N. M., & Fauzi, E. R. I. (2019, June). Thermo-Mechanical Simulation of Temperature Distribution and Prediction of Heat-Affected Zone Size in MIG Welding Process on Aluminium Alloy EN AW 6082-T6. In IOP Conference Series: Materials Science and Engineering (Vol. 530, No. 1, p. 012016). IOP Publishing.
  • [11] Hagen, L., Yu, Z., Clarke, A., Clarke, K., Tate, S., Petrella, A., & Klemm-Toole, J. (2023). High deposition rate wire-arc directed energy deposition of 316L and 316LSi: Process exploration and modelling. Materials Science and Engineering: A, 145044.
  • [12] Dortkasli, K., Isik, M., & Demir, E. (2022). A thermal finite element model with efficient computation of surface heat fluxes for directed- energy deposition process and application to laser metal deposition of IN718. Journal of Manufacturing Processes, 79, 369-382.
  • [13] Song, X., Feih, S., Zhai, W., Sun, C. N., Li, F., Maiti, R., ... & Korsunsky, A. M. (2020). Advances in additive manufacturing process simulation: Residual stresses and distortion predictions in complex metallic components. Materials & design, 193, 108779.
  • [14] Kiran, A., Li, Y., Hodek, J., Brázda, M., Urbánek, M., & Džugan, J. (2022). Heat source modeling and residual stress analysis for metal directed energy deposition additive manufacturing. Materials, 15(7), 2545.
  • [15] Kiran, A., Hodek, J., Vavřík, J., Urbánek, M., & Džugan, J. (2020). Numerical simulation development and computational optimization for directed energy deposition additive manufacturing process. Materials, 13(11), 2666.
  • [16] Zhao, L., Li, Y., Xu, R., Guo, Z., Liu, Y., Feng, S., ... & Zheng, K. (2025). Numerical and experimental investigations on the thermomechanical oscillations of additively manufactured stainless steel parts. International Journal of Heat and Mass Transfer, 240, 126666.
  • [17] https://caeassistant.com/product/3d-printing-simulation-with-fusion-deposition-modeling-fdm-in-abaqus/#1699942463782-2948e770- c5c2
  • [18] https://help.3ds.com/2022x/English/DSDoc/SIMA3DXEXARefMap/simaexa-c-amdirectedenergydeposition.htm?contextscope= cloud &id=fc507aa8e1194ac7b74e0adbb35f2ace
  • [19] Ghanavati, R., Naffakh-Moosavy, H., Moradi, M., Gadalińska, E., & Saboori, A. (2023). Residual stresses and distortion in additively- manufactured SS316L-IN718 multi-material by laser-directed energy deposition: A validated numerical-statistical approach. Journal of Manufacturing Processes, 108, 292-309.
  • [20] Lu, X.; Lin, X.; Chiumenti, M.; Cervera, M.; Hu, Y.; Ji, X.; Ma, L.; Yang, H.; Huang, W. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by Directed Energy Deposition: Modelling and experimental calibration. Addit. Manuf. 2019, 26, 166– 179.
  • [21] Glaspell, A.; De la Peña, J.A.D.; Ryu, J.J.; Choo, K. Thermal Stress Characteristics of Dissimilar Joints Joining Ti-64 and CCM via Linear Friction Welding. Energies 2022, 15, 5588
  • [22]Mukherjee, T.; Zhang, W.; DebRoy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 2017, 126, 360–372.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Sayısal Yöntemler, Malzeme Tasarım ve Davranışları, Sayısal Modelleme ve Mekanik Karakterizasyon, Katmanlı Üretim
Bölüm Araştırma Makaleleri
Yazarlar

Büşra Aslan Çiğir 0000-0003-3035-1680

Oğuzhan Yılmaz 0000-0002-2641-2324

Proje Numarası 223M403, FGA-2024-9152
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 27 Nisan 2025
Kabul Tarihi 14 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE B. Aslan Çiğir ve O. Yılmaz, “THERMO-MECHANICAL ANALYSIS IN DIRECTED ENERGY DEPOSITION (DED) METHOD: PREDICTION OF DISTORTION AND RESIDUAL STRESSES”, CÜMFAD, c. 3, sy. 1, ss. 55–63, 2025.