Araştırma Makalesi
BibTex RIS Kaynak Göster

6 Şubat 2023 Kahramanmaraş Depremlerinin Konumsal ve Zamansal Analizi

Yıl 2025, Cilt: 11 Sayı: 1, 34 - 43, 27.01.2025
https://doi.org/10.21324/dacd.1455994

Öz

Depremler, yerkabuğunun hareketleri sonucu ortaya çıkan enerjinin yeryüzüne yayılması ve yeryüzünü sarsması sonucu meydana gelen en yıkıcı doğal afetlerden biridir. Depremlerin ne zaman ve nerede meydana geleceğini önceden kestirmek mümkün olmadığından, daha önce meydana gelmiş depremleri analiz ederek çeşitli çıkarımlar yapmak ve gerekli önlemleri almak mümkün olabilmektedir. Deprem gibi doğal afetlerin coğrafi bilgi sistemleri ile konumsal ve zamansal analizi, alınacak önlemlerde ve zarar azaltma çalışmalarında yerel ve küresel karar vericilere faydalı bilgiler sağlamaktadır. Bu çalışmada, Coğrafi Bilgi Sistemleri yardımıyla fay hatları üzerindeki stres birikiminin genel yöneliminin ağırlıklı ortalama merkez noktaları ile izlenebileceği gösterilmeye çalışılmıştır. Kahramanmaraş'ta meydana gelen 7.7 ve 7.6 Mw büyüklüğündeki iki depremin ve artçı şokların konumsal-zamansal analizleri yapılmıştır. Artçı depremlerin on haftalık konumsal dağılımları ağırlıklı ortalama merkez yöntemi ile incelenmiş ve geçen süreyle birlikte deprem yoğunluğu ile ortalama merkezlerinin kuzeye doğru kaydığı belirlenmiştir. Deprem merkezlerinin konumsal dağılımları haftalık standart sapma elipsleri yardımıyla incelendiğinde Doğu Anadolu Fay Sistemi boyunca yönelim gösterdikleri tespit edilmiştir.

Kaynakça

  • AFAD. (2023a). 06 February 2023 Kahramanmaraş (Pazarcık and Elbistan ) earthquakes field studies preliminary evaluation report. Republic of Turkey Ministry of Interior Disaster and Emergency Management Presidency. Retrieved March 7, 2024, from https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf
  • AFAD. (2023b). Preliminary evaluation report on 06 February 2023 Pazarcık (Kahramanmaraş) Mw 7.7 and Elbistan (Kahramanmaraş) Mw 7.6 earthquakes. Republic of Turkey Ministry of Interior Disaster and Emergency Management Presidency. Retrieved March 7, 2024, from https://deprem.afad.gov.tr/assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20Raporu_ 02.06.2023.pdf
  • AFAD. (2023c). AFAD deperem katalogu. Retrieved March 7, 2024, from https://deprem.afad.gov.tr/event-catalog
  • Aksoy, E., Inceöz, M., & Koçyiǧit, A. (2007). Lake Hazar basin: A negative flower structure on the East Anatolian Fault System (EAFS), SE Turkey. Turkish Journal of Earth Sciences, 16(3), 319–338.
  • Al-Kindi, K. M., Kwan, P., Andrew, N. R., & Welch, M. (2017). Modelling spatiotemporal patterns of dubas bug infestations on date palms in northern Oman: A geographical information system case study. Crop Protection, 93, 113–121. https://doi.org/10.1016/j.cropro.2016.11.033
  • Alkan, H., Büyüksaraç, A., & Bektaş, Ö. (2024). Investigation of earthquake sequence and stress transfer in the Eastern Anatolia Fault Zone by Coulomb stress analysis. Turkish Journal of Earth Science. 33(1), 56–68. https://doi.org/10.55730/1300-0985.1898
  • Arpat, E., & Şaroğlu, F. (1972). Some observations and thoughts on the East Anatolian Fault. Bulletin of the Mineral Research and Exploration, 78(78), 44–50.
  • Cheng, T., Zhao, Y., & Zhao, C. (2022). Exploring the spatio-temporal evolution of economic resilience in Chinese cities during the COVID-19 crisis. Sustainable Cities and Society, 84(126), Article 103997. https://doi.org/10.1016/j.scs.2022.103997
  • Çolak, E., & Sunar, F. (2020). The importance of ground-truth and crowdsourcing data for the statistical and spatial analyses of the NASA FIRMS active fires in the Mediterranean Turkish forests. Remote Sensing Applications: Society and Environment, 19, Article 100327. https://doi.org/10.1016/j.rsase.2020.100327
  • Delmelle, E. (2009). Point pattern analysis. International Encyclopedia of Human Geography, 204–211. https://doi.org/10.1016/B978-008044910-4.00494-6
  • Dai, X., Liu, X., Liu, R., Song, M., Zhu, G., Chang, X., & Guo, J. (2024). Coseismic Slip Distribution and Coulomb Stress Change of the 2023 Mw 7.8 Pazarcik and Mw 7.5 Elbistan Earthquakes in Turkey. Remote Sensing. 16(2), Article 240. https://doi.org/10.3390/rs16020240
  • Dias, V. H. A., Papa, A. R. R., & Ferreira, D. S. R. (2019). Analysis of temporal and spatial distributions between earthquakes in the region of California through Non-Extensive Statistical Mechanics and its limits of validity. Physica A: Statistical Mechanics and Its Applications, 529, Article 121471. https://doi.org/10.1016/j.physa.2019.121471
  • Ferreira, D. S. R., Ribeiro, J., Oliveira, P. S. L., Pimenta, A. R., Freitas, R. P., Dutra, R. S., Papa, A. R. R., & Mendes, J. F. F. (2022). Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data. Chaos, Solitons and Fractals, 165(P2), Article 112814. https://doi.org/10.1016/j.chaos.2022.112814
  • He, L., Feng, G., Xu, W., Wang, Y., Xiong, Z., Gao, H., & Liu, X. (2023). Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence From InSAR and Optical Data. Geophysical Research Letters, 50(17), Article e2023GL104693. https://doi.org/10.1029/2023GL104693
  • Huang, H., Meng, L., Bürgmann, R., Wang, W., & Wang, K. (2020). Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth and Planetary Science Letters, 551, Article 116582. https://doi.org/10.1016/j.epsl.2020.116582
  • Jackson, J., & McKenzie, D. (1984). Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 77(1), 185–264. https://doi.org/10.1111/j.1365-246X.1984.tb01931.x
  • Kadirioğlu, F. T., & Kartal, R. F. (2016). The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turkish Journal of Earth Sciences, 25(4), 300–310. https://doi.org/10.3906/yer-1511-7
  • Kobayashi, T., Munekane, H., Kuwahara, M., & Furui, H. (2023). Insights on the 2023 Kahramanmaraş Earthquake, Turkey, from InSAR: fault locations, rupture styles and induced deformation. Geophysical Journal International, 236(2), 1068–1088. https://doi.org/10.1093/gji/ggad464
  • Li, W., Zhao, L., Tan, K., Lu, X., Zhang, C., Li, C., & Han, S. (2024). Coseismic deformation and fault slip distribution of the 2023 Mw 7.8 and Mw 7.6 earthquakes in Türkiye. Earthquake Science, 37, 263–276. https://doi.org/10.1016/j.eqs.2024.03.006
  • Lyberis, N., Yurur, T., Chorowicz, J., Kasapoglu, E., & Gundogdu, N. (1992). The East Anatolian Fault: an oblique collisional belt. Tectonophysics, 204(1), 1–15. https://doi.org/https://doi.org/10.1016/0040-1951(92)90265-8
  • Mitchell, A. (2005). The ESRI Guide to GIS Analysis (Volume 2). ESRI Press.
  • Munafò, I., Malagnini, L., & Chiaraluce, L. (2016). On the relationship between mw and mL for small earthquakes. Bulletin of the Seismological Society of America, 106(5), 2402–2408. https://doi.org/10.1785/0120160130
  • Nalbant, S. S., McCloskey, J., Steacy, S., & Barka, A. A. (2002). Stress accumulation and increased seismic risk in Eastern Turkey. Earth and Planetary Science Letters, 195(3–4), 291–298. https://doi.org/10.1016/S0012-821X(01)00592-1
  • Ocaña, E., Stich, D., Carmona, E., Vidal, F., Bretón, M., Navarro, M., & García-Jerez, A. (2008). Spatial analysis of the La Paca, SE Spain, 2005 seismic series through the relative location of multiplets and principal component analysis. Physics of the Earth and Planetary Interiors, 166(3–4), 117–127. https://doi.org/10.1016/j.pepi.2007.12.005
  • Över, S., Demirci, A., & Özden, S. (2023). Tectonic implications of the February 2023 Earthquakes (Mw7.7, 7.6 and 6.3) in south-eastern Türkiye. Tectonophysics, 866, Article 230058. https://doi.org/10.1016/j.tecto.2023.230058
  • Rebetsky, Y.L. (2023). Tectonophysical Zoning of Seismic Faults in Eastern Anatolia and February 6, 2023 Kahramanmaraş Earthquakes. Izvestiya, Physics of the Solid Earth, 59, 851-877. https://doi.org/10.1134/S1069351323060174
  • Santos, M., Bateira, C., Soares, L., & Hermenegildo, C. (2014). Hydro-geomorphologic GIS database in Northern Portugal, between 1865 and 2010: Temporal and spatial analysis. International Journal of Disaster Risk Reduction, 10(PA), 143–152. https://doi.org/10.1016/j.ijdrr.2014.08.003
  • Sarfraz, Y., Basharat, M., Riaz, M. T., Akram, M. S., Ahmed, K. S., & Shahzad, A. (2023). Spatio-temporal evolution of landslides along transportation corridors of Muzaffarabad, Northern Pakistan. Environmental Earth Sciences, 82(5), 1–23. https://doi.org/10.1007/s12665-023-10822-5
  • Şaroğlu, F., Emre, Ö., & Kuşçu, I. (1992). The East Anatolian fault zone of Turkey. Annales Tectonicae, 6, 99–125.
  • Şengör, A.M.C., Görür, N., & Şaroğlu, F. (1985). Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. In K. T. Biddle & N. Christie-Blick (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation (Vol. 37). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.85.37.0211
  • Shan, W., Wang, Z., Teng, Y., & Wang, M. (2021). Temporal and spatial evolution analysis of earthquake events in california and nevada based on spatial statistics. ISPRS International Journal of Geo-Information, 10(7), Article 465. https://doi.org/10.3390/ijgi10070465
  • Strategy and Budget Directorate. (2023). 2023 Kahramanmaraş ve Hatay Earthquake Reports. Presidency of the Republic of Turkey Strategy and Budget Department. Retrieved March 7, 2024, from https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay-Depremleri-Raporu.pdf
  • Tikhotsky, S. A., Tatevosyan, R. E., Rebetsky, Y. L., Ovsyuchenko, A. N., & Larkov, A. S. (2023). The 2023 Kahramanmaraş Earthquakes in Turkey: Seismic Movements along Conjugated Faults. Doklady Earth Sciences, 511, 703–709. https://doi.org/10.1134/S1028334X23600974
  • Toda, S., Stein, R. S., Özbakır, A. D., Gonzalez-Huizar, H., Sevilgen, V., Lotto, G., & Sevilgen, S. (2023). Stress change calculations provide clues to aftershocks in 2023 Türkiye earthquakes. Temblor. https://doi.org/http://doi.org/10.32858/temblor.295
  • Utkucu, M, Durmuş, H., Uzunca, F., & Nalbant, S. (2023). A Preliminary Report on the 2023 Gaziantep (Mw=7.7) and Elbistan (Mw=7.5) Earthquakes in Souhteast Türkiye. Sakarya University Disaster Management Application and Research Centerand Department of Geophysics. Retrieved March 7, 2024, from https://jfm.sakarya.edu.tr/sites/jfm.sakarya.edu.tr/file/Rapor1.pdf
  • Veitch, S.A., & Nettles, M. (2012). Spatial and temporal variations in Greenland glacial-earthquake activity, 1993-2010. Journal of Geophysical Research: Earth Surface, 117(4), 1993–2010. https://doi.org/10.1029/2012JF002412
  • Wang, B., Wenzhong, S., & Zelang, M. (2015). Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE2, 10(3), Article e0118537. https://doi.org/https://doi.org/10.1371/journal.pone.0118537
  • Wang, Q., Yue, T.X., Wang, C.L., Fan, Z.M., & Liu, X.H. (2012). Spatial-temporal variations of food provision in China. Procedia Environmental Sciences, 13(2011), 1933–1945. https://doi.org/10.1016/j.proenv.2012.01.187 Westaway, R. (2003). Kinematics of the Middle East and Eastern Mediterranean updated. Turkish Journal of Earth Sciences, 12(1), 5–46.
  • Xu, J., Zhao, Y., Zhong, K., Zhang, F., Liu, X., & Sun, C. (2018). Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery. Science of the Total Environment, 627, 264–281. https://doi.org/10.1016/j.scitotenv.2018.01.155
  • Yang, W., Qi, W., Wang, M., Zhang, J., & Zhang, Y. (2017). Spatial and temporal analyses of post-seismic landslide changes near the epicentre of the Wenchuan earthquake. Geomorphology, 276, 8–15. https://doi.org/10.1016/j.geomorph.2016.10.010
  • Zhang, L., Tao, Z., & Wang, G. (2022). Assessment and determination of earthquake casualty gathering area based on building damage state and spatial characteristics analysis. International Journal of Disaster Risk Reduction, 67, Article 102688. https://doi.org/10.1016/j.ijdrr.2021.102688

Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023

Yıl 2025, Cilt: 11 Sayı: 1, 34 - 43, 27.01.2025
https://doi.org/10.21324/dacd.1455994

Öz

Earthquakes are one of the most destructive natural disasters that occur as a result of the energy resulting from the movements of the earth's crust spreading and shaking the earth's surface. Since it is not possible to predict when and where earthquakes will occur, it has become possible to make various inferences and take necessary precautions by analyzing previous earthquakes. Spatial and temporal analysis of natural disasters such as earthquakes with geographic information systems provides useful information to local and global decision-makers in measures to be taken and mitigation studies. The objective of this study is to demonstrate that the general orientation of stress accumulation on fault lines can be monitored by weighted average centre points with the use of Geographic Information Systems (GIS). Spatio-temporal analyses of two earthquakes with a magnitude of 7.7 Mw and 7.6 Mw in Kahramanmaraş and aftershocks were performed. Ten-week spatial distributions of the aftershocks were examined with the weighted average center method and it was determined that the earthquake intensity and average centers shifted towards the north. When the spatial distribution of the earthquake centers is examined with the help of standard deviation ellipses weekly, it has been determined that they show orientation along the Eastern Anatolian Fault System.

Kaynakça

  • AFAD. (2023a). 06 February 2023 Kahramanmaraş (Pazarcık and Elbistan ) earthquakes field studies preliminary evaluation report. Republic of Turkey Ministry of Interior Disaster and Emergency Management Presidency. Retrieved March 7, 2024, from https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf
  • AFAD. (2023b). Preliminary evaluation report on 06 February 2023 Pazarcık (Kahramanmaraş) Mw 7.7 and Elbistan (Kahramanmaraş) Mw 7.6 earthquakes. Republic of Turkey Ministry of Interior Disaster and Emergency Management Presidency. Retrieved March 7, 2024, from https://deprem.afad.gov.tr/assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20Raporu_ 02.06.2023.pdf
  • AFAD. (2023c). AFAD deperem katalogu. Retrieved March 7, 2024, from https://deprem.afad.gov.tr/event-catalog
  • Aksoy, E., Inceöz, M., & Koçyiǧit, A. (2007). Lake Hazar basin: A negative flower structure on the East Anatolian Fault System (EAFS), SE Turkey. Turkish Journal of Earth Sciences, 16(3), 319–338.
  • Al-Kindi, K. M., Kwan, P., Andrew, N. R., & Welch, M. (2017). Modelling spatiotemporal patterns of dubas bug infestations on date palms in northern Oman: A geographical information system case study. Crop Protection, 93, 113–121. https://doi.org/10.1016/j.cropro.2016.11.033
  • Alkan, H., Büyüksaraç, A., & Bektaş, Ö. (2024). Investigation of earthquake sequence and stress transfer in the Eastern Anatolia Fault Zone by Coulomb stress analysis. Turkish Journal of Earth Science. 33(1), 56–68. https://doi.org/10.55730/1300-0985.1898
  • Arpat, E., & Şaroğlu, F. (1972). Some observations and thoughts on the East Anatolian Fault. Bulletin of the Mineral Research and Exploration, 78(78), 44–50.
  • Cheng, T., Zhao, Y., & Zhao, C. (2022). Exploring the spatio-temporal evolution of economic resilience in Chinese cities during the COVID-19 crisis. Sustainable Cities and Society, 84(126), Article 103997. https://doi.org/10.1016/j.scs.2022.103997
  • Çolak, E., & Sunar, F. (2020). The importance of ground-truth and crowdsourcing data for the statistical and spatial analyses of the NASA FIRMS active fires in the Mediterranean Turkish forests. Remote Sensing Applications: Society and Environment, 19, Article 100327. https://doi.org/10.1016/j.rsase.2020.100327
  • Delmelle, E. (2009). Point pattern analysis. International Encyclopedia of Human Geography, 204–211. https://doi.org/10.1016/B978-008044910-4.00494-6
  • Dai, X., Liu, X., Liu, R., Song, M., Zhu, G., Chang, X., & Guo, J. (2024). Coseismic Slip Distribution and Coulomb Stress Change of the 2023 Mw 7.8 Pazarcik and Mw 7.5 Elbistan Earthquakes in Turkey. Remote Sensing. 16(2), Article 240. https://doi.org/10.3390/rs16020240
  • Dias, V. H. A., Papa, A. R. R., & Ferreira, D. S. R. (2019). Analysis of temporal and spatial distributions between earthquakes in the region of California through Non-Extensive Statistical Mechanics and its limits of validity. Physica A: Statistical Mechanics and Its Applications, 529, Article 121471. https://doi.org/10.1016/j.physa.2019.121471
  • Ferreira, D. S. R., Ribeiro, J., Oliveira, P. S. L., Pimenta, A. R., Freitas, R. P., Dutra, R. S., Papa, A. R. R., & Mendes, J. F. F. (2022). Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data. Chaos, Solitons and Fractals, 165(P2), Article 112814. https://doi.org/10.1016/j.chaos.2022.112814
  • He, L., Feng, G., Xu, W., Wang, Y., Xiong, Z., Gao, H., & Liu, X. (2023). Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence From InSAR and Optical Data. Geophysical Research Letters, 50(17), Article e2023GL104693. https://doi.org/10.1029/2023GL104693
  • Huang, H., Meng, L., Bürgmann, R., Wang, W., & Wang, K. (2020). Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth and Planetary Science Letters, 551, Article 116582. https://doi.org/10.1016/j.epsl.2020.116582
  • Jackson, J., & McKenzie, D. (1984). Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 77(1), 185–264. https://doi.org/10.1111/j.1365-246X.1984.tb01931.x
  • Kadirioğlu, F. T., & Kartal, R. F. (2016). The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turkish Journal of Earth Sciences, 25(4), 300–310. https://doi.org/10.3906/yer-1511-7
  • Kobayashi, T., Munekane, H., Kuwahara, M., & Furui, H. (2023). Insights on the 2023 Kahramanmaraş Earthquake, Turkey, from InSAR: fault locations, rupture styles and induced deformation. Geophysical Journal International, 236(2), 1068–1088. https://doi.org/10.1093/gji/ggad464
  • Li, W., Zhao, L., Tan, K., Lu, X., Zhang, C., Li, C., & Han, S. (2024). Coseismic deformation and fault slip distribution of the 2023 Mw 7.8 and Mw 7.6 earthquakes in Türkiye. Earthquake Science, 37, 263–276. https://doi.org/10.1016/j.eqs.2024.03.006
  • Lyberis, N., Yurur, T., Chorowicz, J., Kasapoglu, E., & Gundogdu, N. (1992). The East Anatolian Fault: an oblique collisional belt. Tectonophysics, 204(1), 1–15. https://doi.org/https://doi.org/10.1016/0040-1951(92)90265-8
  • Mitchell, A. (2005). The ESRI Guide to GIS Analysis (Volume 2). ESRI Press.
  • Munafò, I., Malagnini, L., & Chiaraluce, L. (2016). On the relationship between mw and mL for small earthquakes. Bulletin of the Seismological Society of America, 106(5), 2402–2408. https://doi.org/10.1785/0120160130
  • Nalbant, S. S., McCloskey, J., Steacy, S., & Barka, A. A. (2002). Stress accumulation and increased seismic risk in Eastern Turkey. Earth and Planetary Science Letters, 195(3–4), 291–298. https://doi.org/10.1016/S0012-821X(01)00592-1
  • Ocaña, E., Stich, D., Carmona, E., Vidal, F., Bretón, M., Navarro, M., & García-Jerez, A. (2008). Spatial analysis of the La Paca, SE Spain, 2005 seismic series through the relative location of multiplets and principal component analysis. Physics of the Earth and Planetary Interiors, 166(3–4), 117–127. https://doi.org/10.1016/j.pepi.2007.12.005
  • Över, S., Demirci, A., & Özden, S. (2023). Tectonic implications of the February 2023 Earthquakes (Mw7.7, 7.6 and 6.3) in south-eastern Türkiye. Tectonophysics, 866, Article 230058. https://doi.org/10.1016/j.tecto.2023.230058
  • Rebetsky, Y.L. (2023). Tectonophysical Zoning of Seismic Faults in Eastern Anatolia and February 6, 2023 Kahramanmaraş Earthquakes. Izvestiya, Physics of the Solid Earth, 59, 851-877. https://doi.org/10.1134/S1069351323060174
  • Santos, M., Bateira, C., Soares, L., & Hermenegildo, C. (2014). Hydro-geomorphologic GIS database in Northern Portugal, between 1865 and 2010: Temporal and spatial analysis. International Journal of Disaster Risk Reduction, 10(PA), 143–152. https://doi.org/10.1016/j.ijdrr.2014.08.003
  • Sarfraz, Y., Basharat, M., Riaz, M. T., Akram, M. S., Ahmed, K. S., & Shahzad, A. (2023). Spatio-temporal evolution of landslides along transportation corridors of Muzaffarabad, Northern Pakistan. Environmental Earth Sciences, 82(5), 1–23. https://doi.org/10.1007/s12665-023-10822-5
  • Şaroğlu, F., Emre, Ö., & Kuşçu, I. (1992). The East Anatolian fault zone of Turkey. Annales Tectonicae, 6, 99–125.
  • Şengör, A.M.C., Görür, N., & Şaroğlu, F. (1985). Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. In K. T. Biddle & N. Christie-Blick (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation (Vol. 37). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.85.37.0211
  • Shan, W., Wang, Z., Teng, Y., & Wang, M. (2021). Temporal and spatial evolution analysis of earthquake events in california and nevada based on spatial statistics. ISPRS International Journal of Geo-Information, 10(7), Article 465. https://doi.org/10.3390/ijgi10070465
  • Strategy and Budget Directorate. (2023). 2023 Kahramanmaraş ve Hatay Earthquake Reports. Presidency of the Republic of Turkey Strategy and Budget Department. Retrieved March 7, 2024, from https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay-Depremleri-Raporu.pdf
  • Tikhotsky, S. A., Tatevosyan, R. E., Rebetsky, Y. L., Ovsyuchenko, A. N., & Larkov, A. S. (2023). The 2023 Kahramanmaraş Earthquakes in Turkey: Seismic Movements along Conjugated Faults. Doklady Earth Sciences, 511, 703–709. https://doi.org/10.1134/S1028334X23600974
  • Toda, S., Stein, R. S., Özbakır, A. D., Gonzalez-Huizar, H., Sevilgen, V., Lotto, G., & Sevilgen, S. (2023). Stress change calculations provide clues to aftershocks in 2023 Türkiye earthquakes. Temblor. https://doi.org/http://doi.org/10.32858/temblor.295
  • Utkucu, M, Durmuş, H., Uzunca, F., & Nalbant, S. (2023). A Preliminary Report on the 2023 Gaziantep (Mw=7.7) and Elbistan (Mw=7.5) Earthquakes in Souhteast Türkiye. Sakarya University Disaster Management Application and Research Centerand Department of Geophysics. Retrieved March 7, 2024, from https://jfm.sakarya.edu.tr/sites/jfm.sakarya.edu.tr/file/Rapor1.pdf
  • Veitch, S.A., & Nettles, M. (2012). Spatial and temporal variations in Greenland glacial-earthquake activity, 1993-2010. Journal of Geophysical Research: Earth Surface, 117(4), 1993–2010. https://doi.org/10.1029/2012JF002412
  • Wang, B., Wenzhong, S., & Zelang, M. (2015). Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE2, 10(3), Article e0118537. https://doi.org/https://doi.org/10.1371/journal.pone.0118537
  • Wang, Q., Yue, T.X., Wang, C.L., Fan, Z.M., & Liu, X.H. (2012). Spatial-temporal variations of food provision in China. Procedia Environmental Sciences, 13(2011), 1933–1945. https://doi.org/10.1016/j.proenv.2012.01.187 Westaway, R. (2003). Kinematics of the Middle East and Eastern Mediterranean updated. Turkish Journal of Earth Sciences, 12(1), 5–46.
  • Xu, J., Zhao, Y., Zhong, K., Zhang, F., Liu, X., & Sun, C. (2018). Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery. Science of the Total Environment, 627, 264–281. https://doi.org/10.1016/j.scitotenv.2018.01.155
  • Yang, W., Qi, W., Wang, M., Zhang, J., & Zhang, Y. (2017). Spatial and temporal analyses of post-seismic landslide changes near the epicentre of the Wenchuan earthquake. Geomorphology, 276, 8–15. https://doi.org/10.1016/j.geomorph.2016.10.010
  • Zhang, L., Tao, Z., & Wang, G. (2022). Assessment and determination of earthquake casualty gathering area based on building damage state and spatial characteristics analysis. International Journal of Disaster Risk Reduction, 67, Article 102688. https://doi.org/10.1016/j.ijdrr.2021.102688
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Coğrafi Bilgi Sistemleri ve Mekansal Veri Modelleme, Coğrafi Bilgi Sistemleri, Doğal Afetler
Bölüm Araştırma Makalesi
Yazarlar

Özer Akyürek 0000-0002-5179-0191

Erken Görünüm Tarihi 25 Ocak 2025
Yayımlanma Tarihi 27 Ocak 2025
Gönderilme Tarihi 20 Mart 2024
Kabul Tarihi 4 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Akyürek, Ö. (2025). Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023. Doğal Afetler Ve Çevre Dergisi, 11(1), 34-43. https://doi.org/10.21324/dacd.1455994
AMA Akyürek Ö. Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023. Doğ Afet Çev Derg. Ocak 2025;11(1):34-43. doi:10.21324/dacd.1455994
Chicago Akyürek, Özer. “Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023”. Doğal Afetler Ve Çevre Dergisi 11, sy. 1 (Ocak 2025): 34-43. https://doi.org/10.21324/dacd.1455994.
EndNote Akyürek Ö (01 Ocak 2025) Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023. Doğal Afetler ve Çevre Dergisi 11 1 34–43.
IEEE Ö. Akyürek, “Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023”, Doğ Afet Çev Derg, c. 11, sy. 1, ss. 34–43, 2025, doi: 10.21324/dacd.1455994.
ISNAD Akyürek, Özer. “Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023”. Doğal Afetler ve Çevre Dergisi 11/1 (Ocak 2025), 34-43. https://doi.org/10.21324/dacd.1455994.
JAMA Akyürek Ö. Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023. Doğ Afet Çev Derg. 2025;11:34–43.
MLA Akyürek, Özer. “Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023”. Doğal Afetler Ve Çevre Dergisi, c. 11, sy. 1, 2025, ss. 34-43, doi:10.21324/dacd.1455994.
Vancouver Akyürek Ö. Spatial and Temporal Analysis of Earthquake Events in Kahramanmaraş on 6 February 2023. Doğ Afet Çev Derg. 2025;11(1):34-43.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.