Araştırma Makalesi
BibTex RIS Kaynak Göster

Demiryolu Araçlarında Yalıtım Kalınlığının Vagon İç Sıcaklığına ve Isıl Yüke Etkisinin İncelenmesi

Yıl 2025, Sayı: 22, 106 - 120, 31.07.2025
https://doi.org/10.47072/demiryolu.1725159

Öz

Yolcu taşımacılığında kullanılan vagonlarda yalıtım kalınlığı ve malzemesinin enerji tüketimi üzerindeki etkisi bu çalışmanın odak noktasını oluşturmaktadır. Trenin ısı kayıplarını minimize etme hedefiyle, tren zarfı olarak adlandırılan yapısal model alt bölümlere ayrılarak incelenmiştir. Belirlenen bu bölümler için farklı yalıtım kalınlıkları ve malzeme çeşitleri tanımlanmış, bu sayede parametrik bir analiz gerçekleştirilmiştir. Analizler, yaz ve kış mevsimlerine özgü farklı sıcaklık senaryoları altında enerji tüketimi üzerindeki etkiyi belirlemek üzere yürütülmüştür. Ticari bir mühendislik yazılımı olan ANSYS kullanılarak yapılan bu değerlendirmeler sonucunda elde edilen veriler, karşılaştırmalı analize uygun biçimde derlenmiştir. Çalışma, malzeme ısı iletim katsayısının düşmesi ve yalıtım kalınlığının artmasıyla enerji tüketiminde gözlemlenen azalma arasındaki doğrudan ilişkiyi nicel verilerle desteklemektedir.

Kaynakça

  • [1] A. Uğur, "Demiryolu sektöründe Dünya gelişme beklentileri ve Türkiye’nin durumunun araştırılması," Alphanumeric Journal, vol. 7, no. 2, pp. 369-398, 2019, doi: 10.17093/alphanumeric.582290.
  • [2] M. Aliahmadipour, M. Abdolzadeh, and K. Lari, "Air flow simulation of HVAC system in compartment of a passenger coach," Applied Thermal Engineering, vol. 123, pp. 973-990, 2017, doi: 10.1016/j.applthermaleng.2017.05.086.
  • [3] C. Dullinger, W. Struckl, and M. Kozek, "A modular thermal simulation tool for computing energy consumption of HVAC units in rail vehicles," Applied Thermal Engineering, vol. 78, pp. 616-629, 2015, doi: 10.1016/j.applthermaleng.2014.11.065.
  • [4] J. P. Powell, A. González-Gil, and R. Palacin, "Experimental assessment of the energy consumption of urban rail vehicles during stabling hours: Influence of ambient temperature," Applied Thermal Engineering, vol. 66, no. 1-2, pp. 541-547, 2014, doi: 10.1016/j.applthermaleng.2014.02.057.
  • [5] G. Barone, A. Buonomano, C. Forzano, and A. Palombo, "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, vol. 204, 2020, doi: 10.1016/j.energy.2020.117833.
  • [6] R. N. Hofstadter, J. Amaya, and M. Kozek, "Energy optimal control of thermal comfort in trams," Applied Thermal Engineering, vol. 143, pp. 812-821, 2018, doi: 10.1016/j.applthermaleng.2018.07.084.
  • [7] N. Vetterli, U. P. Menti, F. Sidler, E. Thaler, and G. Zweifel, "Energy efficiency of railway vehicles," in Future Buildings and Districts – From Nano to Urban Scale, CISBAT 2015, Lausanne, Switzerland, 9-11 September 2015, pp. 955-960.
  • [8] H. Amri, R. N. Hofstadter, and M. Kozek, "Energy efficient design and simulation of a demand controlled heating and ventilation unit in a metro vehicle," in 2011 IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna, Austria, 29 June - 01 July 2011: IEEE, pp. 7-12, doi: 10.1109/fists.2011.5973605.
  • [9] D. Marcos, F. J. Pino, C. Bordons, and J. J. Guerra, "The development and validation of a thermal model for the cabin of a vehicle," Applied Thermal Engineering, vol. 66, no. 1-2, pp. 646-656, 2014, doi: 10.1016/j.applthermaleng.2014.02.054.
  • [10] W. Liu, Q. Deng, W. Huang, and R. Liu, "Variation in cooling load of a moving air-conditioned train compartment under the effects of ambient conditions and body thermal storage," Applied Thermal Engineering, vol. 31, no. 6-7, pp. 1150-1162, 2011, doi: 10.1016/j.applthermaleng.2010.12.010.
  • [11] M. Shravanth Vasisht, G. A. Vashista, J. Srinivasan, and S. K. Ramasesha, "Rail coaches with rooftop solar photovoltaic systems: A feasibility study," Energy, vol. 118, pp. 684-691, 2017, doi: 10.1016/j.energy.2016.10.103.
  • [12] F. Ampofo, G. Maidment, and J. Missenden, "Underground railway environment in the UK Part 2: Investigation of heat load," Applied Thermal Engineering, vol. 24, no. 5-6, pp. 633-645, 2004, doi: 10.1016/j.applthermaleng.2003.10.018.
  • [13] Y. A. Çengel and A. J. Ghajar, Heat and mass transfer, 4 ed. New York, ABD: McGraw-Hill Education, 2011.
  • [14] ANSYS Fluent, User’s Guide, Release 14.0.1, ANSYS Inc., Lebanon, NH.

Investigation of the Effect of Insulation Thickness on Interior Wagon Temperature and Thermal Load in Railway Vehicles

Yıl 2025, Sayı: 22, 106 - 120, 31.07.2025
https://doi.org/10.47072/demiryolu.1725159

Öz

This study focuses on the effect of insulation thickness and material on energy consumption in passenger wagons. With the aim of minimizing heat losses of the train, the structural model, referred to as the "train envelope," was divided into sub-sections and examined. Different insulation thicknesses and material types were defined for these determined sections, thereby conducting a parametric analysis. The analyses were carried out under various temperature scenarios specific to summer and winter seasons to determine the effect on energy consumption. The data obtained from these evaluations, performed using ANSYS, a commercial engineering software, were compiled in a format suitable for comparative analysis. The study supports with quantitative data the direct relationship between the decrease in energy consumption and the reduction in the material's thermal conductivity coefficient and the increase in insulation thickness.

Kaynakça

  • [1] A. Uğur, "Demiryolu sektöründe Dünya gelişme beklentileri ve Türkiye’nin durumunun araştırılması," Alphanumeric Journal, vol. 7, no. 2, pp. 369-398, 2019, doi: 10.17093/alphanumeric.582290.
  • [2] M. Aliahmadipour, M. Abdolzadeh, and K. Lari, "Air flow simulation of HVAC system in compartment of a passenger coach," Applied Thermal Engineering, vol. 123, pp. 973-990, 2017, doi: 10.1016/j.applthermaleng.2017.05.086.
  • [3] C. Dullinger, W. Struckl, and M. Kozek, "A modular thermal simulation tool for computing energy consumption of HVAC units in rail vehicles," Applied Thermal Engineering, vol. 78, pp. 616-629, 2015, doi: 10.1016/j.applthermaleng.2014.11.065.
  • [4] J. P. Powell, A. González-Gil, and R. Palacin, "Experimental assessment of the energy consumption of urban rail vehicles during stabling hours: Influence of ambient temperature," Applied Thermal Engineering, vol. 66, no. 1-2, pp. 541-547, 2014, doi: 10.1016/j.applthermaleng.2014.02.057.
  • [5] G. Barone, A. Buonomano, C. Forzano, and A. Palombo, "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, vol. 204, 2020, doi: 10.1016/j.energy.2020.117833.
  • [6] R. N. Hofstadter, J. Amaya, and M. Kozek, "Energy optimal control of thermal comfort in trams," Applied Thermal Engineering, vol. 143, pp. 812-821, 2018, doi: 10.1016/j.applthermaleng.2018.07.084.
  • [7] N. Vetterli, U. P. Menti, F. Sidler, E. Thaler, and G. Zweifel, "Energy efficiency of railway vehicles," in Future Buildings and Districts – From Nano to Urban Scale, CISBAT 2015, Lausanne, Switzerland, 9-11 September 2015, pp. 955-960.
  • [8] H. Amri, R. N. Hofstadter, and M. Kozek, "Energy efficient design and simulation of a demand controlled heating and ventilation unit in a metro vehicle," in 2011 IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna, Austria, 29 June - 01 July 2011: IEEE, pp. 7-12, doi: 10.1109/fists.2011.5973605.
  • [9] D. Marcos, F. J. Pino, C. Bordons, and J. J. Guerra, "The development and validation of a thermal model for the cabin of a vehicle," Applied Thermal Engineering, vol. 66, no. 1-2, pp. 646-656, 2014, doi: 10.1016/j.applthermaleng.2014.02.054.
  • [10] W. Liu, Q. Deng, W. Huang, and R. Liu, "Variation in cooling load of a moving air-conditioned train compartment under the effects of ambient conditions and body thermal storage," Applied Thermal Engineering, vol. 31, no. 6-7, pp. 1150-1162, 2011, doi: 10.1016/j.applthermaleng.2010.12.010.
  • [11] M. Shravanth Vasisht, G. A. Vashista, J. Srinivasan, and S. K. Ramasesha, "Rail coaches with rooftop solar photovoltaic systems: A feasibility study," Energy, vol. 118, pp. 684-691, 2017, doi: 10.1016/j.energy.2016.10.103.
  • [12] F. Ampofo, G. Maidment, and J. Missenden, "Underground railway environment in the UK Part 2: Investigation of heat load," Applied Thermal Engineering, vol. 24, no. 5-6, pp. 633-645, 2004, doi: 10.1016/j.applthermaleng.2003.10.018.
  • [13] Y. A. Çengel and A. J. Ghajar, Heat and mass transfer, 4 ed. New York, ABD: McGraw-Hill Education, 2011.
  • [14] ANSYS Fluent, User’s Guide, Release 14.0.1, ANSYS Inc., Lebanon, NH.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil)
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Mustafa Dönmez 0000-0002-8878-2689

Mehmet Mete Öztürk 0000-0003-4743-5549

Bahadır Doğan 0000-0003-4648-1375

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 24 Haziran 2025
Kabul Tarihi 17 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 22

Kaynak Göster

IEEE M. Dönmez, M. M. Öztürk, ve B. Doğan, “Demiryolu Araçlarında Yalıtım Kalınlığının Vagon İç Sıcaklığına ve Isıl Yüke Etkisinin İncelenmesi”, Demiryolu Mühendisliği, sy. 22, ss. 106–120, Temmuz 2025, doi: 10.47072/demiryolu.1725159.