Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 12 Sayı: 2, 176 - 190, 01.05.2025
https://doi.org/10.31202/ecjse.1572805

Öz

Kaynakça

  • [1] F. M. L. Rekbi, ‘‘Behavior of materials in the presence of particles additive technique: a review,’’ ENP Engineering Science Journal, vol. 3, no. 1, pp. 15–26, 2023.
  • [2] F. M. L. Rekbi, M. Hecini, and A. Khechai, ‘‘Experimental and numerical analysis of mode-i interlaminar fracture of composite pipes,’’ Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 10, p. 502, 2018.
  • [3] M. Sh. Al-Otaibi, O. Y. Alothman, M. M. Alrashed, A. Anis, J. Naveen, and M. Jawaid, ‘‘Characterization of date palm fiber-reinforced different polypropylene matrices,’’ Polymers, vol. 12, no. 3, p. 597, 2020.
  • [4] S. Mohammed, A. Meghezzi, Y. Meftah, and S. Maou, ‘‘Thermophysical behavior of date palm fiber-reinforced polyvinylchloride/low-density polyethylene/acrylonitrile butadiene rubber copolymer ternary composite,’’ Polyolefins Journal, vol. 10, no. 4, pp. 225–233, 2023.
  • [5] A. Kriker, G. Debicki, A. Bali, M. Khenfer, and M. Chabannet, ‘‘Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate,’’ Cement and Concrete Composites, vol. 27, no. 5, pp. 554–564, 2005.
  • [6] C. Belgacem, F. Serra-Parareda, Q. Tarrés, P. Mutjé, M. Delgado-Aguilar, and S. Boufi, ‘‘Valorization of date palm waste for plastic reinforcement: Macro and micromechanics of flexural strength,’’ Polymers, vol. 13, no. 11, p. 1751, 2021.
  • [7] S. Awad, Y. Zhou, E. Katsou, Y. Li, and M. Fan, ‘‘A critical review on date palm tree (phoenix dactylifera l.) fibres and their uses in bio-composites,’’ Waste and Biomass Valorization, vol. 12, pp. 2853–2887, 2021.
  • [8] L. A. Elseify, M. Midani, L. A. Shihata, and H. El-Mously, ‘‘Review on cellulosic fibers extracted from date palms (phoenix dactylifera l.) and their applications,’’ Cellulose, vol. 26, pp. 2209–2232, 2019.
  • [9] K. AlZebdeh, M. Nassar, M. Al-Hadhrami, O. Al-Aamri, S. Al-Defaai, and S. Al-Shuaily, ‘‘Characterization of mechanical properties of aligned date palm frond fiber-reinforced low density polyethylene,’’ The Journal of Engineering Research
  • [TJER], vol. 14, no. 2, pp. 115–123, 2017.
  • [10] A. Hamma, M. Kaci, and A. Pegoretti, ‘‘Polypropylene/date stone flour composites: Effects of filler contents and ebagma compatibilizer on morphology, thermal, and mechanical properties,’’ Journal of Applied Polymer Science, vol. 128, no. 6, pp. 4314–4321, 2013.
  • [11] K. S. Al-Zahrani, A. A. Faqeeh, Z. R. Abdulghani, and S. P. Thomas, ‘‘A review on the physicochemical properties and utilization of date seeds in value-added engineering products,’’ Polymer Bulletin, vol. 79, no. 12, pp. 10 433–10 490, 2022.
  • [12] R. A. Nasser, M. Z. Salem, S. Hiziroglu, H. A. Al-Mefarrej, A. S. Mohareb, M. Alam, and I. M. Aref, ‘‘Chemical analysis of different parts of date palm (phoenix dactylifera l.) using ultimate, proximate and thermo-gravimetric techniques for energy production,’’ Energies, vol. 9, no. 5, p. 374, 2016.
  • [13] A. Djoudi, M. M. Khenfer, A. Bali, and T. Bouziani, ‘‘Effect of the addition of date palm fibers on thermal properties of plaster concrete: experimental study and modeling,’’ Journal of Adhesion Science and Technology, vol. 28, no. 20, pp. 2100–2111, 2014.
  • [14] N. Benmansour, B. Agoudjil, A. Gherabli, A. Kareche, and A. Boudenne, ‘‘Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building,’’ Energy and Buildings, vol. 81, pp. 98–104, 2014.
  • [15] E. Atiki, A. Khechai, B. Taallah, S. Feia, K. S. Almeasar, A. Guettala, and O. Canpolat, ‘‘Assessment of flexural behavior of compressed earth blocks using digital image correlation technique: effect of different types of date palm fibers,’’ European Journal of Environmental and Civil Engineering, vol. 28, no. 5, pp. 1208–1229, 2024.
  • [16] A. Abdal-Hay, N. P. G. Suardana, D. Y. Jung, K.-S. Choi, and J. K. Lim, ‘‘Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites,’’ International Journal of Precision Engineering and Manufacturing, vol. 13, pp. 1199–1206, 2012.
  • [17] I. Oral, ‘‘Ultrasonic characterization of conductive epoxy resin/polyaniline composites,’’ Journal of Applied Polymer Science, vol. 132, no. 45, 2015.
  • [18] S. Rabhi, S. Abdi, R. Halimi, and N. Benghanem, ‘‘Green epoxy resin/date stone flour biocomposites: Effect of filler chemical treatments on elastic properties,’’ Polymer Composites, vol. 42, no. 9, pp. 4736–4753, 2021.
  • [19] I. Oral and M. Ekrem, ‘‘Measurement of the elastic properties of epoxy resin/polyvinyl alcohol nanocomposites by ultrasonic wave velocities,’’ Express Polymer Letters, vol. 16, no. 6, pp. 591–606, 2022.
  • [20] I. Oral, U. Soydal, and M. Bentahar, ‘‘Ultrasonic characterization of andesite waste-reinforced composites,’’ Polymer Bulletin, vol. 74, no. 5, pp. 1899–1914, 2017.
  • [21] C. M. Valencia, J. Pazos-Ospina, E. Franco, J. L. Ealo, D. Collazos-Burbano, and G. C. Garcia, ‘‘Ultrasonic determination of the elastic constants of epoxy-natural fiber composites,’’ Physics Procedia, vol. 70, pp. 467–470, 2015.
  • [22] A. El-Daly, M. Abdelhameed, M. Hashish, and A. Eid, ‘‘Synthesis of al/sic nanocomposite and evaluation of its mechanical properties using pulse echo overlap method,’’ Journal of Alloys and Compounds, vol. 542, pp. 51–58, 2012.
  • [23] I. Oral, ‘‘Determination of elastic constants of epoxy resin/biochar composites by ultrasonic pulse echo overlap method,’’ Polymer Composites, vol. 37, no. 9, pp. 2907–2915, 2016.
  • [24] ——, ‘‘Ultrasonic properties of epoxy resin/marble waste powder composites,’’ Polymer Composites, vol. 36, no. 3, pp. 584–590, 2015.
  • [25] I. Oral, H. Guzel, and G. Ahmetli, ‘‘Ultrasonic properties of polystyrene-based composites,’’ Journal of Applied Polymer Science, vol. 125, no. 2, pp. 1226–1237, 2012.
  • [26] I. Oral and G. Ahmetli, ‘‘Ultrasonic characterisation of epoxy resin/polyethylene terephthalate (pet) char powder composites,’’ Materials Science, vol. 22, no. 4, pp. 553–559, 2016.
  • [27] H. Cao, S. Guo, Z. He, Y. Xie, T. Zhang, andW. Feng, ‘‘In situ elastic constant determination of unidirectional cfrp composites via backwall reflected multi-mode ultrasonic bulk waves using a linear array probe,’’ Composites Part B: Engineering, vol. 238, p. 109953, 2022.
  • [28] S. Rabhi, N. Benghanem, and S. Abdi, ‘‘Comparative study of two biocomposites: Effect of date stone flour treated with potassium permanganate as a filler on the morphological and elastic properties,’’ Journal of Composite Materials, vol. 56, no. 7, pp. 1071–1089, 2022.
  • [29] S. Souissi, K. Mezghanni, N. Bouhamed, P. Marechal, M. Benamar, and O. Lenoir, ‘‘Comparison between ultrasonic and mechanical young’s modulus of a biocomposite reinforced with olive wood floor,’’ in Advances in Acoustics and Vibration II: Proceedings of the Second International Conference on Acoustics and Vibration (ICAV2018), March 19-21, 2018, Hammamet, Tunisia. Springer, 2019, pp. 300–309.
  • [30] A. A. Yassene, S. Fares, A. Ashour, and M. Abd El-Rahman, ‘‘Ultrasonic velocity and attenuation in epoxy resin/granite (marble) powder composite,’’ Research in Nondestructive Evaluation, vol. 29, no. 1, pp. 48–60, 2018.
  • [31] J. Holt, S. Blackwell, L. Zani, and C. Torres-Sanchez, ‘‘Comparison of elastic properties of low-density polymeric foams determined by ultrasonic wave propagation and quasi-static mechanical testing,’’ Materials Letters, vol. 263, p. 127243, 2020.
  • [32] H. A. Afifi, ‘‘Ultrasonic pulse echo studies of the physical properties of pmma, ps, and pvc,’’ Polymer-Plastics Technology and Engineering, vol. 42, no. 2, pp. 193–205, 2003.
  • [33] R. A. Ibrahem, ‘‘Effect of date palm seeds on the tribological behaviour of polyester composites under different testing conditions,’’ Journal of Material Sciences and Engineering, vol. 4, no. 6, 2015.
  • [34] A. O. Ameh, M. T. Isa, and I. Sanusi, ‘‘Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites,’’ Leonardo Electronic Journal of Practices and Technologies, vol. 14, no. 26, pp. 65–78, 2015.
  • [35] T. Masri, H. Ounis, L. Sedira, A. Kaci, and A. Benchabane, ‘‘Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes,’’ Construction and Building Materials, vol. 164, pp. 410–418, 2018.
  • [36] M. Boumhaout, L. Boukhattem, H. Hamdi, B. Benhamou, and F. A. Nouh, ‘‘Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh,’’ Construction and Building Materials, vol. 135, pp. 241–250, 2017.
  • [37] S. Benaniba, Z. Driss, M. Djendel, E. Raouache, and R. Boubaaya, ‘‘Thermo-mechanical characterization of a bio-composite mortar reinforced with date palm fiber,’’ Journal of Engineered Fibers and Fabrics, vol. 15, p. 1558925020948234, 2020.
  • [38] A. Abd Mohammed, ‘‘The experimental study and statistical evaluation of the wear and hardness of epoxy reinforced with natural materials,’’ Journal of Engineering and Sustainable Development, vol. 20, no. 3, pp. 14–24, 2016.
  • [39] N. Debabeche, O. Kribaa, H. Boussehel, B. Guerira, M. Jawaid, H. Fouad, and M. Azeem, ‘‘Effect of fiber surface treatment on the mechanical, morphological, and dynamic mechanical properties of palm petiole fiber/lldpe composites,’’ Biomass Conversion and Biorefinery, pp. 1–14, 2023.
  • [40] H. Ozcelik, ‘‘Nehir sularındaki cu (ii) agır metal iyonlarının dogal atıklarla uzaklaştırılması,’’ El-Cezeri Journal of Science and Engineering, vol. 5, no. 2, pp. 361–366, 2018.
  • [41] I. Oral, ‘‘Investigation of surface damages in composite materials using ultrasonic lamb waves,’’ El-Cezeri Journal of Science and Engineering, vol. 8, no. 2, pp. 652–665, 2021.
  • [42] I. Oral, H. Guzel, and G. Ahmetli, ‘‘Measuring the young’s modulus of polystyrene-based composites by tensile test and pulse-echo method,’’ Polymer Bulletin, vol. 67, pp. 1893–1906, 2011.
  • [43] F. M. L. Rekbi, A. Khechai, R. Halimi, M. Hecini, and Ö. Özbek, ‘‘Crack growth behavior in filament winding composites under mode-i loading test: destructive and non-destructive investigations,’’ Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 2, p. 78, 2023.
  • [44] J. B. Niyomukiza, K. C. Nabitaka, M. Kiwanuka, P. Tiboti, and J. Akampulira, ‘‘Enhancing properties of unfired clay bricks using palm fronds and palm seeds,’’ Results in Engineering, vol. 16, p. 100632, 2022.
  • [45] K. R. Rajthilak, S. Ramesh, G. Lokesh, and S. B. Boppana, ‘‘Date palm fibre reinforced composite by multiple resin to enhance the properties of a composite-a review,’’ in IOP Conference Series: Materials Science and Engineering, vol. 1013, no. 1. IOP Publishing, 2021, p. 012034.
  • [46] I. Oral, S. Kocaman, and G. Ahmetli, ‘‘Preparation and ultrasonic characterization of modified epoxy resin/coconut shell powder biocomposites,’’ Journal of Applied Polymer Science, vol. 139, no. 11, p. 51772, 2022.
  • [47] I. Perepechko and G. Leib, Acoustic methods of investigating polymers. Mir Publishers, 1975.
  • [48] M. R. Khosravani, P. Soltani, K. Weinberg, and T. Reinicke, ‘‘Structural integrity of adhesively bonded 3d-printed joints,’’ Polymer Testing, vol. 100, p. 107262, 2021.
  • [49] I. Oral, S. Kocaman, and G. Ahmetli, ‘‘Characterization of unmodified and modified apricot kernel shell/epoxy resin biocomposites by ultrasonic wave velocities,’’ Polymer Bulletin, vol. 80, no. 5, pp. 5529–5552, 2023.
  • [50] S. Awad, T. Hamouda, M. Midani, E. Katsou, and M. Fan, ‘‘Polylactic acid (pla) reinforced with date palm sheath fiber bio-composites: evaluation of fiber density, geometry, and content on the physical and mechanical properties,’’ Journal of Natural Fibers, vol. 20, no. 1, p. 2143979, 2023.
  • [51] T. Djoudi, H. Djemai, M. Hecini, and A. Ferhat, ‘‘Physical, thermal and mechanical characterization of a new material composite based on fibrous wood particles of date palm tree,’’ Revue des Composites et des Materiaux Avances, vol. 32, no. 1, p. 45, 2022.
  • [52] J. J. Kenned, K. Sankaranarayanasamy, J. Binoj, and S. K. Chelliah, ‘‘Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites,’’ Composites Science and Technology, vol. 185, p. 107890, 2020.
  • [53] I. Oral, H. Guzel, and G. Ahmetli, ‘‘Determining the mechanical properties of epoxy resin (dgeba) composites by ultrasonic velocity measurement,’’ Journal of Applied Polymer Science, vol. 127, no. 3, pp. 1667–1675, 2013.
  • [54] M. R. Khosravani, S. Rezaei, H. Ruan, and T. Reinicke, ‘‘Fracture behavior of anisotropic 3d-printed parts: Experiments and numerical simulations,’’ Journal of Materials Research and Technology, vol. 19, pp. 1260–1270, 2022.
  • [55] M. M. Nassar, K. I. Alzebdeh, T. Pervez, N. Al-Hinai, A. Munam, F. Al-Jahwari, and I. Sider, ‘‘Polymer powder and pellets comparative performances as bio-based composites,’’ Iranian Polymer Journal, vol. 30, pp. 269–283, 2021.
  • [56] M. Asyraf, N. Nurazzi, M. Norrrahim, K. Hazrati, A. Ghani, F. Sabaruddin, S. Lee, S. Shazleen, and M. Razman, ‘‘Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: a comprehensive review on thermogravimetry analysis,’’ Cellulose, vol. 30, no. 5, pp. 2753–2790, 2023.

Ultrasonic Characterization of the Mechanical Behavior of Epoxy/Date Kernel Powder Biocomposites: A Feasibility Study of the Powder Size Effect

Yıl 2025, Cilt: 12 Sayı: 2, 176 - 190, 01.05.2025
https://doi.org/10.31202/ecjse.1572805

Öz

\begin{abstract}

This study aims to address the effect of date kernel powder (DKP) as reinforcement obtained from Touggourt oasis, Algeria, on the elastic properties of biocomposites based on two prepared DKPs with grain size 300 $\mu$m and 500 $\mu$m mixed on epoxy (ER) matrix. The weight percentage of powders with 5\%, 10\%, and 15\% was used to obtain epoxy matrix
(ER)/date kernel powder (DKP) biocomposites. The effects of DKP size on the elastic properties of ER/DKP biocomposites, such as ultrasonic wave velocities (longitudinal and shear), longitudinal modulus, shear modulus, bulk modulus, Young’s modulus of elasticity, ultrasonic microhardness, Poisson’s ratio, and acoustic impedance, were determined using the
ultrasonic through-transmission method. In addition, the two biocomposites prepared to analyze the chemical changes in the functional groups and their morphology were studied using X-ray diffraction and optical microscopy, respectively. The results of ultrasonic characterization of the ER/DKP biocomposites showed that there is a significant relationship between the sizes of DKP and elastic constant values. In addition, the experimental results illustrated that the optimum weight percent of DKP reinforcement in neat ER for excellent mechanical behavior of ER/DKP biocomposites is 5\% and 10\% for 300 $\mu$m and 500 $\mu$m,
respectively.

\noindent\textbf{Keywords:} Date kernel powder (DKP), Bio-sourced materials, Ecofriendly materials, Ultrasonic characterization, Elastic constants
\end{abstract}

Kaynakça

  • [1] F. M. L. Rekbi, ‘‘Behavior of materials in the presence of particles additive technique: a review,’’ ENP Engineering Science Journal, vol. 3, no. 1, pp. 15–26, 2023.
  • [2] F. M. L. Rekbi, M. Hecini, and A. Khechai, ‘‘Experimental and numerical analysis of mode-i interlaminar fracture of composite pipes,’’ Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 10, p. 502, 2018.
  • [3] M. Sh. Al-Otaibi, O. Y. Alothman, M. M. Alrashed, A. Anis, J. Naveen, and M. Jawaid, ‘‘Characterization of date palm fiber-reinforced different polypropylene matrices,’’ Polymers, vol. 12, no. 3, p. 597, 2020.
  • [4] S. Mohammed, A. Meghezzi, Y. Meftah, and S. Maou, ‘‘Thermophysical behavior of date palm fiber-reinforced polyvinylchloride/low-density polyethylene/acrylonitrile butadiene rubber copolymer ternary composite,’’ Polyolefins Journal, vol. 10, no. 4, pp. 225–233, 2023.
  • [5] A. Kriker, G. Debicki, A. Bali, M. Khenfer, and M. Chabannet, ‘‘Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate,’’ Cement and Concrete Composites, vol. 27, no. 5, pp. 554–564, 2005.
  • [6] C. Belgacem, F. Serra-Parareda, Q. Tarrés, P. Mutjé, M. Delgado-Aguilar, and S. Boufi, ‘‘Valorization of date palm waste for plastic reinforcement: Macro and micromechanics of flexural strength,’’ Polymers, vol. 13, no. 11, p. 1751, 2021.
  • [7] S. Awad, Y. Zhou, E. Katsou, Y. Li, and M. Fan, ‘‘A critical review on date palm tree (phoenix dactylifera l.) fibres and their uses in bio-composites,’’ Waste and Biomass Valorization, vol. 12, pp. 2853–2887, 2021.
  • [8] L. A. Elseify, M. Midani, L. A. Shihata, and H. El-Mously, ‘‘Review on cellulosic fibers extracted from date palms (phoenix dactylifera l.) and their applications,’’ Cellulose, vol. 26, pp. 2209–2232, 2019.
  • [9] K. AlZebdeh, M. Nassar, M. Al-Hadhrami, O. Al-Aamri, S. Al-Defaai, and S. Al-Shuaily, ‘‘Characterization of mechanical properties of aligned date palm frond fiber-reinforced low density polyethylene,’’ The Journal of Engineering Research
  • [TJER], vol. 14, no. 2, pp. 115–123, 2017.
  • [10] A. Hamma, M. Kaci, and A. Pegoretti, ‘‘Polypropylene/date stone flour composites: Effects of filler contents and ebagma compatibilizer on morphology, thermal, and mechanical properties,’’ Journal of Applied Polymer Science, vol. 128, no. 6, pp. 4314–4321, 2013.
  • [11] K. S. Al-Zahrani, A. A. Faqeeh, Z. R. Abdulghani, and S. P. Thomas, ‘‘A review on the physicochemical properties and utilization of date seeds in value-added engineering products,’’ Polymer Bulletin, vol. 79, no. 12, pp. 10 433–10 490, 2022.
  • [12] R. A. Nasser, M. Z. Salem, S. Hiziroglu, H. A. Al-Mefarrej, A. S. Mohareb, M. Alam, and I. M. Aref, ‘‘Chemical analysis of different parts of date palm (phoenix dactylifera l.) using ultimate, proximate and thermo-gravimetric techniques for energy production,’’ Energies, vol. 9, no. 5, p. 374, 2016.
  • [13] A. Djoudi, M. M. Khenfer, A. Bali, and T. Bouziani, ‘‘Effect of the addition of date palm fibers on thermal properties of plaster concrete: experimental study and modeling,’’ Journal of Adhesion Science and Technology, vol. 28, no. 20, pp. 2100–2111, 2014.
  • [14] N. Benmansour, B. Agoudjil, A. Gherabli, A. Kareche, and A. Boudenne, ‘‘Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building,’’ Energy and Buildings, vol. 81, pp. 98–104, 2014.
  • [15] E. Atiki, A. Khechai, B. Taallah, S. Feia, K. S. Almeasar, A. Guettala, and O. Canpolat, ‘‘Assessment of flexural behavior of compressed earth blocks using digital image correlation technique: effect of different types of date palm fibers,’’ European Journal of Environmental and Civil Engineering, vol. 28, no. 5, pp. 1208–1229, 2024.
  • [16] A. Abdal-Hay, N. P. G. Suardana, D. Y. Jung, K.-S. Choi, and J. K. Lim, ‘‘Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites,’’ International Journal of Precision Engineering and Manufacturing, vol. 13, pp. 1199–1206, 2012.
  • [17] I. Oral, ‘‘Ultrasonic characterization of conductive epoxy resin/polyaniline composites,’’ Journal of Applied Polymer Science, vol. 132, no. 45, 2015.
  • [18] S. Rabhi, S. Abdi, R. Halimi, and N. Benghanem, ‘‘Green epoxy resin/date stone flour biocomposites: Effect of filler chemical treatments on elastic properties,’’ Polymer Composites, vol. 42, no. 9, pp. 4736–4753, 2021.
  • [19] I. Oral and M. Ekrem, ‘‘Measurement of the elastic properties of epoxy resin/polyvinyl alcohol nanocomposites by ultrasonic wave velocities,’’ Express Polymer Letters, vol. 16, no. 6, pp. 591–606, 2022.
  • [20] I. Oral, U. Soydal, and M. Bentahar, ‘‘Ultrasonic characterization of andesite waste-reinforced composites,’’ Polymer Bulletin, vol. 74, no. 5, pp. 1899–1914, 2017.
  • [21] C. M. Valencia, J. Pazos-Ospina, E. Franco, J. L. Ealo, D. Collazos-Burbano, and G. C. Garcia, ‘‘Ultrasonic determination of the elastic constants of epoxy-natural fiber composites,’’ Physics Procedia, vol. 70, pp. 467–470, 2015.
  • [22] A. El-Daly, M. Abdelhameed, M. Hashish, and A. Eid, ‘‘Synthesis of al/sic nanocomposite and evaluation of its mechanical properties using pulse echo overlap method,’’ Journal of Alloys and Compounds, vol. 542, pp. 51–58, 2012.
  • [23] I. Oral, ‘‘Determination of elastic constants of epoxy resin/biochar composites by ultrasonic pulse echo overlap method,’’ Polymer Composites, vol. 37, no. 9, pp. 2907–2915, 2016.
  • [24] ——, ‘‘Ultrasonic properties of epoxy resin/marble waste powder composites,’’ Polymer Composites, vol. 36, no. 3, pp. 584–590, 2015.
  • [25] I. Oral, H. Guzel, and G. Ahmetli, ‘‘Ultrasonic properties of polystyrene-based composites,’’ Journal of Applied Polymer Science, vol. 125, no. 2, pp. 1226–1237, 2012.
  • [26] I. Oral and G. Ahmetli, ‘‘Ultrasonic characterisation of epoxy resin/polyethylene terephthalate (pet) char powder composites,’’ Materials Science, vol. 22, no. 4, pp. 553–559, 2016.
  • [27] H. Cao, S. Guo, Z. He, Y. Xie, T. Zhang, andW. Feng, ‘‘In situ elastic constant determination of unidirectional cfrp composites via backwall reflected multi-mode ultrasonic bulk waves using a linear array probe,’’ Composites Part B: Engineering, vol. 238, p. 109953, 2022.
  • [28] S. Rabhi, N. Benghanem, and S. Abdi, ‘‘Comparative study of two biocomposites: Effect of date stone flour treated with potassium permanganate as a filler on the morphological and elastic properties,’’ Journal of Composite Materials, vol. 56, no. 7, pp. 1071–1089, 2022.
  • [29] S. Souissi, K. Mezghanni, N. Bouhamed, P. Marechal, M. Benamar, and O. Lenoir, ‘‘Comparison between ultrasonic and mechanical young’s modulus of a biocomposite reinforced with olive wood floor,’’ in Advances in Acoustics and Vibration II: Proceedings of the Second International Conference on Acoustics and Vibration (ICAV2018), March 19-21, 2018, Hammamet, Tunisia. Springer, 2019, pp. 300–309.
  • [30] A. A. Yassene, S. Fares, A. Ashour, and M. Abd El-Rahman, ‘‘Ultrasonic velocity and attenuation in epoxy resin/granite (marble) powder composite,’’ Research in Nondestructive Evaluation, vol. 29, no. 1, pp. 48–60, 2018.
  • [31] J. Holt, S. Blackwell, L. Zani, and C. Torres-Sanchez, ‘‘Comparison of elastic properties of low-density polymeric foams determined by ultrasonic wave propagation and quasi-static mechanical testing,’’ Materials Letters, vol. 263, p. 127243, 2020.
  • [32] H. A. Afifi, ‘‘Ultrasonic pulse echo studies of the physical properties of pmma, ps, and pvc,’’ Polymer-Plastics Technology and Engineering, vol. 42, no. 2, pp. 193–205, 2003.
  • [33] R. A. Ibrahem, ‘‘Effect of date palm seeds on the tribological behaviour of polyester composites under different testing conditions,’’ Journal of Material Sciences and Engineering, vol. 4, no. 6, 2015.
  • [34] A. O. Ameh, M. T. Isa, and I. Sanusi, ‘‘Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites,’’ Leonardo Electronic Journal of Practices and Technologies, vol. 14, no. 26, pp. 65–78, 2015.
  • [35] T. Masri, H. Ounis, L. Sedira, A. Kaci, and A. Benchabane, ‘‘Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes,’’ Construction and Building Materials, vol. 164, pp. 410–418, 2018.
  • [36] M. Boumhaout, L. Boukhattem, H. Hamdi, B. Benhamou, and F. A. Nouh, ‘‘Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh,’’ Construction and Building Materials, vol. 135, pp. 241–250, 2017.
  • [37] S. Benaniba, Z. Driss, M. Djendel, E. Raouache, and R. Boubaaya, ‘‘Thermo-mechanical characterization of a bio-composite mortar reinforced with date palm fiber,’’ Journal of Engineered Fibers and Fabrics, vol. 15, p. 1558925020948234, 2020.
  • [38] A. Abd Mohammed, ‘‘The experimental study and statistical evaluation of the wear and hardness of epoxy reinforced with natural materials,’’ Journal of Engineering and Sustainable Development, vol. 20, no. 3, pp. 14–24, 2016.
  • [39] N. Debabeche, O. Kribaa, H. Boussehel, B. Guerira, M. Jawaid, H. Fouad, and M. Azeem, ‘‘Effect of fiber surface treatment on the mechanical, morphological, and dynamic mechanical properties of palm petiole fiber/lldpe composites,’’ Biomass Conversion and Biorefinery, pp. 1–14, 2023.
  • [40] H. Ozcelik, ‘‘Nehir sularındaki cu (ii) agır metal iyonlarının dogal atıklarla uzaklaştırılması,’’ El-Cezeri Journal of Science and Engineering, vol. 5, no. 2, pp. 361–366, 2018.
  • [41] I. Oral, ‘‘Investigation of surface damages in composite materials using ultrasonic lamb waves,’’ El-Cezeri Journal of Science and Engineering, vol. 8, no. 2, pp. 652–665, 2021.
  • [42] I. Oral, H. Guzel, and G. Ahmetli, ‘‘Measuring the young’s modulus of polystyrene-based composites by tensile test and pulse-echo method,’’ Polymer Bulletin, vol. 67, pp. 1893–1906, 2011.
  • [43] F. M. L. Rekbi, A. Khechai, R. Halimi, M. Hecini, and Ö. Özbek, ‘‘Crack growth behavior in filament winding composites under mode-i loading test: destructive and non-destructive investigations,’’ Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 2, p. 78, 2023.
  • [44] J. B. Niyomukiza, K. C. Nabitaka, M. Kiwanuka, P. Tiboti, and J. Akampulira, ‘‘Enhancing properties of unfired clay bricks using palm fronds and palm seeds,’’ Results in Engineering, vol. 16, p. 100632, 2022.
  • [45] K. R. Rajthilak, S. Ramesh, G. Lokesh, and S. B. Boppana, ‘‘Date palm fibre reinforced composite by multiple resin to enhance the properties of a composite-a review,’’ in IOP Conference Series: Materials Science and Engineering, vol. 1013, no. 1. IOP Publishing, 2021, p. 012034.
  • [46] I. Oral, S. Kocaman, and G. Ahmetli, ‘‘Preparation and ultrasonic characterization of modified epoxy resin/coconut shell powder biocomposites,’’ Journal of Applied Polymer Science, vol. 139, no. 11, p. 51772, 2022.
  • [47] I. Perepechko and G. Leib, Acoustic methods of investigating polymers. Mir Publishers, 1975.
  • [48] M. R. Khosravani, P. Soltani, K. Weinberg, and T. Reinicke, ‘‘Structural integrity of adhesively bonded 3d-printed joints,’’ Polymer Testing, vol. 100, p. 107262, 2021.
  • [49] I. Oral, S. Kocaman, and G. Ahmetli, ‘‘Characterization of unmodified and modified apricot kernel shell/epoxy resin biocomposites by ultrasonic wave velocities,’’ Polymer Bulletin, vol. 80, no. 5, pp. 5529–5552, 2023.
  • [50] S. Awad, T. Hamouda, M. Midani, E. Katsou, and M. Fan, ‘‘Polylactic acid (pla) reinforced with date palm sheath fiber bio-composites: evaluation of fiber density, geometry, and content on the physical and mechanical properties,’’ Journal of Natural Fibers, vol. 20, no. 1, p. 2143979, 2023.
  • [51] T. Djoudi, H. Djemai, M. Hecini, and A. Ferhat, ‘‘Physical, thermal and mechanical characterization of a new material composite based on fibrous wood particles of date palm tree,’’ Revue des Composites et des Materiaux Avances, vol. 32, no. 1, p. 45, 2022.
  • [52] J. J. Kenned, K. Sankaranarayanasamy, J. Binoj, and S. K. Chelliah, ‘‘Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites,’’ Composites Science and Technology, vol. 185, p. 107890, 2020.
  • [53] I. Oral, H. Guzel, and G. Ahmetli, ‘‘Determining the mechanical properties of epoxy resin (dgeba) composites by ultrasonic velocity measurement,’’ Journal of Applied Polymer Science, vol. 127, no. 3, pp. 1667–1675, 2013.
  • [54] M. R. Khosravani, S. Rezaei, H. Ruan, and T. Reinicke, ‘‘Fracture behavior of anisotropic 3d-printed parts: Experiments and numerical simulations,’’ Journal of Materials Research and Technology, vol. 19, pp. 1260–1270, 2022.
  • [55] M. M. Nassar, K. I. Alzebdeh, T. Pervez, N. Al-Hinai, A. Munam, F. Al-Jahwari, and I. Sider, ‘‘Polymer powder and pellets comparative performances as bio-based composites,’’ Iranian Polymer Journal, vol. 30, pp. 269–283, 2021.
  • [56] M. Asyraf, N. Nurazzi, M. Norrrahim, K. Hazrati, A. Ghani, F. Sabaruddin, S. Lee, S. Shazleen, and M. Razman, ‘‘Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: a comprehensive review on thermogravimetry analysis,’’ Cellulose, vol. 30, no. 5, pp. 2753–2790, 2023.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Uygulaması
Bölüm Araştırma Makaleleri
Yazarlar

Fares Mohammed Laid Rekbi 0000-0001-7079-3462

Rafik Halimi 0000-0001-6601-6505

Oustani Mabrouka 0000-0003-0209-6010

İmran Oral 0000-0002-5299-5068

Wahiba Djerir 0000-0002-7362-2316

Fethi Remli 0000-0003-3597-9952

Hicham Henna 0000-0002-2096-7425

Yayımlanma Tarihi 1 Mayıs 2025
Gönderilme Tarihi 27 Ekim 2024
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 2

Kaynak Göster

IEEE F. M. L. Rekbi, R. Halimi, O. Mabrouka, İ. Oral, W. Djerir, F. Remli, ve H. Henna, “Ultrasonic Characterization of the Mechanical Behavior of Epoxy/Date Kernel Powder Biocomposites: A Feasibility Study of the Powder Size Effect”, ECJSE, c. 12, sy. 2, ss. 176–190, 2025, doi: 10.31202/ecjse.1572805.