Derleme
BibTex RIS Kaynak Göster

Hybrid Offshore Wind and Hydrogen Energy Risk Analysis

Yıl 2025, , 102 - 120, 01.05.2025
https://doi.org/10.31202/ecjse.1420397

Öz

The importance of clean energy is gradually increasing for the depletion of fossil fuels, preventing global warming, and a livable and sustainable life. The renewable energies used to achieve this are very diverse. Wind energy and hydrogen energy, which are among these sources, are the subject of this study. In wind energy, it is possible to produce higher power energy by installing wind turbines on the sea, due to the stronger and uninterrupted wind blowing in the seas. There is no continuity of wind energy, it is important to store renewable energy in order to ensure the continuity of the energy to be supplied to the grid and to create the electricity supply and demand balance. In this study, hydrogen storage energy was preferred in terms of having different usage areas and not harming the environment during energy storage. There are various hazards and associated risks during the installation, transportation, production and storage of energy production facilities. These risks need to be identified, analyzed and prevented. In this study, the risks that may be encountered in the offshore wind and hydrogen hybrid power generation and storage facility will be analyzed through literature review and evaluations for prevention will be made.

Destekleyen Kurum

100/2000 YÖK Doktora Bursu

Kaynakça

  • [1] P. Albertus, J. S. Manser, and S. Litzelman, “Long-Duration Electricity Storage Applications,Economics, and Technologies,” Joule, vol. 4, no. 1, pp. 21–32, Jan. 2020, doi: 10.1016/J.JOULE.2019.11.009.
  • [2] F. Zhang, P. Zhao, M. Niu, and J. Maddy, “The survey of key technologies in hydrogen energy storage,” Int. J. Hydrogen Energy, vol. 41, no. 33, pp. 14535–14552, 2016, doi: 10.1016/j.ijhydene.2016.05.293.
  • [3] T. Zhang, “Techno-economic analysis of a nuclear-wind hybrid system with hydrogen storage,” J. Energy Storage, vol. 46, no. September 2021, p. 103807, 2022, doi: 10.1016/j.est.2021.103807.
  • [4] L. Li et al., “Comparative techno-economic analysis of large-scale renewable energy storage technologies,” Energy AI, vol. 14, no. June, p. 100282, 2023, doi: 10.1016/j.egyai.2023.100282.
  • [5] Y. Rong et al., “Techno-economic analysis of hydrogen storage and transportation from hydrogen plant to terminal refueling station,” Int. J. Hydrogen Energy, vol. 52, pp. 547–558, 2024, doi: 10.1016/j.ijhydene.2023.01.187.
  • [6] Y. E. Yüksel and M. Öztürk, “Thermodynamic Analysis of an Integrated Solar-based Chemical Reactor System for Hydrogen Production,” El-Cezerî J. Sci. Eng., vol. 2, no. 2, pp. 19–27, 2015.
  • [7] M. Ozturk and I. Dincer, “Thermodynamic analysis of a solar-based multi-generation system with hydrogen production,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 1235–1244, 2013, doi: 10.1016/j.applthermaleng.2012.11.042.
  • [8] Y. Bicer and I. Dincer, “Development of a new solar and geothermal based combined system for hydrogen production,” Sol. Energy, vol. 127, pp. 269–284, 2016, doi: 10.1016/j.solener.2016.01.031.
  • [9] A. S. Joshi, I. Dincer, and B. V. Reddy, “Effects of various parameters on energy and exergy efficiencies of a solar thermal hydrogen production system,” Int. J. Hydrogen Energy, vol. 41, no. 19, pp. 7997–8007, 2016, doi: 10.1016/j.ijhydene.2016.01.025.
  • [10] K. Saka and A. S. Canbolat, “an Evaluation on Solar Powered Hydrogen Production,” Int. J. Energy Eng. Sci., vol. 3, no. 2, p. 2016, 2018.
  • [11] S. Keykhah, E. Assareh, R. Moltames, A. Taghipour, and H. Barati, “Thermoeconomic Analysis And Multi-Objective Optimization Of An Integrated Solar System For Hydrogen Production Using Particle Swarm Optimization Algorithm,” J. Therm. Eng., vol. 7, no. 4, pp. 746–760, 2021, doi: 10.18186/thermal.915413.
  • [12] M. Ghazvini, M. Sadeghzadeh, M. H. Ahmadi, S. Moosavi, and F. Pourfayaz, “Geothermal energy use in hydrogen production: A review,” Int. J. Energy Res., vol. 43, no. 14, pp. 7823–7851, 2019, doi: 10.1002/er.4778.
  • [13] G. K. Karayel, N. Javani, and I. Dincer, “Effective use of geothermal energy for hydrogen production: A comprehensive application,” Energy, vol. 249, p. 123597, 2022, doi: 10.1016/j.energy.2022.123597.
  • [14] A. Karapekmez and I. Dincer, “Modelling of hydrogen production from hydrogen sulfide in geothermal power plants,” Int. J. Hydrogen Energy, vol. 43, no. 23, pp. 10569–10579, 2018, doi: 10.1016/j.ijhydene.2018.02.020.
  • [15] Z. Akyürek, A. Ö. Akyüz, and A. Güngör, “Potential of Hydrogen Production from Pepper Waste Gasification,” El-Cezeri J. Sci. Eng., vol. 6, no. 2, pp. 382–387, 2019, doi: 10.31202/ecjse.532770.
  • [16] S. Kaya, B. Ozturk, and H. Aykac, “Hydrogen production from renewable source: Biogas,” Proc. 2013 Int. Conf. Renew. Energy Res. Appl. ICRERA 2013, no. October 2013, pp. 633–637, 2013, doi: 10.1109/ICRERA.2013.6749832.
  • [17] H. Ishaq and D. Ibrahim, “An Efficient Energy Utilization of Biomass Energy-Based System for Renewable Hydrogen Production and Storage,” J. Energy Resour. Technol., vol. 144, no. 1, p. 011701, 2022.
  • [18] R. D’Amore-Domenech and T. J. Leo, “Sustainable Hydrogen Production from Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies,” ACS Sustain. Chem. Eng., vol. 7, no. 9, pp. 8006–8022, 2019.
  • [19] J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Chinese J. Catal., vol. 39, no. 3, pp. 390–394, Mar. 2018, doi: 10.1016/S1872-2067(17)62949-8.
  • [20] H. Dagdougui, A. Ouammi, and R. Sacile, “A regional decision support system for onsite renewable hydrogen production from solar and wind energy sources,” Int. J. Hydrogen Energy, vol. 36, no. 22, pp. 14324–14334, Nov. 2011, doi: 10.1016/J.IJHYDENE.2011.08.050.
  • [21] Á. Serna and F. Tadeo, “Offshore hydrogen production from wave energy,” Int. J. Hydrogen Energy, vol. 39, no. 3, pp. 1549–1557, 2014, doi: 10.1016/j.ijhydene.2013.04.113.
  • [22] A. Colucci et al., “An inertial system for the production of electricity and hydrogen from sea wave energy,” Ocean. 2015 - MTS/IEEE Washingt., pp. 1–10, 2016, doi: 10.23919/oceans.2015.7404569.
  • [23] T. C. Moralesa, V. R. Olivab, and L. F. Velázquezc, “Hydrogen from renewable energy in Cuba,” Energy Procedia, vol. 57, pp. 867–876, 2014, doi: 10.1016/j.egypro.2014.10.296.
  • [24] F. Posso, J. Sánchez, J. L. Espinoza, and J. Siguencia, “Preliminary estimation of electrolytic hydrogen production potential from renewable energies in Ecuador,” Int. J. Hydrogen Energy, vol. 41, no. 4, pp. 2326–2344, 2016, doi: 10.1016/j.ijhydene.2015.11.155.
  • [25] N. Norouzi, “An overview on the renewable hydrogen generation market,” -International J. Energy Res., vol. 7513, no. 1, pp. 1–2, 2021.
  • [26] J. M. Bermudez and İ. Hannula, “Hydrogen,” iea, 2021. https://www.iea.org/reports/hydrogen
  • [27] Y. S. H. Najjar, “Hydrogen safety: The road toward green technology,” Int. J. Hydrogen Energy, vol. 38, no. 25, pp. 10716–10728, Aug. 2013, doi: 10.1016/J.IJHYDENE.2013.05.126.
  • [28] N. Kasai, Y. Fujimoto, I. Yamashita, and H. Nagaoka, “The qualitative risk assessment of an electrolytic hydrogen generation system,” Int. J. Hydrogen Energy, vol. 41, no. 30, 2016, doi: 10.1016/j.ijhydene.2016.05.231.
  • [29] E. Zarei, F. Khan, and M. Yazdi, “A dynamic risk model to analyze hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 46, no. 5, 2021, doi: 10.1016/j.ijhydene.2020.10.191.
  • [30] M. Cristina Galassi et al., “HIAD – hydrogen incident and accident database,” Int. J. Hydrogen Energy, vol. 37, no. 22, pp. 17351–17357, Nov. 2012, doi: 10.1016/J.IJHYDENE.2012.06.018.
  • [31] K. M. Groth and E. S. Hecht, “HyRAM: A methodology and toolkit for quantitative risk assessment of hydrogen systems,” Int. J. Hydrogen Energy, vol. 42, no. 11, 2017, doi: 10.1016/j.ijhydene.2016.07.002.
  • [32] T. Skjold et al., “3D risk management for hydrogen installations,” Int. J. Hydrogen Energy, vol. 42, no. 11, 2017, doi: 10.1016/j.ijhydene.2016.07.006.
  • [33] K. M. Groth, E. S. Hecht, and J. T. Reynolds, “Methodology for assessing the safety of Hydrogen Systems : HyRAM 1 . 0 technical reference manual,” Sandia Rep., no. March, 2015.
  • [34] N. R. Mirza, S. Degenkolbe, and W. Witt, “Analysis of hydrogen incidents to support risk assessment,” Int. J. Hydrogen Energy, vol. 36, no. 18, 2011, doi: 10.1016/j.ijhydene.2011.06.080.
  • [35] A. C. LaFleur, A. B. Muna, and K. M. Groth, “Application of quantitative risk assessment for performance-based permitting of hydrogen fueling stations,” Int. J. Hydrogen Energy, vol. 42, no. 11, pp. 7529–7535, Mar. 2017, doi: 10.1016/J.IJHYDENE.2016.06.167.
  • [36] B. H. Yoo, S. Wilailak, S. H. Bae, H. R. Gye, and C. J. Lee, “Comparative risk assessment of liquefied and gaseous hydrogen refueling stations,” Int. J. Hydrogen Energy, vol. 46, no. 71, pp. 35511–35524, Oct. 2021, doi: 10.1016/j.ijhydene.2021.08.073.
  • [37] C. Correa-Jullian and K. M. Groth, “Data requirements for improving the Quantitative Risk Assessment of liquid hydrogen storage systems,” Int. J. Hydrogen Energy, vol. 47, no. 6, 2022, doi: 10.1016/j.ijhydene.2021.10.266.
  • [38] M. Honselaar, G. Pasaoglu, and A. Martens, “Hydrogen refuelling stations in the Netherlands: An intercomparison of quantitative risk assessments used for permitting,” Int. J. Hydrogen Energy, vol. 43, no. 27, pp. 12278–12294, Jul. 2018, doi: 10.1016/J.IJHYDENE.2018.04.111.
  • [39] B. J. Lowesmith, G. Hankinson, and S. Chynoweth, “Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS,” Int. J. Hydrogen Energy, vol. 39, no. 35, pp. 20516–20521, Dec. 2014, doi: 10.1016/J.IJHYDENE.2014.08.002.
  • [40] T. Suzuki et al., “Quantitative risk assessment using a Japanese hydrogen refueling station model,” Int. J. Hydrogen Energy, vol. 46, no. 11, pp. 8329–8343, Feb. 2021, doi: 10.1016/J.IJHYDENE.2020.12.035.
  • [41] L. Pu, X. Shao, S. Zhang, G. Lei, and Y. Li, “Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage,” Asia-Pacific J. Chem. Eng., vol. 14, no. 2, 2019, doi: 10.1002/apj.2299.
  • [42] Y. Chang, C. Zhang, J. Shi, J. Li, S. Zhang, and G. Chen, “Dynamic Bayesian network based approach for risk analysis of hydrogen generation unit leakage,” Int. J. Hydrogen Energy, vol. 44, no. 48, 2019, doi: 10.1016/j.ijhydene.2019.08.065.
  • [43] L. Zhiyong, P. Xiangmin, and M. Jianxin, “Quantitative risk assessment on 2010 Expo hydrogen station,” Int. J. Hydrogen Energy, vol. 36, no. 6, 2011, doi: 10.1016/j.ijhydene.2010.12.068.
  • [44] L. Zhiyong, P. Xiangmin, and M. Jianxin, “Quantitative risk assessment on a gaseous hydrogen refueling station in Shanghai,” Int. J. Hydrogen Energy, vol. 35, no. 13, 2010, doi: 10.1016/j.ijhydene.2010.04.031.
  • [45] H. Hadef, B. Negrou, T. G. Ayuso, M. Djebabra, and M. Ramadan, “Preliminary hazard identification for risk assessment on a complex system for hydrogen production,” Int. J. Hydrogen Energy, vol. 45, no. 20, 2020, doi: 10.1016/j.ijhydene.2019.10.162.
  • [46] E. Abohamzeh, F. Salehi, M. Sheikholeslami, R. Abbassi, and F. Khan, “Review of hydrogen safety during storage, transmission, and applications processes,” J. Loss Prev. Process Ind., vol. 72, p. 104569, Sep. 2021, doi: 10.1016/J.JLP.2021.104569.
  • [47] M. J. Jafari, E. Zarei, and N. Badri, “The quantitative risk assessment of a hydrogen generation unit,” Int. J. Hydrogen Energy, vol. 37, no. 24, 2012, doi: 10.1016/j.ijhydene.2012.09.082.
  • [48] I. Mohammadfam and E. Zarei, “Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: A comprehensive risk analysis framework,” Int. J. Hydrogen Energy, vol. 40, no. 39, 2015, doi: 10.1016/j.ijhydene.2015.07.117.
  • [49] J. Shi et al., “Stochastic explosion risk analysis of hydrogen production facilities,” Int. J. Hydrogen Energy, vol. 45, no. 24, 2020, doi: 10.1016/j.ijhydene.2020.03.040.
  • [50] O. R. Hansen, “Hydrogen infrastructure—Efficient risk assessment and design optimization approach to ensure safe and practical solutions,” Process Saf. Environ. Prot., vol. 143, pp. 164–176, Nov. 2020, doi: 10.1016/j.psep.2020.06.028.
  • [51] F. Ustolin, N. Paltrinieri, and G. Landucci, “An innovative and comprehensive approach for the consequence analysis of liquid hydrogen vessel explosions,” J. Loss Prev. Process Ind., vol. 68, Nov. 2020, doi: 10.1016/j.jlp.2020.104323.
  • [52] J. Lachance, A. Tchouvelev, and A. Engebo, “Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 36, no. 3, 2011, doi: 10.1016/j.ijhydene.2010.03.139.
  • [53] Y. Huang and G. Ma, “A grid-based risk screening method for fire and explosion events of hydrogen refuelling stations,” Int. J. Hydrogen Energy, vol. 43, no. 1, pp. 442–454, Jan. 2018, doi: 10.1016/J.IJHYDENE.2017.10.153.
  • [54] J. Kim, Y. Lee, and I. Moon, “An index-based risk assessment model for hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 36, no. 11, pp. 6387–6398, Jun. 2011, doi: 10.1016/J.IJHYDENE.2011.02.127.
  • [55] R. Moradi and K. M. Groth, “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 12254– 12269, May 2019, doi: 10.1016/J.IJHYDENE.2019.03.041.
  • [56] M. Spada, P. Burgherr, and P. Boutinard Rouelle, “Comparative risk assessment with focus onpp. 9470–9481, May 2018, doi: 10.1016/j.ijhydene.2018.04.004.
  • [57] X. Li, Z. Han, R. Zhang, Y. Zhang, and L. Zhang, “Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach,” Int. J. Hydrogen Energy, vol. 45, no. 53, pp. 29630–29642, Oct. 2020, doi: 10.1016/j.ijhydene.2020.07.243.
  • [58] A. A. Malakhov, A. V. Avdeenkov, M. H. du Toit, and D. G. Bessarabov, “CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation,” Int. J. Hydrogen Energy, vol. 45, no. 15, pp. 9231–9240, Mar. 2020, doi: 10.1016/j.ijhydene.2020.01.035.
  • [59] H. J. Pasman, “Challenges to improve confidence level of risk assessment of hydrogen technologies,” Int. J. Hydrogen Energy, vol. 36, no. 3, 2011, doi: 10.1016/j.ijhydene.2010.05.019.
  • [60] G. P. Haugom and P. Friis-Hansen, “Risk modelling of a hydrogen refuelling station using Bayesian network,” Int. J. Hydrogen Energy, vol. 36, no. 3, 2011, doi: 10.1016/j.ijhydene.2010.04.131.
  • [61] C. Y. Lam, M. Fuse, and T. Shimizu, “Assessment of risk factors and effects in hydrogen logistics incidents from a network modeling perspective,” Int. J. Hydrogen Energy, vol. 44, no. 36, pp. 20572–20586, Jul. 2019, doi: 10.1016/J.IJHYDENE.2019.05.187.
  • [62] P. H. C. Lins and A. T. De Almeida, “Multidimensional risk analysis of hydrogen pipelines,” Int. J. Hydrogen Energy, vol. 37, no. 18, pp. 13545–13554, Sep. 2012, doi: 10.1016/J.IJHYDENE.2012.06.078.
  • [63] H. A. J. Froeling, M. T. Dröge, G. F. Nane, and A. J. M. Van Wijk, “Quantitative risk analysis of a hazardous jet fire event for hydrogen transport in natural gas transmission pipelines,” Int. J. Hydrogen Energy, vol. 46, no. 17, pp. 10411–10422, Mar. 2021, doi: 10.1016/j.ijhydene.2020.11.248.
  • [64] M. Moonis, A. J. Wilday, and M. J. Wardman, “Semi-quantitative risk assessment of commercial scale supply chain of hydrogen fuel and implications for industry and society,” Process Saf. Environ. Prot., vol. 88, no. 2, 2010, doi: 10.1016/j.psep.2009.11.006.
  • [65] J. Mouli-Castillo, S. R. Haszeldine, K. Kinsella, M. Wheeldon, and A. McIntosh, “A quantitative risk assessment of a domestic property connected to a hydrogen distribution network,” Int. J. Hydrogen Energy, vol. 46, no. 29, pp. 16217–16231, Apr. 2021, doi: 10.1016/J.IJHYDENE.2021.02.114.
  • [66] M. Molnarne and V. Schroeder, “Hazardous properties of hydrogen and hydrogen containing fuel gases,” Process Saf. Environ. Prot., vol. 130, pp. 1–5, Oct. 2019, doi: 10.1016/j.psep.2019.07.012.
  • [67] Z. labidine Messaoudani, F. Rigas, M. D. Binti Hamid, and C. R. Che Hassan, “Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review,” Int. J. Hydrogen Energy, vol. 41, no. 39, pp. 17511–17525, Oct. 2016, doi: 10.1016/J.IJHYDENE.2016.07.171.
  • [68] K. M. Groth and A. V. Tchouvelev, “A toolkit for integrated deterministic and probabilistic risk assessment for hydrogen infrastructure,” 2014.
  • [69] E. Zarei, F. Khan, and M. Yazdi, “A dynamic risk model to analyze hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 46, no. 5, pp. 4626–4643, Jan. 2021, doi: 10.1016/J.IJHYDENE.2020.10.191.
  • [70] M. Honselaar, G. Pasaoglu, and A. Martens, “Hydrogen refuelling stations in the Netherlands: An intercomparison of quantitative risk assessments used for permitting,” Int. J. Hydrogen Energy, vol. 43, no. 27, pp. 12278–12294, 2018, doi: 10.1016/j.ijhydene.2018.04.111.
  • [71] J. Kim, Y. Lee, and I. Moon, “An index-based risk assessment model for hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 36, no. 11, 2011, doi: 10.1016/j.ijhydene.2011.02.127.
  • [72] Z. Hameed, J. Vatn, and J. Heggset, “Challenges in the reliability and maintainability data collection for offshore wind turbines,” Renew. Energy, vol. 36, no. 8, pp. 2154–2165, Aug. 2011, doi: 10.1016/J.RENENE.2011.01.008.
  • [73] R. Mogre, S. S. Talluri, and F. Damico, “A decision framework to mitigate supply chain risks: An10.1109/TEM.2016.2567539.
  • [74] F. Dinmohammadi and M. Shafiee, “A fuzzy-FMEA risk assessment approach for offshore wind turbines,” Int. J. Progn. Heal. Manag., vol. 4, no. SPECIAL ISSUE 2, 2013, doi: 10.36001/ijphm.2013.v4i3.2143.
  • [75] M. Leimeister and A. Kolios, “A review of reliability-based methods for risk analysis and their application in the offshore wind industry,” Renewable and Sustainable Energy Reviews, vol. 91. 2018. doi: 10.1016/j.rser.2018.04.004.
  • [76] M. Shafiee, “A fuzzy analytic network process model to mitigate the risks associated with offshore wind farms,” Expert Syst. Appl., vol. 42, no. 4, pp. 2143–2152, Mar. 2015, doi: 10.1016/J.ESWA.2014.10.019.
  • [77] M. M. Luengo and A. Kolios, “Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review,” vol. 8, pp. 8339–8354, 2007, doi: 10.3390/en8088339.
  • [78] N. Khakzad, F. Khan, and P. Amyotte, “Quantitative risk analysis of offshore drilling operations: A Bayesian approach,” Saf. Sci., vol. 57, 2013, doi: 10.1016/j.ssci.2013.01.022.
  • [79] G. Song, F. Khan, H. Wang, S. Leighton, Z. Yuan, and H. Liu, “Dynamic occupational risk model for offshore operations in harsh environments,” Reliab. Eng. Syst. Saf., vol. 150, pp. 58–64, Jun. 2016, doi: 10.1016/J.RESS.2016.01.021.
  • [80] X. Zhang, L. Sun, H. Sun, Q. Guo, and X. Bai, “Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA,” J. Wind Eng. Ind. Aerodyn., vol. 154, pp. 21–33, Jul. 2016, doi: 10.1016/J.JWEIA.2016.04.005.
  • [81] A. A. Taflanidis, E. Loukogeorgaki, and D. C. Angelides, “Offshore wind turbine risk quantification/evaluation under extreme environmental conditions,” Reliab. Eng. Syst. Saf., vol. 115, 2013, doi: 10.1016/j.ress.2013.02.003.
  • [82] J. J. Nielsen and J. D. Sørensen, “On risk-based operation and maintenance of offshore wind turbine components,” in Reliability Engineering and System Safety, 2011, vol. 96, no. 1. doi: 10.1016/j.ress.2010.07.007.
  • [83] J. S. Chou, P. C. Liao, and C. Da Yeh, “Risk analysis and management of construction and operations in offshore wind power project,” Sustain., vol. 13, no. 13, 2021, doi: 10.3390/su13137473.
  • [84] A. Staid and S. D. Guikema, “Risk Analysis for U.S. Offshore Wind Farms: The Need for an Integrated Approach,” Risk Analysis, vol. 35, no. 4. 2015. doi: 10.1111/risa.12324.
  • [85] J. Kang, L. Sun, H. Sun, and C. Wu, “Risk assessment of floating offshore wind turbine based on correlation-FMEA,” Ocean Eng., vol. 129, 2017, doi: 10.1016/j.oceaneng.2016.11.048.
  • [86] K. Gkoumas, “A risk analysis framework for offshore wind turbines,” 2010. doi: 10.1061/41096(366)179.
  • [87] D. C. Álvarez, A. L. Rodríguez, and J. A. M. Dono, “Risk management and design of mitigation plans through discrete events simulation and genetic algorithms in offshore wind processes,” Int. J. Serv. Comput. Oriented Manuf., vol. 3, pp. 274–292, 2018.
  • [88] S. Zhou and P. Yang, “Risk management in distributed wind energy implementing Analytic Hierarchy Process,” Renew. Energy, vol. 150, 2020, doi: 10.1016/j.renene.2019.12.125.
  • [89] M. Desholm and J. Kahlert, “Avian collision risk at an offshore wind farm,” Biol. Lett., vol. 1, no. 3, pp. 296–298, 2005, doi: 10.1098/rsbl.2005.0336.
  • [90] B. Ram, “Assessing integrated risks of offshore wind projects: Moving towards gigawatt-scale deployments,” Wind Eng., vol. 35, no. 3, 2011, doi: 10.1260/0309-524X.35.3.247.
  • [91] X. Bai, L. Sun, and H. Sun, “Risk assessment of hoisting aboard and installation for offshore wind turbine,” in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2012, vol. 2, pp. 107–144. doi: 10.1115/OMAE2012-83187.
  • [92] N. Gatzert and T. Kosub, “Risks and risk management of renewable energy projects: The case ofonshore and offshore wind parks,” Renew. Sustain. Energy Rev., vol. 60, pp. 982–998, Jul. 2016, doi: 10.1016/J.RSER.2016.01.103.
Yıl 2025, , 102 - 120, 01.05.2025
https://doi.org/10.31202/ecjse.1420397

Öz

Kaynakça

  • [1] P. Albertus, J. S. Manser, and S. Litzelman, “Long-Duration Electricity Storage Applications,Economics, and Technologies,” Joule, vol. 4, no. 1, pp. 21–32, Jan. 2020, doi: 10.1016/J.JOULE.2019.11.009.
  • [2] F. Zhang, P. Zhao, M. Niu, and J. Maddy, “The survey of key technologies in hydrogen energy storage,” Int. J. Hydrogen Energy, vol. 41, no. 33, pp. 14535–14552, 2016, doi: 10.1016/j.ijhydene.2016.05.293.
  • [3] T. Zhang, “Techno-economic analysis of a nuclear-wind hybrid system with hydrogen storage,” J. Energy Storage, vol. 46, no. September 2021, p. 103807, 2022, doi: 10.1016/j.est.2021.103807.
  • [4] L. Li et al., “Comparative techno-economic analysis of large-scale renewable energy storage technologies,” Energy AI, vol. 14, no. June, p. 100282, 2023, doi: 10.1016/j.egyai.2023.100282.
  • [5] Y. Rong et al., “Techno-economic analysis of hydrogen storage and transportation from hydrogen plant to terminal refueling station,” Int. J. Hydrogen Energy, vol. 52, pp. 547–558, 2024, doi: 10.1016/j.ijhydene.2023.01.187.
  • [6] Y. E. Yüksel and M. Öztürk, “Thermodynamic Analysis of an Integrated Solar-based Chemical Reactor System for Hydrogen Production,” El-Cezerî J. Sci. Eng., vol. 2, no. 2, pp. 19–27, 2015.
  • [7] M. Ozturk and I. Dincer, “Thermodynamic analysis of a solar-based multi-generation system with hydrogen production,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 1235–1244, 2013, doi: 10.1016/j.applthermaleng.2012.11.042.
  • [8] Y. Bicer and I. Dincer, “Development of a new solar and geothermal based combined system for hydrogen production,” Sol. Energy, vol. 127, pp. 269–284, 2016, doi: 10.1016/j.solener.2016.01.031.
  • [9] A. S. Joshi, I. Dincer, and B. V. Reddy, “Effects of various parameters on energy and exergy efficiencies of a solar thermal hydrogen production system,” Int. J. Hydrogen Energy, vol. 41, no. 19, pp. 7997–8007, 2016, doi: 10.1016/j.ijhydene.2016.01.025.
  • [10] K. Saka and A. S. Canbolat, “an Evaluation on Solar Powered Hydrogen Production,” Int. J. Energy Eng. Sci., vol. 3, no. 2, p. 2016, 2018.
  • [11] S. Keykhah, E. Assareh, R. Moltames, A. Taghipour, and H. Barati, “Thermoeconomic Analysis And Multi-Objective Optimization Of An Integrated Solar System For Hydrogen Production Using Particle Swarm Optimization Algorithm,” J. Therm. Eng., vol. 7, no. 4, pp. 746–760, 2021, doi: 10.18186/thermal.915413.
  • [12] M. Ghazvini, M. Sadeghzadeh, M. H. Ahmadi, S. Moosavi, and F. Pourfayaz, “Geothermal energy use in hydrogen production: A review,” Int. J. Energy Res., vol. 43, no. 14, pp. 7823–7851, 2019, doi: 10.1002/er.4778.
  • [13] G. K. Karayel, N. Javani, and I. Dincer, “Effective use of geothermal energy for hydrogen production: A comprehensive application,” Energy, vol. 249, p. 123597, 2022, doi: 10.1016/j.energy.2022.123597.
  • [14] A. Karapekmez and I. Dincer, “Modelling of hydrogen production from hydrogen sulfide in geothermal power plants,” Int. J. Hydrogen Energy, vol. 43, no. 23, pp. 10569–10579, 2018, doi: 10.1016/j.ijhydene.2018.02.020.
  • [15] Z. Akyürek, A. Ö. Akyüz, and A. Güngör, “Potential of Hydrogen Production from Pepper Waste Gasification,” El-Cezeri J. Sci. Eng., vol. 6, no. 2, pp. 382–387, 2019, doi: 10.31202/ecjse.532770.
  • [16] S. Kaya, B. Ozturk, and H. Aykac, “Hydrogen production from renewable source: Biogas,” Proc. 2013 Int. Conf. Renew. Energy Res. Appl. ICRERA 2013, no. October 2013, pp. 633–637, 2013, doi: 10.1109/ICRERA.2013.6749832.
  • [17] H. Ishaq and D. Ibrahim, “An Efficient Energy Utilization of Biomass Energy-Based System for Renewable Hydrogen Production and Storage,” J. Energy Resour. Technol., vol. 144, no. 1, p. 011701, 2022.
  • [18] R. D’Amore-Domenech and T. J. Leo, “Sustainable Hydrogen Production from Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies,” ACS Sustain. Chem. Eng., vol. 7, no. 9, pp. 8006–8022, 2019.
  • [19] J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Chinese J. Catal., vol. 39, no. 3, pp. 390–394, Mar. 2018, doi: 10.1016/S1872-2067(17)62949-8.
  • [20] H. Dagdougui, A. Ouammi, and R. Sacile, “A regional decision support system for onsite renewable hydrogen production from solar and wind energy sources,” Int. J. Hydrogen Energy, vol. 36, no. 22, pp. 14324–14334, Nov. 2011, doi: 10.1016/J.IJHYDENE.2011.08.050.
  • [21] Á. Serna and F. Tadeo, “Offshore hydrogen production from wave energy,” Int. J. Hydrogen Energy, vol. 39, no. 3, pp. 1549–1557, 2014, doi: 10.1016/j.ijhydene.2013.04.113.
  • [22] A. Colucci et al., “An inertial system for the production of electricity and hydrogen from sea wave energy,” Ocean. 2015 - MTS/IEEE Washingt., pp. 1–10, 2016, doi: 10.23919/oceans.2015.7404569.
  • [23] T. C. Moralesa, V. R. Olivab, and L. F. Velázquezc, “Hydrogen from renewable energy in Cuba,” Energy Procedia, vol. 57, pp. 867–876, 2014, doi: 10.1016/j.egypro.2014.10.296.
  • [24] F. Posso, J. Sánchez, J. L. Espinoza, and J. Siguencia, “Preliminary estimation of electrolytic hydrogen production potential from renewable energies in Ecuador,” Int. J. Hydrogen Energy, vol. 41, no. 4, pp. 2326–2344, 2016, doi: 10.1016/j.ijhydene.2015.11.155.
  • [25] N. Norouzi, “An overview on the renewable hydrogen generation market,” -International J. Energy Res., vol. 7513, no. 1, pp. 1–2, 2021.
  • [26] J. M. Bermudez and İ. Hannula, “Hydrogen,” iea, 2021. https://www.iea.org/reports/hydrogen
  • [27] Y. S. H. Najjar, “Hydrogen safety: The road toward green technology,” Int. J. Hydrogen Energy, vol. 38, no. 25, pp. 10716–10728, Aug. 2013, doi: 10.1016/J.IJHYDENE.2013.05.126.
  • [28] N. Kasai, Y. Fujimoto, I. Yamashita, and H. Nagaoka, “The qualitative risk assessment of an electrolytic hydrogen generation system,” Int. J. Hydrogen Energy, vol. 41, no. 30, 2016, doi: 10.1016/j.ijhydene.2016.05.231.
  • [29] E. Zarei, F. Khan, and M. Yazdi, “A dynamic risk model to analyze hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 46, no. 5, 2021, doi: 10.1016/j.ijhydene.2020.10.191.
  • [30] M. Cristina Galassi et al., “HIAD – hydrogen incident and accident database,” Int. J. Hydrogen Energy, vol. 37, no. 22, pp. 17351–17357, Nov. 2012, doi: 10.1016/J.IJHYDENE.2012.06.018.
  • [31] K. M. Groth and E. S. Hecht, “HyRAM: A methodology and toolkit for quantitative risk assessment of hydrogen systems,” Int. J. Hydrogen Energy, vol. 42, no. 11, 2017, doi: 10.1016/j.ijhydene.2016.07.002.
  • [32] T. Skjold et al., “3D risk management for hydrogen installations,” Int. J. Hydrogen Energy, vol. 42, no. 11, 2017, doi: 10.1016/j.ijhydene.2016.07.006.
  • [33] K. M. Groth, E. S. Hecht, and J. T. Reynolds, “Methodology for assessing the safety of Hydrogen Systems : HyRAM 1 . 0 technical reference manual,” Sandia Rep., no. March, 2015.
  • [34] N. R. Mirza, S. Degenkolbe, and W. Witt, “Analysis of hydrogen incidents to support risk assessment,” Int. J. Hydrogen Energy, vol. 36, no. 18, 2011, doi: 10.1016/j.ijhydene.2011.06.080.
  • [35] A. C. LaFleur, A. B. Muna, and K. M. Groth, “Application of quantitative risk assessment for performance-based permitting of hydrogen fueling stations,” Int. J. Hydrogen Energy, vol. 42, no. 11, pp. 7529–7535, Mar. 2017, doi: 10.1016/J.IJHYDENE.2016.06.167.
  • [36] B. H. Yoo, S. Wilailak, S. H. Bae, H. R. Gye, and C. J. Lee, “Comparative risk assessment of liquefied and gaseous hydrogen refueling stations,” Int. J. Hydrogen Energy, vol. 46, no. 71, pp. 35511–35524, Oct. 2021, doi: 10.1016/j.ijhydene.2021.08.073.
  • [37] C. Correa-Jullian and K. M. Groth, “Data requirements for improving the Quantitative Risk Assessment of liquid hydrogen storage systems,” Int. J. Hydrogen Energy, vol. 47, no. 6, 2022, doi: 10.1016/j.ijhydene.2021.10.266.
  • [38] M. Honselaar, G. Pasaoglu, and A. Martens, “Hydrogen refuelling stations in the Netherlands: An intercomparison of quantitative risk assessments used for permitting,” Int. J. Hydrogen Energy, vol. 43, no. 27, pp. 12278–12294, Jul. 2018, doi: 10.1016/J.IJHYDENE.2018.04.111.
  • [39] B. J. Lowesmith, G. Hankinson, and S. Chynoweth, “Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS,” Int. J. Hydrogen Energy, vol. 39, no. 35, pp. 20516–20521, Dec. 2014, doi: 10.1016/J.IJHYDENE.2014.08.002.
  • [40] T. Suzuki et al., “Quantitative risk assessment using a Japanese hydrogen refueling station model,” Int. J. Hydrogen Energy, vol. 46, no. 11, pp. 8329–8343, Feb. 2021, doi: 10.1016/J.IJHYDENE.2020.12.035.
  • [41] L. Pu, X. Shao, S. Zhang, G. Lei, and Y. Li, “Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage,” Asia-Pacific J. Chem. Eng., vol. 14, no. 2, 2019, doi: 10.1002/apj.2299.
  • [42] Y. Chang, C. Zhang, J. Shi, J. Li, S. Zhang, and G. Chen, “Dynamic Bayesian network based approach for risk analysis of hydrogen generation unit leakage,” Int. J. Hydrogen Energy, vol. 44, no. 48, 2019, doi: 10.1016/j.ijhydene.2019.08.065.
  • [43] L. Zhiyong, P. Xiangmin, and M. Jianxin, “Quantitative risk assessment on 2010 Expo hydrogen station,” Int. J. Hydrogen Energy, vol. 36, no. 6, 2011, doi: 10.1016/j.ijhydene.2010.12.068.
  • [44] L. Zhiyong, P. Xiangmin, and M. Jianxin, “Quantitative risk assessment on a gaseous hydrogen refueling station in Shanghai,” Int. J. Hydrogen Energy, vol. 35, no. 13, 2010, doi: 10.1016/j.ijhydene.2010.04.031.
  • [45] H. Hadef, B. Negrou, T. G. Ayuso, M. Djebabra, and M. Ramadan, “Preliminary hazard identification for risk assessment on a complex system for hydrogen production,” Int. J. Hydrogen Energy, vol. 45, no. 20, 2020, doi: 10.1016/j.ijhydene.2019.10.162.
  • [46] E. Abohamzeh, F. Salehi, M. Sheikholeslami, R. Abbassi, and F. Khan, “Review of hydrogen safety during storage, transmission, and applications processes,” J. Loss Prev. Process Ind., vol. 72, p. 104569, Sep. 2021, doi: 10.1016/J.JLP.2021.104569.
  • [47] M. J. Jafari, E. Zarei, and N. Badri, “The quantitative risk assessment of a hydrogen generation unit,” Int. J. Hydrogen Energy, vol. 37, no. 24, 2012, doi: 10.1016/j.ijhydene.2012.09.082.
  • [48] I. Mohammadfam and E. Zarei, “Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: A comprehensive risk analysis framework,” Int. J. Hydrogen Energy, vol. 40, no. 39, 2015, doi: 10.1016/j.ijhydene.2015.07.117.
  • [49] J. Shi et al., “Stochastic explosion risk analysis of hydrogen production facilities,” Int. J. Hydrogen Energy, vol. 45, no. 24, 2020, doi: 10.1016/j.ijhydene.2020.03.040.
  • [50] O. R. Hansen, “Hydrogen infrastructure—Efficient risk assessment and design optimization approach to ensure safe and practical solutions,” Process Saf. Environ. Prot., vol. 143, pp. 164–176, Nov. 2020, doi: 10.1016/j.psep.2020.06.028.
  • [51] F. Ustolin, N. Paltrinieri, and G. Landucci, “An innovative and comprehensive approach for the consequence analysis of liquid hydrogen vessel explosions,” J. Loss Prev. Process Ind., vol. 68, Nov. 2020, doi: 10.1016/j.jlp.2020.104323.
  • [52] J. Lachance, A. Tchouvelev, and A. Engebo, “Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 36, no. 3, 2011, doi: 10.1016/j.ijhydene.2010.03.139.
  • [53] Y. Huang and G. Ma, “A grid-based risk screening method for fire and explosion events of hydrogen refuelling stations,” Int. J. Hydrogen Energy, vol. 43, no. 1, pp. 442–454, Jan. 2018, doi: 10.1016/J.IJHYDENE.2017.10.153.
  • [54] J. Kim, Y. Lee, and I. Moon, “An index-based risk assessment model for hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 36, no. 11, pp. 6387–6398, Jun. 2011, doi: 10.1016/J.IJHYDENE.2011.02.127.
  • [55] R. Moradi and K. M. Groth, “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 12254– 12269, May 2019, doi: 10.1016/J.IJHYDENE.2019.03.041.
  • [56] M. Spada, P. Burgherr, and P. Boutinard Rouelle, “Comparative risk assessment with focus onpp. 9470–9481, May 2018, doi: 10.1016/j.ijhydene.2018.04.004.
  • [57] X. Li, Z. Han, R. Zhang, Y. Zhang, and L. Zhang, “Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach,” Int. J. Hydrogen Energy, vol. 45, no. 53, pp. 29630–29642, Oct. 2020, doi: 10.1016/j.ijhydene.2020.07.243.
  • [58] A. A. Malakhov, A. V. Avdeenkov, M. H. du Toit, and D. G. Bessarabov, “CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation,” Int. J. Hydrogen Energy, vol. 45, no. 15, pp. 9231–9240, Mar. 2020, doi: 10.1016/j.ijhydene.2020.01.035.
  • [59] H. J. Pasman, “Challenges to improve confidence level of risk assessment of hydrogen technologies,” Int. J. Hydrogen Energy, vol. 36, no. 3, 2011, doi: 10.1016/j.ijhydene.2010.05.019.
  • [60] G. P. Haugom and P. Friis-Hansen, “Risk modelling of a hydrogen refuelling station using Bayesian network,” Int. J. Hydrogen Energy, vol. 36, no. 3, 2011, doi: 10.1016/j.ijhydene.2010.04.131.
  • [61] C. Y. Lam, M. Fuse, and T. Shimizu, “Assessment of risk factors and effects in hydrogen logistics incidents from a network modeling perspective,” Int. J. Hydrogen Energy, vol. 44, no. 36, pp. 20572–20586, Jul. 2019, doi: 10.1016/J.IJHYDENE.2019.05.187.
  • [62] P. H. C. Lins and A. T. De Almeida, “Multidimensional risk analysis of hydrogen pipelines,” Int. J. Hydrogen Energy, vol. 37, no. 18, pp. 13545–13554, Sep. 2012, doi: 10.1016/J.IJHYDENE.2012.06.078.
  • [63] H. A. J. Froeling, M. T. Dröge, G. F. Nane, and A. J. M. Van Wijk, “Quantitative risk analysis of a hazardous jet fire event for hydrogen transport in natural gas transmission pipelines,” Int. J. Hydrogen Energy, vol. 46, no. 17, pp. 10411–10422, Mar. 2021, doi: 10.1016/j.ijhydene.2020.11.248.
  • [64] M. Moonis, A. J. Wilday, and M. J. Wardman, “Semi-quantitative risk assessment of commercial scale supply chain of hydrogen fuel and implications for industry and society,” Process Saf. Environ. Prot., vol. 88, no. 2, 2010, doi: 10.1016/j.psep.2009.11.006.
  • [65] J. Mouli-Castillo, S. R. Haszeldine, K. Kinsella, M. Wheeldon, and A. McIntosh, “A quantitative risk assessment of a domestic property connected to a hydrogen distribution network,” Int. J. Hydrogen Energy, vol. 46, no. 29, pp. 16217–16231, Apr. 2021, doi: 10.1016/J.IJHYDENE.2021.02.114.
  • [66] M. Molnarne and V. Schroeder, “Hazardous properties of hydrogen and hydrogen containing fuel gases,” Process Saf. Environ. Prot., vol. 130, pp. 1–5, Oct. 2019, doi: 10.1016/j.psep.2019.07.012.
  • [67] Z. labidine Messaoudani, F. Rigas, M. D. Binti Hamid, and C. R. Che Hassan, “Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review,” Int. J. Hydrogen Energy, vol. 41, no. 39, pp. 17511–17525, Oct. 2016, doi: 10.1016/J.IJHYDENE.2016.07.171.
  • [68] K. M. Groth and A. V. Tchouvelev, “A toolkit for integrated deterministic and probabilistic risk assessment for hydrogen infrastructure,” 2014.
  • [69] E. Zarei, F. Khan, and M. Yazdi, “A dynamic risk model to analyze hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 46, no. 5, pp. 4626–4643, Jan. 2021, doi: 10.1016/J.IJHYDENE.2020.10.191.
  • [70] M. Honselaar, G. Pasaoglu, and A. Martens, “Hydrogen refuelling stations in the Netherlands: An intercomparison of quantitative risk assessments used for permitting,” Int. J. Hydrogen Energy, vol. 43, no. 27, pp. 12278–12294, 2018, doi: 10.1016/j.ijhydene.2018.04.111.
  • [71] J. Kim, Y. Lee, and I. Moon, “An index-based risk assessment model for hydrogen infrastructure,” Int. J. Hydrogen Energy, vol. 36, no. 11, 2011, doi: 10.1016/j.ijhydene.2011.02.127.
  • [72] Z. Hameed, J. Vatn, and J. Heggset, “Challenges in the reliability and maintainability data collection for offshore wind turbines,” Renew. Energy, vol. 36, no. 8, pp. 2154–2165, Aug. 2011, doi: 10.1016/J.RENENE.2011.01.008.
  • [73] R. Mogre, S. S. Talluri, and F. Damico, “A decision framework to mitigate supply chain risks: An10.1109/TEM.2016.2567539.
  • [74] F. Dinmohammadi and M. Shafiee, “A fuzzy-FMEA risk assessment approach for offshore wind turbines,” Int. J. Progn. Heal. Manag., vol. 4, no. SPECIAL ISSUE 2, 2013, doi: 10.36001/ijphm.2013.v4i3.2143.
  • [75] M. Leimeister and A. Kolios, “A review of reliability-based methods for risk analysis and their application in the offshore wind industry,” Renewable and Sustainable Energy Reviews, vol. 91. 2018. doi: 10.1016/j.rser.2018.04.004.
  • [76] M. Shafiee, “A fuzzy analytic network process model to mitigate the risks associated with offshore wind farms,” Expert Syst. Appl., vol. 42, no. 4, pp. 2143–2152, Mar. 2015, doi: 10.1016/J.ESWA.2014.10.019.
  • [77] M. M. Luengo and A. Kolios, “Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review,” vol. 8, pp. 8339–8354, 2007, doi: 10.3390/en8088339.
  • [78] N. Khakzad, F. Khan, and P. Amyotte, “Quantitative risk analysis of offshore drilling operations: A Bayesian approach,” Saf. Sci., vol. 57, 2013, doi: 10.1016/j.ssci.2013.01.022.
  • [79] G. Song, F. Khan, H. Wang, S. Leighton, Z. Yuan, and H. Liu, “Dynamic occupational risk model for offshore operations in harsh environments,” Reliab. Eng. Syst. Saf., vol. 150, pp. 58–64, Jun. 2016, doi: 10.1016/J.RESS.2016.01.021.
  • [80] X. Zhang, L. Sun, H. Sun, Q. Guo, and X. Bai, “Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA,” J. Wind Eng. Ind. Aerodyn., vol. 154, pp. 21–33, Jul. 2016, doi: 10.1016/J.JWEIA.2016.04.005.
  • [81] A. A. Taflanidis, E. Loukogeorgaki, and D. C. Angelides, “Offshore wind turbine risk quantification/evaluation under extreme environmental conditions,” Reliab. Eng. Syst. Saf., vol. 115, 2013, doi: 10.1016/j.ress.2013.02.003.
  • [82] J. J. Nielsen and J. D. Sørensen, “On risk-based operation and maintenance of offshore wind turbine components,” in Reliability Engineering and System Safety, 2011, vol. 96, no. 1. doi: 10.1016/j.ress.2010.07.007.
  • [83] J. S. Chou, P. C. Liao, and C. Da Yeh, “Risk analysis and management of construction and operations in offshore wind power project,” Sustain., vol. 13, no. 13, 2021, doi: 10.3390/su13137473.
  • [84] A. Staid and S. D. Guikema, “Risk Analysis for U.S. Offshore Wind Farms: The Need for an Integrated Approach,” Risk Analysis, vol. 35, no. 4. 2015. doi: 10.1111/risa.12324.
  • [85] J. Kang, L. Sun, H. Sun, and C. Wu, “Risk assessment of floating offshore wind turbine based on correlation-FMEA,” Ocean Eng., vol. 129, 2017, doi: 10.1016/j.oceaneng.2016.11.048.
  • [86] K. Gkoumas, “A risk analysis framework for offshore wind turbines,” 2010. doi: 10.1061/41096(366)179.
  • [87] D. C. Álvarez, A. L. Rodríguez, and J. A. M. Dono, “Risk management and design of mitigation plans through discrete events simulation and genetic algorithms in offshore wind processes,” Int. J. Serv. Comput. Oriented Manuf., vol. 3, pp. 274–292, 2018.
  • [88] S. Zhou and P. Yang, “Risk management in distributed wind energy implementing Analytic Hierarchy Process,” Renew. Energy, vol. 150, 2020, doi: 10.1016/j.renene.2019.12.125.
  • [89] M. Desholm and J. Kahlert, “Avian collision risk at an offshore wind farm,” Biol. Lett., vol. 1, no. 3, pp. 296–298, 2005, doi: 10.1098/rsbl.2005.0336.
  • [90] B. Ram, “Assessing integrated risks of offshore wind projects: Moving towards gigawatt-scale deployments,” Wind Eng., vol. 35, no. 3, 2011, doi: 10.1260/0309-524X.35.3.247.
  • [91] X. Bai, L. Sun, and H. Sun, “Risk assessment of hoisting aboard and installation for offshore wind turbine,” in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2012, vol. 2, pp. 107–144. doi: 10.1115/OMAE2012-83187.
  • [92] N. Gatzert and T. Kosub, “Risks and risk management of renewable energy projects: The case ofonshore and offshore wind parks,” Renew. Sustain. Energy Rev., vol. 60, pp. 982–998, Jul. 2016, doi: 10.1016/J.RSER.2016.01.103.
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Risk Mühendisliği, Mühendislik Uygulaması ve Eğitim (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Ayşe Nuray Canat 0000-0002-8527-550X

Coşkun Özkan 0000-0002-0318-8614

Yayımlanma Tarihi 1 Mayıs 2025
Gönderilme Tarihi 15 Ocak 2024
Kabul Tarihi 1 Eylül 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

IEEE A. N. Canat ve C. Özkan, “Hybrid Offshore Wind and Hydrogen Energy Risk Analysis”, ECJSE, c. 12, sy. 2, ss. 102–120, 2025, doi: 10.31202/ecjse.1420397.